Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (108)

Search Parameters:
Keywords = vertical land motion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 9852 KiB  
Article
Design and Optimization of Power Harrow Soil Crushing Components for Coastal Saline–Alkali Land
by Nan Xu, Zhenbo Xin, Jin Yuan, Zenghui Gao, Yu Tian, Chao Xia, Xuemei Liu and Dongwei Wang
Agriculture 2025, 15(2), 206; https://doi.org/10.3390/agriculture15020206 - 18 Jan 2025
Viewed by 384
Abstract
In China, there are approximately 36.7 million hectares of available saline–alkali land. The quality of land preparation significantly influences the yield of crops grown in saline–alkali soil. However, saline–alkali soil is highly compacted, and, currently, the market lacks land-preparation products specifically tailored to [...] Read more.
In China, there are approximately 36.7 million hectares of available saline–alkali land. The quality of land preparation significantly influences the yield of crops grown in saline–alkali soil. However, saline–alkali soil is highly compacted, and, currently, the market lacks land-preparation products specifically tailored to the unique characteristics of saline–alkali land. The soil crushing performance of existing power harrows fails to meet the requirements for high-quality land preparation, thus affecting crop planting yields. Consequently, it is imperative to conduct research on the design and performance improvement of the soil crushing components of power harrows for saline–alkali land. This paper centers on the key soil crushing component, the harrow blade, and conducts research from the perspectives of kinematics and dynamics. Initially, the ranges of key structural and motion parameters are determined, such as the angle of the harrow blade cutting edge, the thickness of the of the harrow blade cutting edge, and the ratio of the circumferential speed to the forward speed. Subsequently, through simulation tests integrating the Discrete Element Method (DEM) and the Box–Behnken Design (BBD), the optimal parameter combination is identified. The impact of the forward speed and the rotational speed of the vertical-shaft rotor on soil disturbance is analyzed. The relationship between soil disturbance and soil heaping is explored, and an optimal forward speed of around 6 km/h is determined. Field tests are conducted to verify the cause of soil heaping. The test results show that the soil crushing rates are all above 85%, with an average soil crushing rate of 88.66%. These test results have achieved the predetermined objectives and meet the design requirements. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

34 pages, 30142 KiB  
Article
Assessment of the Ground Vulnerability in the Preveza Region (Greece) Using the European Ground Motion Service and Geospatial Data Concerning Critical Infrastructures
by Eleftheria Basiou, Ignacio Castro-Melgar, Haralambos Kranis, Andreas Karavias, Efthymios Lekkas and Issaak Parcharidis
Remote Sens. 2025, 17(2), 327; https://doi.org/10.3390/rs17020327 - 18 Jan 2025
Viewed by 507
Abstract
The European Ground Motion Service (EGMS) and geospatial data are integrated in this paper to evaluate ground deformation and its effects on critical infrastructures in the Preveza Regional Unit. The EGMS, a new service of the Copernicus Land Monitoring Service, employs information from [...] Read more.
The European Ground Motion Service (EGMS) and geospatial data are integrated in this paper to evaluate ground deformation and its effects on critical infrastructures in the Preveza Regional Unit. The EGMS, a new service of the Copernicus Land Monitoring Service, employs information from the C-band Synthetic Aperture Radar (SAR)-equipped Sentinel-1A and Sentinel-1B satellites. This allows for the millimeter-scale measurement of ground motion, which is essential for assessing anthropogenic and natural hazards. The study examines ground displacement from 2018 to 2022 using multi-temporal Synthetic Aperture Radar Interferometry (MTInSAR). The Regional Unit of Preveza was selected for study area. According to the investigation, the area’s East–West Mean Velocity Displacement varies between 22.5 mm/y and −37.7 mm/y, while the Vertical Mean Velocity Displacement ranges from 16 mm/y to −39.3 mm/y. Persistent Scatterers (PSs) and Distributed Scatterers are the sources of these measurements. This research focuses on assessing the impact of ground deformation on 21 school units, 2 health centers, 1 hospital, 4 bridges and 1 dam. The findings provide valuable insights for local authorities and other stakeholders, who will greatly benefit from the information gathered from this study, which will lay the groundwork for wise decision-making and the creation of practical plans to strengthen the resistance of critical infrastructures to ground motion. Full article
Show Figures

