Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,735)

Search Parameters:
Keywords = viral replication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 5459 KiB  
Article
Assessing Bias and Reproducibility of Viral Metagenomics Methods for the Combined Detection of Faecal RNA and DNA Viruses
by Rik Haagmans, Oliver J. Charity, Dave Baker, Andrea Telatin, George M. Savva, Evelien M. Adriaenssens, Penny P. Powell and Simon R. Carding
Viruses 2025, 17(2), 155; https://doi.org/10.3390/v17020155 - 23 Jan 2025
Abstract
Whole transcriptome amplification (WTA2) and sequence-independent single primer amplification (SISPA) are two widely used methods for combined metagenomic sequencing of RNA and DNA viruses. However, information on the reproducibility and bias of these methods on diverse viruses in faecal samples is currently lacking. [...] Read more.
Whole transcriptome amplification (WTA2) and sequence-independent single primer amplification (SISPA) are two widely used methods for combined metagenomic sequencing of RNA and DNA viruses. However, information on the reproducibility and bias of these methods on diverse viruses in faecal samples is currently lacking. A mock community (MC) of diverse viruses was developed and used to spike faecal samples at different concentrations. Virus-like particles (VLPs) were extracted, nucleic acid isolated, reverse-transcribed, and PCR amplified using either WTA2 or SISPA and sequenced for metagenomic analysis. A bioinformatics pipeline measured the recovery of MC viruses in replicates of faecal samples from three human donors, analysing the consistency of viral abundance measures and taxonomy. Viruses had different recovery levels with VLP extraction introducing variability between replicates, while WTA2 and SISPA produced comparable results. In comparing WTA2- and SISPA-generated libraries, WTA2 gave more uniform coverage depth profiles and improved assembly quality and virus identification. SISPA produced more consistent abundance, with a 50% difference between replicates occurring in ~20% and ~10% of sequences for WTA2 and SISPA, respectively. In conclusion, a bioinformatics pipeline has been developed to assess the methodological variability and bias of WTA2 and SISPA, demonstrating higher sensitivity with WTA2 and higher consistency with SISPA. Full article
(This article belongs to the Section General Virology)
18 pages, 2445 KiB  
Article
Antiviral Activity of Water–Alcoholic Extract of Cistus incanus L.
by Petya Angelova, Anton Hinkov, Vanya Gerasimova, Plamena Staleva, Mariana Kamenova-Nacheva, Kalina Alipieva, Dimitar Shivachev, Stoyan Shishkov and Kalina Shishkova
Int. J. Mol. Sci. 2025, 26(3), 947; https://doi.org/10.3390/ijms26030947 - 23 Jan 2025
Abstract
Recently, previously known viruses have changed their pathogenicity and encompassed new types of host populations. An example of such an infection is that caused by SARS-CoV, belonging to the “well-known” coronavirus family. Another group of viruses that are of great importance to the [...] Read more.
Recently, previously known viruses have changed their pathogenicity and encompassed new types of host populations. An example of such an infection is that caused by SARS-CoV, belonging to the “well-known” coronavirus family. Another group of viruses that are of great importance to the human population are the herpes viruses. Due to increasing viral resistance to existing antiviral drugs, plant extracts are attracting increasing interest due to their complex composition and their simultaneous attack of different viral targets. Based on the above, we tested the antiviral potential of water–alcoholic extract obtained from a commercial sample of the plant Cistus incanus L. against the enveloped viruses SvHA1, SvHA2 (ACV resistant) and HCoV 229E. The results showed both complete inhibition of the intracellular stages of the viral replication and a strong effect on extracellular virions in the three viral models. In a study of the effect on the replication of SvHA 2, the calculated selectivity index was over 10. From the experiments on the virucidal effects on the two herpes viruses, it was found that the viral titer of the samples decreased by about 4 lg compared to the control sample. The extract is of interest for introduction into practice. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

