Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = vertical oscillation arc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6610 KiB  
Article
Applying Statistical Models to Optimize the Weld Bead Geometry in the Vertical Oscillation Arc Narrow Gap All-Position GMAW
by Hongsheng Liu, Ruilei Xue, Jianping Zhou, Yang Bao and Yan Xu
Appl. Sci. 2023, 13(11), 6801; https://doi.org/10.3390/app13116801 - 3 Jun 2023
Cited by 4 | Viewed by 1079
Abstract
Vertical oscillation arc welding for narrow gap gas metal arc welding (NG-GMAW) has a relatively simple structure, and it is widely used in all-position pipeline field welding. However, it has some shortcomings, such as incomplete fusion defects on the sidewall and interlayer. Aiming [...] Read more.
Vertical oscillation arc welding for narrow gap gas metal arc welding (NG-GMAW) has a relatively simple structure, and it is widely used in all-position pipeline field welding. However, it has some shortcomings, such as incomplete fusion defects on the sidewall and interlayer. Aiming at resolving these shortcomings, a mathematical model is proposed to obtain appropriate welding parameters in different positions. In this model, the response surface methodology (RSM) based on the central composite design (CCD) was developed to study the interactions between welding parameters and the weld bead geometry. Then the analysis of variance (ANOVA) was used to evaluate the accuracy and significance of the proposed model. Finally, experiments were carried out in flat, vertical, and overhead positions to obtain the optimal parameters. The macroscopic metallography of the transversal section of the weld bead under the optimizing welding parameters showed that the weld beads were free of defects in the sidewall and interlayers. Full article
(This article belongs to the Special Issue Metal Additive Manufacturing and Welding)
Show Figures

Figure 1

17 pages, 6995 KiB  
Article
Effects of Oscillation Width on Arc Characteristics and Droplet Transfer in Vertical Oscillation Arc Narrow-Gap P-GMAW of X80 Steel
by Hongsheng Liu, Ruilei Xue, Jianping Zhou, Yang Bao and Yan Xu
Metals 2023, 13(6), 1057; https://doi.org/10.3390/met13061057 - 31 May 2023
Cited by 2 | Viewed by 1256
Abstract
In fields, such as oil and gas pipelines and nuclear power, narrow-gap welding has often been used for the connection of thick and medium-thick plates. During the welding process, a lack of fusion was prone to occur due to groove size limitations, seriously [...] Read more.
In fields, such as oil and gas pipelines and nuclear power, narrow-gap welding has often been used for the connection of thick and medium-thick plates. During the welding process, a lack of fusion was prone to occur due to groove size limitations, seriously affecting the service safety of large structures. The vertical oscillation arc pulsed gas metal arc welding (P-GMAW) method was adopted for narrow-gap welding in this study. The influence of the oscillation width on arc morphology, droplet transfer behavior and weld formation during narrow-gap welding was studied. Oscillation widths from 0 to 4 mm were used to weld narrow-gap grooves with a bottom width of 6 mm. The results show that, in non-oscillation arc welding, the arc always presented a bell cover shape, and the droplet transfer was in the form of one droplet per pulse, while the sidewall penetration of the weld was relatively small, making it prone to a lack of fusion. With an increase in the oscillation width, the arc gradually shifted to the sidewall. The droplet transfer mode was a mixed transfer of large and small droplets, and the sidewall penetration continued to increase, which was conducive to the fusion of the sidewall. However, when the oscillation width was wider than 3 mm, it led to the phenomenon of the arc climbing to the sidewall, and the weld was prone to porosity, undercutting and other welding defects. The oscillation width has a major impact on the stability of the welding process in vertical oscillation arc narrow-gap welding. Full article
Show Figures

Figure 1

Back to TopTop