Figure 1

13 pages, 4997 KiB  
Article
Removing Land Subsidence Impact from GPS Horizontal Motion in Tianjin, China
by Zhao Peng, Wenbing Liu and Lei Zhang
Appl. Sci. 2025, 15(1), 459; https://doi.org/10.3390/app15010459 - 6 Jan 2025
Viewed by 397
Abstract
The phenomenon of land subsidence has been demonstrated to exert a considerable influence on GPS observations. However, to date, no study which has successfully removed the impact of land subsidence on GPS horizontal motion has been conducted. We developed an original sequence-to-sequence deep [...] Read more.
The phenomenon of land subsidence has been demonstrated to exert a considerable influence on GPS observations. However, to date, no study which has successfully removed the impact of land subsidence on GPS horizontal motion has been conducted. We developed an original sequence-to-sequence deep learning model for the elimination of the impact of land subsidence on GPS horizontal motion, employing gated recurrent units. The model is capable of predicting the horizontal motion of the target GPS station with the impact of land subsidence removed by learning the implicit relationship between the horizontal motion and vertical data of the station. A local model was constructed for each GPS station in the Tianjin subsidence area, and the corresponding dataset was generated for the purposes of model training and testing. The vertical data, with the impact of land subsidence removed, were employed as model inputs for the purpose of predicting the horizontal motion of the same station, with the impact of land subsidence similarly removed. The results demonstrate that following the removal of the impact of land subsidence, the dispersion of GPS horizontal motion within the Tianjin subsidence area is markedly diminished, and the horizontal motion trend exhibits greater consistency with that observed at neighboring stations in non-subsidence regions. The impact of land subsidence on GPS horizontal motion exhibits variability across different regions of the Tianjin subsidence area and among disparate stations. Full article
(This article belongs to the Special Issue Applications of Machine Learning in Earth Sciences—2nd Edition)
Show Figures

Figure 1

21 pages, 15197 KiB  
Article
Correlation Analysis of Vertical Ground Movement and Climate Using Sentinel-1 InSAR
by Francesco Pirotti, Felix Enyimah Toffah and Alberto Guarnieri
Remote Sens. 2024, 16(22), 4123; https://doi.org/10.3390/rs16224123 - 5 Nov 2024
Viewed by 795
Abstract
Seasonal vertical ground movement (SVGM), which refers to the periodic vertical displacement of the Earth’s surface, has significant implications for infrastructure stability, agricultural productivity, and environmental sustainability. Understanding how SVGM correlates with climatic conditions—such as temperatures and drought—is essential in managing risks posed [...] Read more.
Seasonal vertical ground movement (SVGM), which refers to the periodic vertical displacement of the Earth’s surface, has significant implications for infrastructure stability, agricultural productivity, and environmental sustainability. Understanding how SVGM correlates with climatic conditions—such as temperatures and drought—is essential in managing risks posed by land subsidence or uplift, particularly in regions prone to extreme weather events and climate variability. The correlation of periodic SVGM with climatic data from Earth observation was investigated in this work. The European Ground Motion Service (EGMS) vertical ground movement measurements, provided from 2018 to 2022, were compared with temperature and precipitation data from MODIS and CHIRP datasets, respectively. Measurement points (MP) from the EGMS over Italy provided a value for ground vertical movement approximately every 6 days. The precipitation and temperature datasets were processed to provide drought code (DC) maps calculated ad hoc for this study at a 1 km spatial resolution and daily temporal resolution. Seasonal patterns were analyzed to assess correlations with Spearman’s rank correlation coefficient (ρ) between this measure and the DCs from the Copernicus Emergency Management Service (DCCEMS), from MODIS + CHIRP (DC1km) and from the temperature. The results over the considered area (Italy) showed that 0.46% of all MPs (32,826 MPs out of 7,193,676 MPs) had a ρ greater than 0.7; 12,142 of these had a positive correlation, and 20,684 had a negative correlation. DC1km was the climatic factor that provided the highest number of correlated MPs, roughly giving +59% more correlated MPs than DCCEMS and +300% than the temperature data. If a ρ greater than 0.8 was considered, the number of MPs dropped by a factor of 10: from 12,142 to 1275 for positive correlations and from 20,684 to 2594 for negative correlations between the DC1km values and SVGM measurements. Correlations that lagged in time resulted in most of the correlated MPs being within a window of ±6 days (a single satellite overpass time). Because the DC and temperature are strongly co-linear, further analysis to assess which was superior in explaining the seasonality of the MPs was carried out, resulting in DC1km significantly explaining more variance in the SVGM than the temperature for the inversely correlated points rather than the directly correlated points. The spatial distribution of the correlated MPs showed that they were unevenly distributed in clusters across the Italian territory. This work will lead to further investigation both at a local scale and at a pan-European scale. An interactive WebGIS application that is open to the public is available for data consultation. This article is a revised and expanded version of a paper entitled “Detection and correlation analysis of seasonal vertical ground movement measured from SAR and drought condition” which was accepted and presented at the ISPRS Mid-Term Symposium, Belem, Brasil, 8–12 November 2024. Data are shared in a public repository for the replication of the method. Full article
Show Figures