15 pages, 3990 KiB  
Article
Long Non-Coding RNA THRIL Promotes Influenza Virus Replication by Inhibiting the Antiviral Innate Immune Response
by Mengying Chen, Jingyun Hu, Xinni Zhou, Ming Gao, Ning Li, Guihong Yang, Xiaojuan Chi and Song Wang
Viruses 2025, 17(2), 153; https://doi.org/10.3390/v17020153 - 23 Jan 2025
Viewed by 4
Abstract
Long non-coding RNAs (lncRNAs) have been recognized for their crucial roles in the replication processes of various viruses. However, the specific functions and regulatory mechanisms of many lncRNAs in influenza A virus (IAV) pathogenesis remain poorly understood. In this study, we identified lncRNA [...] Read more.
Long non-coding RNAs (lncRNAs) have been recognized for their crucial roles in the replication processes of various viruses. However, the specific functions and regulatory mechanisms of many lncRNAs in influenza A virus (IAV) pathogenesis remain poorly understood. In this study, we identified lncRNA THRIL and observed a significant reduction in its expression following IAV infection in A549 cells. The treatment of cells with the viral mimic poly (I:C), or with type I and type III interferons, resulted in a substantial decrease in THRIL expression. Furthermore, THRIL overexpression significantly enhanced IAV replication, while its silencing markedly reduced IAV replication. Additionally, IAV infection led to notable reductions in the expression levels of type I and type III interferons in cell lines overexpressing THRIL compared to control groups; conversely, cell lines with THRIL knockdown exhibited significantly higher interferon levels than control groups. Moreover, THRIL was found to inhibit the expression of several critical interferon-stimulated genes (ISGs), which are essential for an effective antiviral response. Notably, our findings demonstrated that THRIL impaired the activation of IRF3, a key transcription factor in the interferon signaling pathway, thereby suppressing host innate immunity. These results highlight THRIL’s potential as a therapeutic target for antiviral strategies. Full article
(This article belongs to the Special Issue Innate Immunity to Virus Infection 2nd Edition)
Show Figures

Figure 1

38 pages, 2509 KiB  
Review
Strategies for the Viral Exploitation of Nuclear Pore Transport Pathways
by Xin Zhang, Keesiang Lim, Yujia Qiu, Masaharu Hazawa and Richard W. Wong
Viruses 2025, 17(2), 151; https://doi.org/10.3390/v17020151 - 23 Jan 2025
Viewed by 46
Abstract
Viruses frequently exploit the host’s nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex [...] Read more.
Viruses frequently exploit the host’s nucleocytoplasmic trafficking machinery to facilitate their replication and evade immune defenses. By encoding specialized proteins and other components, they strategically target host nuclear transport receptors (NTRs) and nucleoporins within the spiderweb-like inner channel of the nuclear pore complex (NPC), enabling efficient access to the host nucleus. This review explores the intricate mechanisms governing the nuclear import and export of viral components, with a focus on the interplay between viral factors and host determinants that are essential for these processes. Given the pivotal role of nucleocytoplasmic shuttling in the viral life cycle, we also examine therapeutic strategies aimed at disrupting the host’s nuclear transport pathways. This includes evaluating the efficacy of pharmacological inhibitors in impairing viral replication and assessing their potential as antiviral treatments. Furthermore, we emphasize the need for continued research to develop targeted therapies that leverage vulnerabilities in nucleocytoplasmic trafficking. Emerging high-resolution techniques, such as advanced imaging and computational modeling, are transforming our understanding of the dynamic interactions between viruses and the NPC. These cutting-edge tools are driving progress in identifying novel therapeutic opportunities and uncovering deeper insights into viral pathogenesis. This review highlights the importance of these advancements in paving the way for innovative antiviral strategies. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