Figure 1

15 pages, 6839 KiB  
Article
Impact of Quadriceps Muscle Fatigue on Ankle Joint Compensation Strategies During Single-Leg Vertical Jump Landing
by Chen Chen, Huiyu Zhou, Datao Xu, Xiangli Gao, Liangliang Xiang and Yaodong Gu
Sensors 2024, 24(20), 6712; https://doi.org/10.3390/s24206712 - 18 Oct 2024
Viewed by 1259
Abstract
This study investigates the impact of quadriceps fatigue on lower limb biomechanics during the landing phase of a single-leg vertical jump (SLJ) in 25 amateur male basketball players from Ningbo University. Fatigue was induced through single-leg knee flexion and extension exercises until task [...] Read more.
This study investigates the impact of quadriceps fatigue on lower limb biomechanics during the landing phase of a single-leg vertical jump (SLJ) in 25 amateur male basketball players from Ningbo University. Fatigue was induced through single-leg knee flexion and extension exercises until task failure. Kinematic and dynamic data were collected pre-fatigue (PRF) and post-fatigue (POF) using the Vicon motion capture system and the AMTI force platform and analyzed using an OpenSim musculoskeletal model. Paired sample t-tests revealed significant changes in knee and hip biomechanics under different fatigue conditions, with knee joint angle (p < 0.001), velocity (p = 0.006), moment (p = 0.006), and power (p = 0.036) showing significant alterations. Hip joint angle (p = 0.002), moment (p = 0.033), and power (p < 0.001) also exhibited significant changes. Muscle activation and joint power were significantly higher in the POF condition, while joint stiffness was lower. These findings suggest that quadriceps fatigue leads to biomechanical adjustments in the knee and hip joints, which may increase the risk of injury despite aiding in landing stability. Full article
(This article belongs to the Special Issue Combining Machine Learning and Sensors in Human Movement Biomechanics)
Show Figures

Figure 1

17 pages, 2499 KiB  
Article
Incremental Sliding Mode Control for Predefined-Time Stability of a Fixed-Wing Electric Vertical Takeoff and Landing Vehicle Attitude Control System
by Jujiang Liu and Yusong Tan
Actuators 2024, 13(9), 371; https://doi.org/10.3390/act13090371 - 20 Sep 2024
Viewed by 775
Abstract
This paper presents a novel incremental sliding mode control scheme to address the attitude-tracking issue in both the helicopter and airplane modes of an electric vertical takeoff and landing vehicle, guaranteeing the stabilization of the attitude-tracking error within a predefined time. Firstly, an [...] Read more.
This paper presents a novel incremental sliding mode control scheme to address the attitude-tracking issue in both the helicopter and airplane modes of an electric vertical takeoff and landing vehicle, guaranteeing the stabilization of the attitude-tracking error within a predefined time. Firstly, an incremental model of the vehicle’s attitude control system with external disturbances is established. The high-order terms of the incremental model and instantaneous perturbations are retained as lumped terms rather than directly discarding them to ensure the accuracy of the incremental model. Then, a novel nonsingular sliding surface is developed. Once the ideal sliding motion is established, the states on the sliding surface will converge to the equilibrium point within a predefined time. Furthermore, a predefined-time incremental sliding mode controller is developed by using sliding mode control and incremental control techniques. It effectively reduces the reliance on the model information and attenuates the effects of external disturbances. The predefined-time stability of the entire controlled system is rigorously proven using Lyapunov theory. Finally, numerical simulation examples verify the effectiveness of the proposed control scheme. Full article
Show Figures

Figure 1

18 pages, 5768 KiB  
Article
Wind Vorticity and Upwelling along the Coast of South Africa
by Mark R. Jury
Coasts 2024, 4(3), 619-637; https://doi.org/10.3390/coasts4030032 - 13 Sep 2024
Viewed by 996
Abstract
Coastal upwelling that cools sea temperatures and nutrifies the euphotic layer is the focus of this research, motivated by how these processes benefit the marine ecosystem. Here, atmosphere–ocean reanalysis fields and satellite radiance data are employed to link South African coastal upwelling with [...] Read more.
Coastal upwelling that cools sea temperatures and nutrifies the euphotic layer is the focus of this research, motivated by how these processes benefit the marine ecosystem. Here, atmosphere–ocean reanalysis fields and satellite radiance data are employed to link South African coastal upwelling with nearshore winds and currents in the 2000–2021 period. Temporal behavior is quantified in three regimes—Benguela, transition, and Agulhas—to distinguish the influence of offshore transport, vertical pumping, and dynamic uplift. These three mechanisms of coastal upwelling are compared to reveal a leading role for cyclonic wind vorticity. Daily time series at west, south, and east coast sites exhibit pulsing of upwelling-favorable winds during summer. Over the western shelf, horizontal transport and vertical motion are in phase. The south and east shelf experience greater cyclonic wind vorticity in late winter, due to land breezes under the Mascarene high. Ekman transport and pumping are out of phase there, but dynamic uplift is sustained by cyclonic shear from the shelf-edge Agulhas current. Temporal analysis of longshore wind stress and cyclonic vorticity determined that vertical motion of ~5 m/day is pulsed at 4- to 11-day intervals due to passing marine high/coastal low-pressure cells. Height sections reveal that 15 m/s low-level wind jets diminish rapidly inshore due to topographic shearing by South Africa’s convex mountainous coastline. Mean maps of potential wind vorticity show a concentration around capes and at nighttime, due to land breezes. Air–land–sea coupling and frequent coastal lows leave a cyclonic footprint on the coast of South Africa that benefits marine productivity, especially during dry spells with a strengthened subtropical atmospheric ridge. This work has, for the first time, revealed that South Africa is uniquely endowed with three overlapping mechanisms that sustain upwelling along the entire coastline. Amongst those, cyclonic potential vorticity prevails due to the frequent passage of coastal lows that initiate downslope airflows. No other coastal upwelling zone exhibits such a persistent feature. Full article
Show Figures