16 pages, 4508 KiB  
Article
The Nucleoside Analog GS-441524 Effectively Attenuates the In Vitro Replication of Multiple Lineages of Circulating Canine Distemper Viruses Isolated from Wild North American Carnivores
by Arturo Oliver-Guimera, Brian G. Murphy and M. Kevin Keel
Viruses 2025, 17(2), 150; https://doi.org/10.3390/v17020150 - 23 Jan 2025
Viewed by 92
Abstract
Canine distemper is a severe and lethal viral disease of dogs and wild carnivores with an urgent need for the identification of effective antiviral agents against canine distemper virus (CDV). We assessed multiple agents for their ability to block the replication of three [...] Read more.
Canine distemper is a severe and lethal viral disease of dogs and wild carnivores with an urgent need for the identification of effective antiviral agents against canine distemper virus (CDV). We assessed multiple agents for their ability to block the replication of three different lineages of CDV isolated from wild carnivores in the United States. Six antiviral compounds were selected after preliminary experiments that excluded ribavirin, hesperidin and rutin: a protease inhibitor (nirmatrelvir), a polymerase inhibitor (favipiravir) and four nucleoside analogs (remdesivir, GS-441524, EIDD2801 and EIDD1931). Antiviral efficacy was determined by the attenuation of the cytopathic effect in a CDV-susceptible cell line and the inhibition of viral RNA replication. The nucleoside analog GS-441524 effectively blocked the replication of CDV at pharmacologically relevant concentrations. Four other antiviral agents inhibited CDV replication to a lesser degree (remdesivir, nirmatrelvir, EIDD2801 and EIDD1931). The replication of different viral lineages was differentially inhibited by the antivirals. Several of the nucleoside analogs have been safely used previously in carnivore species for the treatment of other viral diseases, suggesting that they may be promising candidates for the treatment of canine distemper in dogs. Our results emphasize the need to consider different viral lineages in the screening of antiviral compounds. Full article
(This article belongs to the Special Issue Canine Distemper Virus)
Show Figures

Figure 1

25 pages, 5366 KiB  
Article
Characterization of Human Cytomegalovirus (HCMV) Long Non-Coding RNA1.2 During Lytic Replication
by Salomé Manska, Andrew Hagemann, Janna Magana, Cyprian C. Rossetto and Subhash C. Verma
Viruses 2025, 17(2), 149; https://doi.org/10.3390/v17020149 - 23 Jan 2025
Viewed by 77
Abstract
During lytic replication of human cytomegalovirus (HCMV), the most abundant viral transcripts are long non-coding RNAs (lncRNAs). Viral lncRNAs can have a variety of functions, some of which are necessary for viral production and the modulation of host processes during infection. HCMV produces [...] Read more.
During lytic replication of human cytomegalovirus (HCMV), the most abundant viral transcripts are long non-coding RNAs (lncRNAs). Viral lncRNAs can have a variety of functions, some of which are necessary for viral production and the modulation of host processes during infection. HCMV produces four lncRNAs, Beta2.7 (RNA2.7), RNA4.9, RNA5.0 and RNA1.2. While there has been research on these viral lncRNAs, many of their functions remain uncharacterized. To determine the function of RNA1.2, we explored its requirement during lytic infection by generating viral mutants containing either a full or partial deletion of the RNA1.2 locus. Within permissive fibroblasts, the RNA1.2 deletion mutants showed no defects in viral DNA synthesis, transcript expression, protein production, or generation of viral progeny. Further investigation to identify potential cellular and viral protein binding partners of RNA1.2 was performed using liquid chromatography-mass spectrometry (LC-MS). A significant number of cellular proteins were identified and associated with RNA1.2. Specifically those associated with the innate immune response, mitochondrial processes, and cell cycle regulation. While RNA1.2 is dispensable for lytic replication, these findings suggest it may play a pivotal role in modulating the host response. Full article
(This article belongs to the Special Issue Epigenetic and Transcriptional Regulation of DNA Virus Infections)
Show Figures