Figure 1

19 pages, 32869 KiB  
Article
Past and Future Impacts of the Relative Sea Level Rise on the Seafront of Ancient Delos (Cyclades, Greece) and Flooding Scenarios by 2150
by Nikos Mourtzas and Eleni Kolaiti
J. Mar. Sci. Eng. 2024, 12(6), 870; https://doi.org/10.3390/jmse12060870 - 24 May 2024
Viewed by 2630
Abstract
Sea level rise due to global warming is a continuing and, disappointingly, accelerating process which has already affected and will further impact coastal lowlands and the social and economic activities in these areas. Delos Island, situated in the middle of the Cyclades in [...] Read more.
Sea level rise due to global warming is a continuing and, disappointingly, accelerating process which has already affected and will further impact coastal lowlands and the social and economic activities in these areas. Delos Island, situated in the middle of the Cyclades in the Aegean Sea, was considered the most sacred of all islands in ancient Greek culture and was a trading hub for the entire eastern Mediterranean. Uninhabited since the 7th century AD, and consistently the focus of research and touristic attention, the island is designated as an archaeological site and inscribed on the UNESCO World Heritage List. Previous studies on the relative sea level (rsl) changes suggest a steadily rising rsl during the last 6300 years, starting from a sea level of −4.80 ± 0.20 m in the Late Neolithic. The seafront of the ancient city of Delos is subject to the effects of rsl rise, which have caused significant coastline retreat and exposure to the northerly winds and waves, whereas parts of the coastal lowland, where the remains of the ancient city lie, are inundated, forming extended wetlands. The future impacts of rsl rise on the seafront of ancient Delos are illustrated on very-high-resolution digital surface models, evaluating both the flooding risk under different climatic projections, as provided by the IPCC AR6 report, and the ongoing land subsidence, as recorded by GNSS data. An rsl rise ranging from 87 cm (SSP1-2.6 scenario) to 148 cm (SSP5-8.5 scenario) is anticipated by 2150, requiring both resilience strategies and adaptation solutions as well as mitigation policies to cope with the effects of climate change. Full article
(This article belongs to the Special Issue Sea Level Rise and Related Hazards Assessment)
Show Figures

Graphical abstract

20 pages, 19914 KiB  
Article
Investigation of the Internal Flow Characteristics of a Tiltrotor Aircraft Engine Inlet in a Gust Environment
by Haicheng Zhu, Xiaoming He, Yue Zhang, Daishu Cheng, Ziyun Wang, Yufeng Huang and Huijun Tan
Aerospace 2024, 11(5), 342; https://doi.org/10.3390/aerospace11050342 - 25 Apr 2024
Cited by 1 | Viewed by 1381
Abstract
In the vertical take-off and landing (VTOL) state of tiltrotor aircraft, the inlet entrance encounters the incoming airflow at a 90° attack angle, resulting in highly complex internal flow characteristics that are extremely susceptible to gusts. Meanwhile, the flow quality at the inlet [...] Read more.
In the vertical take-off and landing (VTOL) state of tiltrotor aircraft, the inlet entrance encounters the incoming airflow at a 90° attack angle, resulting in highly complex internal flow characteristics that are extremely susceptible to gusts. Meanwhile, the flow quality at the inlet exit directly affects the performance of the aircraft’s engine. This work made use of an unsteady numerical simulation method based on sliding meshes to investigate the internal flow characteristics of the inlet during the hover state of a typical tiltrotor aircraft and the effects of head-on gusts on the inlet’s aerodynamic characteristics. The results show that during the hover state, the tiltrotor aircraft inlet features three pairs of transverse vortices and one streamwise vortex at the aerodynamic interface plane (AIP). The transverse vortices generated due to the rotational motion of the air have the largest scale and exert the strongest influence on the inlet’s performance, which is characterized by pronounced unsteady features. Additionally, strong unsteady characteristics are present within the inlet. Head-on gusts mainly affect the mechanical energy and non-uniformity of the air sucked into the inlet by influencing the direction of the rotor’s induced slipstream, thereby impacting the performance of the inlet. The larger head-on gusts have beneficial effects on the performance of the inlet. When the gust velocity reaches 12 m/s, there is a 1.01% increase in the total pressure recovery (σ) of the inlet, a 25.72% decrease in the circumferential distortion index (DC60), and a reduction of 62.84% in the area where the swirl angle |α| exceeds 15°. Conversely, when the gust velocity of head-on gusts reaches 12 m/s in the opposite direction, the inlet’s total pressure recovery decreases by 1.13%, the circumferential distortion index increases by 14.57%, and the area where the swirl angle exceeds 15° increases by 69.59%, adversely affecting the performance of the inlet. Additionally, the presence of gusts alters the unsteady characteristics within the inlet. Full article
(This article belongs to the Special Issue Gust Influences on Aerospace)
Show Figures

Figure 1

33 pages, 10147 KiB  
Article
Long-Term and Decadal Sea-Level Trends of the Baltic Sea Using Along-Track Satellite Altimetry
by Majid Mostafavi, Artu Ellmann and Nicole Delpeche-Ellmann
Remote Sens. 2024, 16(5), 760; https://doi.org/10.3390/rs16050760 - 21 Feb 2024
Cited by 3 | Viewed by 1987
Abstract
One of the main effects of climate change is rising sea levels, which presents challenges due to its geographically heterogenous nature. Often, contradictory results arise from examining different sources of measurement and time spans. This study addresses these issues by analysing both long-term [...] Read more.
One of the main effects of climate change is rising sea levels, which presents challenges due to its geographically heterogenous nature. Often, contradictory results arise from examining different sources of measurement and time spans. This study addresses these issues by analysing both long-term (1995–2022) and decadal (2000–2009 and 2010–2019) sea-level trends in the Baltic Sea. Two independent sources of data, which consist of 13 tide gauge (TG) stations and multi-mission along-track satellite altimetry (SA), are utilized to calculate sea-level trends using the ordinary least-squares method. Given that the Baltic Sea is influenced by geographically varying vertical land motion (VLM), both relative sea level (RSL) and absolute sea level (ASL) trends were examined for the long-term assessment. The results for the long-term ASL show estimates for TG and SA to be 3.3 mm/yr and 3.9 mm/yr, respectively, indicating agreement between sources. Additionally, the comparison of long-term RSL ranges from −2 to 4.5 mm/yr, while ASL varies between 2 and 5.4 mm/yr, as expected due to the VLM. Spatial variation in long-term ASL trends is observed, with higher rates in the northern and eastern regions. Decadal sea-level trends show higher rates, particularly the decade 2000–2009. Comparison with other available sea-level datasets (gridded models) yields comparable results. Therefore, this study evaluates the ability of SA as a reliable source for determining reginal sea-level trends in comparison with TG data. Full article
Show Figures

Figure 1

15 pages, 3229 KiB  
Article
Comparing the Impact of Upper Body Control and Core Muscle Stabilization Training on Landing Biomechanics in Individuals with Functional Ankle Instability: A Randomized Controlled Trial
by Daekook M. Nekar, Dong-Yeop Lee, Ji-Heon Hong, Jin-Seop Kim, Seong-Gil Kim, Yeon-Gyo Nam and Jae-Ho Yu
Healthcare 2024, 12(1), 70; https://doi.org/10.3390/healthcare12010070 - 28 Dec 2023
Viewed by 2378
Abstract
Functional ankle instability (FAI), which is characterized by recurrent ankle sprains and perceived joint instability, arises from various factors contributing to compromised biomechanical control during activities, particularly those involving landing tasks. While current research predominantly addresses lower-extremity and core stabilization interventions for FAI, [...] Read more.
Functional ankle instability (FAI), which is characterized by recurrent ankle sprains and perceived joint instability, arises from various factors contributing to compromised biomechanical control during activities, particularly those involving landing tasks. While current research predominantly addresses lower-extremity and core stabilization interventions for FAI, the contribution of upper body control to landing biomechanics in this population remains insufficiently explored. In this study, 42 participants (19 males, 23 females) with FAI were randomly assigned to either the upper-body control training group (UBCTG) or the core muscle stabilization training group (CMSTG). The groups underwent six-week interventions, with the UBCTG receiving a dynamic core exercise program including upper body control and the CMSTG receiving static core muscle training. Pre- and post-intervention assessments encompassed electromyography of the gastrocnemius, tibialis anterior, and peroneus longus, motion analysis of the lower extremities, and ground reaction force (GRF) readings during a single-leg-jump task. Additionally, dynamic balance was assessed using the Y balance test and self-reported measurements of ankle instability were performed. The results showed similar increases in muscle activation, joint movement, and self-reported ankle instability scores within both groups. However, significant between-group differences were observed in terms of knee flexion angle, dynamic balance, and ankle instability scores, favoring the UBCTG. Although the peak vertical GRF significantly decreased and the time to peak vertical GRF increased in both groups, more changes were noted in the UBCTG. Our results demonstrated that dynamic core exercises with additional upper body control training enhance landing biomechanics, dynamic balance, and stability in individuals with FAI. Consequently, we recommend incorporating shoulder girdle exercises, proprioceptive drills, and balance exercises into dynamic core training. Full article
(This article belongs to the Special Issue Measuring Biomechanical Loads in Sports and Physical Activity)
Show Figures