Figure 1

7 pages, 979 KiB  
Commentary
Primordial Biochemicals Within Coacervate-Like Droplets and the Origins of Life
by George B. Stefano and Richard M. Kream
Viruses 2025, 17(2), 146; https://doi.org/10.3390/v17020146 - 23 Jan 2025
Viewed by 141
Abstract
An organism is considered “alive” if it can grow, reproduce, respond to external stimuli, metabolize nutrients, and maintain stability. By this definition, both mitochondria and viruses exhibit the key characteristics of independent life. In addition to their capacity for self-replication under specifically defined [...] Read more.
An organism is considered “alive” if it can grow, reproduce, respond to external stimuli, metabolize nutrients, and maintain stability. By this definition, both mitochondria and viruses exhibit the key characteristics of independent life. In addition to their capacity for self-replication under specifically defined conditions, both mitochondria and viruses can communicate via shared biochemical elements, alter cellular energy metabolism, and adapt to their local environment. To explain this phenomenon, we hypothesize that early viral prototype species evolved from ubiquitous environmental DNA and gained the capacity for self-replication within coacervate-like liquid droplets. The high mutation rates experienced in this environment streamlined their acquisition of standard genetic codes and adaptation to a diverse set of host environments. Similarly, mitochondria, eukaryotic intracellular organelles that generate energy and resolve oxygen toxicity, originally evolved from an infectious bacterial species and maintain their capacity for active functionality within the extracellular space. Thus, while mitochondria contribute profoundly to eukaryotic cellular homeostasis, their capacity for freestanding existence may lead to functional disruptions over time, notably, the overproduction of reactive oxygen species, a phenomenon strongly linked to aging-related disorders. Overall, a more in-depth understanding of the full extent of the evolution of both viruses and mitochondria from primordial precursors may lead to novel insights and therapeutic strategies to address neurodegenerative processes and promote healthy aging. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

12 pages, 5706 KiB  
Article
Identification of Benzothiophene-Derived Inhibitors of Flaviviruses by Targeting RNA-Dependent RNA Polymerase
by Leah Liu Wang, Shazeed-Ul Karim, Aidan Hand, Ryan Brunkhorst, Mackenna Petersen, Sarah Altman, Yi Liu, Luwen Zhang, Fengwei Bai and Shi-Hua Xiang
Viruses 2025, 17(2), 145; https://doi.org/10.3390/v17020145 - 23 Jan 2025
Viewed by 208
Abstract
Flaviviruses such as dengue, West Nile, and Zika viruses are mosquito-borne RNA viruses that can cause serious diseases in humans. To develop effective drugs for treating these viruses’ infections, we create a new approach for developing common or shared drugs that may work [...] Read more.
Flaviviruses such as dengue, West Nile, and Zika viruses are mosquito-borne RNA viruses that can cause serious diseases in humans. To develop effective drugs for treating these viruses’ infections, we create a new approach for developing common or shared drugs that may work for several different viral species of flaviviruses. It is based on the conserved RNA-dependent RNA polymerase (RdRp), which is the key enzyme for viral replication. We built up a common structure of RdRps (POLcon) from their consensus sequence. A conserved Triple-D structural motif was identified at the active site of POLcon that has been used for virtual compound screening. We have identified three inhibitors that have potent activities against Dengue, West Nile, and Zika viruses. All these three inhibitors are Benzothiophene derivatives. This is the first report of Benzothiophene-derived compounds as inhibitors for flaviviruses. Furthermore, our approach has provided a proof-of-concept that it is feasible to identify shared drugs for several different viral species of flaviviruses. Full article
(This article belongs to the Special Issue Structure-Based Antiviral Drugs and Vaccine Design)
Show Figures

Figure 1

20 pages, 2992 KiB  
Review
Evaluating the Efficacy of Repurposed Antiretrovirals in Hepatitis B Virus Treatment: A Narrative Review of the Pros and Cons
by Samuel Chima Ugbaja, Simon Achi Omerigwe, Saziso Malusi Zephirinus Ndlovu, Mlungisi Ngcobo and Nceba Gqaleni
Int. J. Mol. Sci. 2025, 26(3), 925; https://doi.org/10.3390/ijms26030925 - 23 Jan 2025
Viewed by 230
Abstract
Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) continue to be global public health issues. Globally, about 39.9 million persons live with HIV in 2023, according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024 Fact Sheet. Consequently, the World Health [...] Read more.
Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) continue to be global public health issues. Globally, about 39.9 million persons live with HIV in 2023, according to the Joint United Nations Programme on HIV/AIDS (UNAIDS) 2024 Fact Sheet. Consequently, the World Health Organisation (WHO) reported that about 1.5 million new cases of HBV occur, with approximately 820 thousand mortalities yearly. Conversely, the lower percentage of HBV (30%) cases that receive a diagnosis is a setback in achieving the WHO 2030 target for zero HBV globally. This has necessitated a public health concern to repurpose antiretroviral (ARV) drugs for the treatment of HBV diseases. This review provides an introductory background, including the pros and cons of repurposing antiretrovirals (ARVs) for HBV treatment. We examine the similarities in replication mechanisms between HIV and HBV. We further investigate some clinical studies and trials of co-infected and mono-infected patients with HIV–HBV. The topical keywords including repurposing ARV drugs, repurposing antiretroviral therapy, Hepatitis B drugs, HBV therapy, title, and abstracts are searched in PubMed, Web of Science, and Google Scholar. The advanced search includes the search period 2014–2024, full text, clinical trials, randomized control trials, and review. The search results filtered from 361 to 51 relevant articles. The investigations revealed that HIV and HBV replicate via a common route known as ‘reverse transcription’. Clinical trial results indicate that an early initiation of ARVs, particularly with tenofovir disoproxil fumarate (TDF) as part of a regimen, significantly reduced the HBV viral load in co-infected patients. In mono-infected HBV, timely and correct precise medication is essential for HBV viral load reduction. Therefore, genetic profiling is pivotal for successful ARV drug repurposing in HBV treatment. Pharmacogenetics enables the prediction of the right dosages, specific individual responses, and reactions. This study uniquely explores the intersection of pharmacogenetics and drug repurposing for optimized HBV therapy. Additional in vivo, clinical trials, and in silico research are important for validation of the potency, optimum dosage, and safety of repurposed antiretrovirals in HBV therapy. Furthermore, a prioritization of research collaborations comprising of regulators and funders to foster clinically adopting and incorporating repurposed ARVs for HBV therapy is recommended. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 4217 KiB  
Article
Insights into IAV Replication and Lipid Metabolism in Suspension-Adapted MDCK-STAT1-KO Cells
by Qian Ye, Hong Yao, Zhiying Xiao, Liang Zhao and Wen-Song Tan
Vaccines 2025, 13(2), 106; https://doi.org/10.3390/vaccines13020106 - 22 Jan 2025
Viewed by 277
Abstract
Objectives: The industrial production of influenza vaccines is facing significant challenges, particularly in improving virus production efficiency. Despite advances in cell culture technologies, our understanding of the production characteristics of high-yield suspension cell lines remains limited, thereby impeding the development of efficient vaccine [...] Read more.
Objectives: The industrial production of influenza vaccines is facing significant challenges, particularly in improving virus production efficiency. Despite advances in cell culture technologies, our understanding of the production characteristics of high-yield suspension cell lines remains limited, thereby impeding the development of efficient vaccine production platforms. This study aims to investigate the key features of STAT1 knockout suspension-adapted MDCK cells (susMDCK-STAT1-KO) in enhancing influenza A virus (IAV) production. Methods: Suspension-adapted susMDCK-STAT1-KO cells were compared to suspension-adapted wild-type MDCK cells (susMDCK) for IAV production. Virus quantification, gene expression analysis, and cholesterol deprivation assays were performed. Metabolite profiles, viral RNA quantification, and lipid and dry weight measurements were also conducted to assess the viral replication and release efficiency. Results: The susMDCK-STAT1-KO cells exhibited significantly improved virus adsorption (64%) and entry efficiency (75%) for the H1N1 virus, as well as accelerated viral transcription and replication for both the H1N1 and H9N2 viruses. Virus release was identified as a limiting factor, with a 100-fold higher intracellular-to-extracellular viral RNA ratio. However, the STAT1-KO cells showed a 2.39-fold higher release rate (750 virions/cell/h) and 3.26-fold greater RNA release for the H1N1 virus compared to wild-type cells. A gene expression analysis revealed enhanced lipid metabolism, particularly cholesterol synthesis, as a key factor in viral replication and release. Cholesterol deprivation resulted in reduced viral titers, confirming the critical role of intracellular cholesterol in IAV production. Conclusions: This study demonstrates the enhanced influenza virus production capacity of susMDCK-STAT1-KO cells, with significant improvements in viral yield, replication, and release efficiency. The findings highlight the importance of STAT1-mediated immune modulation and cholesterol metabolism in optimizing virus production. These insights provide a foundation for the development of more efficient vaccine production platforms, with implications for large-scale industrial applications. Full article
(This article belongs to the Special Issue Influenza Virus Vaccines and Vaccination)
Show Figures