Figure 1

24 pages, 10110 KiB  
Article
Numerical Study of Aircraft Wake Vortex Evolution under the Influence of Vertical Winds
by Jianhui Yuan, Jixin Liu, Changcheng Li and Zheng Zhao
Appl. Sci. 2024, 14(1), 86; https://doi.org/10.3390/app14010086 - 21 Dec 2023
Viewed by 1683
Abstract
Separating wake vortices is crucial for aircraft landing safety and essential to airport operational efficiency. Vertical wind, as a typical atmospheric condition, plays a significant role, and studying the evolution characteristics of wake vortices under this condition is of paramount importance for developing [...] Read more.
Separating wake vortices is crucial for aircraft landing safety and essential to airport operational efficiency. Vertical wind, as a typical atmospheric condition, plays a significant role, and studying the evolution characteristics of wake vortices under this condition is of paramount importance for developing dynamic wake separation systems. In this study, we employed the SST k-ω turbulence model based on an O-Block structured grid to numerically simulate the simplified wing model. We analyzed the variations in the wake vortex structure and parameters of the Airbus A320 during the near-field phase under different vertical wind directions and speeds. The results indicate that favorable vertical winds cause a “flattening” deformation in the wake vortex. Vertical winds reduce the initial vortex strength, accelerate the rate of vortex decay, and influence the trajectory of the vortex core. Notably, under wind speeds of 1~3 m/s, the decay rate is more significant than under 4 m/s. When vertical wind speeds are substantial, it can lead to irregular motion and interactions within the vortex core, forming secondary vortices. Full article
(This article belongs to the Special Issue Advances and Applications of CFD (Computational Fluid Dynamics))
Show Figures

Figure 1

30 pages, 778 KiB  
Article
Fault-Tolerant Tracking Control for Linear Parameter-Varying Systems under Actuator and Sensor Faults
by Slim Dhahri and Omar Naifar
Mathematics 2023, 11(23), 4738; https://doi.org/10.3390/math11234738 - 23 Nov 2023
Cited by 1 | Viewed by 985
Abstract
In this study, we delve into the intricacies of addressing the challenge posed by simultaneous external disturbances and ever-changing actuator and sensor faults in the context of linear parameter-varying (LPV) systems. Our focus is on fault estimation (FE) and the pursuit of fault-tolerant [...] Read more.
In this study, we delve into the intricacies of addressing the challenge posed by simultaneous external disturbances and ever-changing actuator and sensor faults in the context of linear parameter-varying (LPV) systems. Our focus is on fault estimation (FE) and the pursuit of fault-tolerant tracking control (FTTC). LPV systems are described through a polytopic LPV representation with measurable gain scheduling functions. An adaptive LPV sliding mode observer (ASMO) is developed for the purpose of simultaneously estimating the system states and faults despite external disturbances. Compared with other conventional ASMO designs, the proposed observer has the capability to reconstruct the actuator faults by exploiting the equivalent output error injection signal required to maintain sliding motion and to directly estimate sensor faults using an adaptive algorithm. Based on online FE information, an FTTC is synthesized to compensate for the fault effect and to force closed-loop system states to track their desired reference signals. Sufficient conditions to ensure the stability of the state estimation errors and closed-loop system are established using Lyapunov stability theory together with H techniques. These requirements are articulated using linear matrix inequalities (LMIs), which can be effortlessly addressed through optimization problem-solving methods. To illustrate the potency of the proposed approaches, an illustrative example is provided. To illustrate the potency of the proposed approaches and to validate their practical effectiveness, we offer an illustrative example featuring a vertical takeoff and landing aircraft. This real-world case study serves as a practical application of our theoretical contributions, demonstrating the adaptability and robustness of our approach in the face of complex, real-world challenges. Full article
Show Figures

Figure 1

18 pages, 11819 KiB  
Article
Effects of Ocean-Land Thermal Contrast on the Organized Cloud: Preliminary Results from a Squall Line Case on Hainan Island
by Qiuyu Wu, Kai Yang, Liping Deng and Jinghua Chen
Atmosphere 2023, 14(11), 1651; https://doi.org/10.3390/atmos14111651 - 3 Nov 2023
Cited by 1 | Viewed by 1104
Abstract
Using the high-resolution numerical weather research and forecasting (WRF) model, study the squall line process that occurred on Hainan Island on 22 April 2020. The findings indicate that high terrain blocks the swift accumulation of water vapor carried by the sea breeze and [...] Read more.
Using the high-resolution numerical weather research and forecasting (WRF) model, study the squall line process that occurred on Hainan Island on 22 April 2020. The findings indicate that high terrain blocks the swift accumulation of water vapor carried by the sea breeze and aids in preserving the accumulated water vapor. According to the sensitivity experiment, terrain height has minimal impact on the macroscopic effects of mesoscale weather processes. However, it does influence where the sea breeze converges. During this process, the ocean-land thermal contrast not only takes the main responsibility for the sea breeze but also leads to uplift motion, which affects the formation, intensity, and duration of the squall line. Additionally, the unstable conditions suggest that a thermal and dynamic environment promote the scale of this squall line. Utilizing the Rotunno–Klemp–Weisman theory (RKW), this study analyzes the effects of the cold pool and vertical wind shear. The analysis reveals that significant vertical wind shear at lower levels and the ground-cold pool contribute to the sustenance and growth of the squall line system. This squall line process has had the greatest impact on the Haikou area due to the strong low-level vertical wind shear and prolonged interaction with the cold pool. When the interaction between the cold pool and the vertical wind shear weakens, the squall dissipates. Full article
(This article belongs to the Special Issue Microphysics of Cloud Processes (MCP))
Show Figures

Figure 1

22 pages, 7450 KiB  
Article
The Impact Modeling and Experimental Verification of a Launch Vehicle with Crushing-Type Landing Gear
by Yingchao Wang, Haitao Yu, Jianghui Xie, Zhen Yan, Baolin Tian and Haibo Gao
Actuators 2023, 12(8), 307; https://doi.org/10.3390/act12080307 - 26 Jul 2023
Viewed by 1512
Abstract
In order to investigate the landing process of a vertical landing reusable vehicle, a dynamic model with a complex nonlinear dissipative element is established based on the discrete impulse step approach, which includes a three-dimensional multi-impact model considering friction and material compliance, and [...] Read more.
In order to investigate the landing process of a vertical landing reusable vehicle, a dynamic model with a complex nonlinear dissipative element is established based on the discrete impulse step approach, which includes a three-dimensional multi-impact model considering friction and material compliance, and a multistage aluminum honeycomb theoretical model. The normal two-stiffness spring model is adopted in the foot–ground impact model, two motion patterns (stick and slip) are considered on the tangential plane and the structural changes caused by buffering behavior are included, and the energy conversion during the impact follows the law of conservation of energy. The state transition method is used to solve the dynamic stability convergence problem of the vehicle under the coupling effect of impact and buffering deformation in the primary impulse space. Landing experiments on a scaled physical reusable vehicle prototype are conducted to demonstrate that the theoretical results exhibit good agreement with the experimental data. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

Back to TopTop