Figure 1

13 pages, 539 KiB  
Article
Change in Estimated Glomerular Filtration Rate After Direct-Acting Antiviral Treatment in Chronic Hepatitis C Patients
by Gantogtokh Dashjamts, Amin-Erdene Ganzorig, Yumchinsuren Tsedendorj, Dolgion Daramjav, Enkhmend Khayankhyarvaa, Bolor Ulziitsogt, Otgongerel Nergui, Ganchimeg Dondov, Tegshjargal Badamjav, Tulgaa Lonjid, Chung-Feng Huang, Po-Cheng Liang, Batbold Batsaikhan and Chia-Yen Dai
Diseases 2025, 13(2), 26; https://doi.org/10.3390/diseases13020026 - 21 Jan 2025
Viewed by 278
Abstract
Background: Hepatitis C virus (HCV) infection accelerates the progression of chronic kidney disease (CKD), increasing the risk of kidney failure and end-stage renal disease. Direct-acting antiviral (DAA) therapies for HCV infection inhibit viral replication by 95–97%, leading to a sustained virologic response. Our [...] Read more.
Background: Hepatitis C virus (HCV) infection accelerates the progression of chronic kidney disease (CKD), increasing the risk of kidney failure and end-stage renal disease. Direct-acting antiviral (DAA) therapies for HCV infection inhibit viral replication by 95–97%, leading to a sustained virologic response. Our objective was to assess renal function in patients with chronic HCV infection in Taiwan after receiving DAA therapy. Goal: Our study included 4823 patients with HCV infection who were undergoing DAA therapy. Renal function was evaluated by calculating the glomerular filtration rate (eGFR). eGFR assessed at the initiation of the treatment, during treatment, and at 3 months, 6 months, 1 year, and 3 years after completion of treatment. The baseline demographic and laboratory parameters of the study participants were evaluated, and the results were analyzed using statistical methods. Results: The average age of the study participants was 61.35 ± 12.50 years, and 54.5% of were male. The mean of eGFR in baseline and after treatment showed a decrease. Liver fibrosis scores (FIB4, APRI, Fibroscan) and liver function tests were significantly improved after DAA treatment (p = 0.001). However, white blood count (5.41 ± 1.7 vs. 5.73 ± 1.9), platelet count (168.04 ± 74.0 vs. 182.11 ± 69.4), and creatinine levels (1.05 ± 1.3 vs. 1.12 ± 1.3) increased after treatment (p = 0.001). The number of patients with an eGFR of 60 mL/min/1.73 m2 decreased both during and after treatment (p < 0.001). Among patients with CKD, eGFR improved after DAA treatment (n = 690, 35.93 ± 19.7 vs. 38.71 ± 23.8; 95% CI −3.56–1.98; p = 0.001). Logistic regression analysis revealed that renal function improved in patients with CKD who had an eGFR of less than 60 mL/min/1.73 m2 before DAA treatment (OR 1.62, 95% CI 1.37–1.91, p = 0.001). Conclusions: In individuals with CKD and a baseline eGFR < 60 mL/min per 1.73 m2, eGFR level was increased during DAA treatment. This suggests that initiating DAA therapy in HCV-infected patients, even those without clinical manifestations, could be a crucial strategy to prevent further decline in renal function. Full article
Show Figures

Figure 1

15 pages, 3049 KiB  
Article
Characterization of Endogenous Retroviral-like Particles Expressed from the Spodoptera frugiperda Sf9 Cell Line
by Hailun Ma, Eunhae H. Bae, Pei-Ju Chin and Arifa S. Khan
Viruses 2025, 17(2), 136; https://doi.org/10.3390/v17020136 - 21 Jan 2025
Viewed by 401
Abstract
The Spodoptera frugiperda Sf9 insect cell line is used in the baculovirus expression vector system for the development of various viral vaccines and some gene therapy products. Early studies indicated that Sf9 cells produced a reverse transcriptase (RT) activity that was detected using [...] Read more.
The Spodoptera frugiperda Sf9 insect cell line is used in the baculovirus expression vector system for the development of various viral vaccines and some gene therapy products. Early studies indicated that Sf9 cells produced a reverse transcriptase (RT) activity that was detected using a sensitive PCR-enhanced reverse transcriptase (PERT) assay. Since RT is generally associated with retrovirus particles, we undertook the investigation of the physical properties and infectious nature of the extracellular RT activity that was constitutively expressed from Sf9 cells or induced after the chemical treatment of the cells with drugs known to activate endogenous retroviruses. A density gradient analysis indicated that the peak RT activity corresponded to a low buoyant density of about 1.08 g/mL. Ultracentrifugation and size filtration of cell-free Sf9 supernatant indicated that different particle sizes were associated with the RT activity. This was confirmed by transmission electron microscopy and cryoEM, which revealed a diversity in particle size and type, including viral-like and extracellular vesicles. The treatment of Sf9 cells with 5-iodo-2′-deoxyuridine (IUdR) induced a 33-fold higher RT activity with a similar low buoyant density compared to untreated cells. Infectivity studies using various target cells (human A204, A549, MRC-5, and Raji, and African green monkey Vero cells) inoculated with cell-free supernatant from untreated and IUdR-treated Sf9 cells showed the absence of a replicating retrovirus by PERT-testing of cell-free supernatant during the 30 day-culturing period. Additionally, there was no evidence of virus entry by whole genome analysis of inoculated MRC-5 cells using high-throughput sequencing. This is the first study to identify extracellular retroviral-like particles in Spodoptera. Full article
(This article belongs to the Special Issue The Diverse Regulation of Transcription in Endogenous Retroviruses)
Show Figures

Figure 1

15 pages, 4078 KiB  
Article
NLRC3 Attenuates Antiviral Innate Immune Response by Targeting IRF7 in Grass Carp (Ctenopharyngodon idelus)
by Lei Zhang, Haitai Chen, Xiang Zhao, Youcheng Chen, Shenpeng Li, Tiaoyi Xiao and Shuting Xiong
Int. J. Mol. Sci. 2025, 26(2), 840; https://doi.org/10.3390/ijms26020840 - 20 Jan 2025
Viewed by 273
Abstract
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously [...] Read more.
NLRC3 belongs to the NOD-like receptor family and is recognized as a modulator of innate immune mechanisms. In this study, we firstly report that Ctenopharyngodon idelus NLRC3 (CiNLRC3) acts as a negative regulator in the antiviral immune response. Cinlrc3 is ubiquitously expressed across tested tissues, displaying particularly high expression in the intestine, spleen, gill and kidney. Notably, Cinlrc3 expression is markedly upregulated following grass carp reovirus (GCRV) infection both in vivo and in vitro. Functional assays reveal that the overexpression of CiNLRC3 hampers cellular antiviral responses, thereby facilitating viral replication. Conversely, the silencing of CiNLRC3 through siRNA transfection enhances these antiviral activities. Additionally, CiNLRC3 substantially diminishes the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated interferon (IFN) response in fish. Subsequent molecular investigations indicates that CiNLRC3 interacts with the RLR molecule node, IRF7 but not IRF3, by degrading the IRF7 protein in a proteasome-dependent manner. Furthermore, CiNLRC3 co-localizes with CiIRF7 in the cytoplasm and impedes the IRF7-induced IFN response, resulting in impairing IRF7-mediated antiviral immunity. Summarily, these findings underscore the critical inhibitory role of teleost NLRC3 in innate immunity, offering new perspectives on its regulatory functions and potential as a target for resistant breeding in fish. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

13 pages, 4821 KiB  
Article
Robust and Long-Lasting Immunity and Protection in Mice Induced by Lipopolyplex-Delivered mRNA Vaccines Expressing the Prefusion Protein of Respiratory Syncytial Virus
by Xuchang Shan, Ruiwen Han, Xueting Cheng, Jialuo Bing, Zhenyong Qi, Shucai Sun, Tangqi Wang, Qiaohong Chu, Yao Deng, Desheng Zhai and Wenjie Tan
Vaccines 2025, 13(1), 93; https://doi.org/10.3390/vaccines13010093 - 20 Jan 2025
Viewed by 402
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a [...] Read more.
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in infants and children. mRNA vaccines based on the lipopolyplex (LPP) platform have been previously reported, but they remain unapplied in RSV vaccine development. In this study, we developed a novel LPP-delivered mRNA vaccine that expresses the respiratory syncytial virus prefusion protein (RSV pre-F) to evaluate its immunogenicity and protective effect in a mouse model. We synthesized mRNAs with gene modification for RSV pre-F and prepared mRNA vaccines using the LPP delivery platform, referred to as RSV pre-F LPP-mRNA. RSV pre-F protein expression in mRNA vaccines was characterized in vitro. Then, we evaluated the effects of the immune response and protection of this mRNA vaccine in mice up to 24 weeks post-vaccination. Following booster immunization, robust and long-lasting RSV pre-F-specific IgG antibodies were detected in the serum of mice, which exhibited Th1/Th2 balanced IgG response and cross-neutralizing antibodies against different subtypes (RSV A2, B18537, and clinical isolate hRSV/C-Tan/BJ 202301), with a clear dose–response relationship observed. RSV pre-F-specific IgG antibodies were maintained in the mice for an extended period, lasting up to 18 weeks post-immunization. Concurrently, multifunctional RSV F-specific CD8+ T cells (IFN–γ, IL-2, and TNF-α) were detected in the mice. After RSV A2 challenge, the RSV pre-F LPP-mRNA vaccine led to a significant reduction in viral replication, while reduced pathological damage was observed in lung tissue. The LPP-delivered mRNA vaccine expressing RSV pre-F induces a robust and long-lasting immune response and protection, indicating good prospects for further development and application. Full article
(This article belongs to the Special Issue Research on Immune Response and Vaccines: 2nd Edition)
Show Figures

Figure 1

21 pages, 6149 KiB  
Article
Genome-Wide Characterization of Extrachromosomal Circular DNA in the Midgut of BmCPV-Infected Silkworms and Its Potential Role in Antiviral Responses
by Xinyu Tong, Chao Lei, Yilin Liu, Mei Yin, Huan Peng, Qunnan Qiu, Yongjie Feng, Xiaolong Hu, Chengliang Gong and Min Zhu
Int. J. Mol. Sci. 2025, 26(2), 818; https://doi.org/10.3390/ijms26020818 - 19 Jan 2025
Viewed by 258
Abstract
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with Bombyx mori cytoplasmic [...] Read more.
Extrachromosomal circular DNAs (eccDNAs) has been found to be widespread and functional in various organisms. However, comparative analyses of pre- and post-infection of virus are rarely known. Herein, we investigated the changes in expression patterns of eccDNA following infection with Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) and explore the role of eccDNA in viral infection. Circle-seq was used to analyze eccDNAs in the midgut of BmCPV-infected and BmCPV-uninfected silkworms. A total of 5508 eccDNAs were identified, with sizes varying from 72 bp to 17 kb. Most of eccDNAs are between 100 to 1000 bp in size. EccDNA abundance in BmCPV-infected silkworms was significantly higher than in BmCPV-uninfected silkworms. GO and KEGG analysis of genes carried by eccDNAs reveals that most are involved in microtubule motor activity, phosphatidic acid binding, cAMP signaling pathway, and pancreatic secretion signaling pathways. Several eccDNAs contain sequences of the transcription factor SOX6, sem-2, sp8b, or Foxa2. Association analysis of eccDNA-mRNA/miRNA/circRNA revealed that some highly expressed genes are transcribed from relevant sequences of eccDNA and the transcription of protein coding genes influenced the frequency of eccDNA. BmCPV infection resulted in changes in the expression levels of six miRNAs, but no known miRNAs with altered expression levels due to changes in eccDNA abundance were identified. Moreover, it was found that 1287 and 924 sequences representing back-spliced junctions of circRNAs were shared by the junctions of eccDNAs in the BmCPV-infected and uninfected silkworms, respectively, and some eccDNAs loci were shared by circRNAs on Chromosomes 2, 7, 11, 14, and 24, suggesting some eccDNAs may exert its function by being transcribed into circRNAs. These findings suggest that BmCPV infection alter the expression pattern of eccDNAs, leading to changes in RNA transcription levels, which may play roles in regulating BmCPV replication. In the future, further experiments are needed to verify the association between eccDNA-mRNA/miRNA/circRNA and its function in BmCPV infection. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop