Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,191)

Search Parameters:
Keywords = volatile compounds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3108 KiB  
Review
The Advancement of Supported Bimetallic Catalysts for the Elimination of Chlorinated Volatile Organic Compounds
by Hongxia Lin, Yuxi Liu, Jiguang Deng, Lin Jing, Zhiwei Wang, Lu Wei, Zhen Wei, Zhiquan Hou, Jinxiong Tao and Hongxing Dai
Catalysts 2024, 14(8), 531; https://doi.org/10.3390/catal14080531 (registering DOI) - 16 Aug 2024
Abstract
Chlorinated volatile organic compounds (CVOCs) are persistent pollutants and harmful to the atmosphere, environment, and human health. The catalytic elimination of CVOCs has become a hotspot of interest due to their self-toxicity, the secondary generation of chlorinated by-products, and the Cl poisoning of [...] Read more.
Chlorinated volatile organic compounds (CVOCs) are persistent pollutants and harmful to the atmosphere, environment, and human health. The catalytic elimination of CVOCs has become a hotspot of interest due to their self-toxicity, the secondary generation of chlorinated by-products, and the Cl poisoning of catalysts. The development of high-performance, highly selective, and anti-poisoning catalysts is a critical issue. Bimetallic catalysts exhibit an improved dechlorination performance, poisoning resistance, and product selectivity through the modulation of geometrical and electronic structures. The present review article gives a brief overview of the recent advancements in the preparation of bimetallic catalysts and their catalytic CVOC elimination activities. In addition, representative case studies are provided to investigate the physicochemical properties, CVOC conversion, COx and inorganic chlorine species selectivities, and by-product control so that the structure–performance relationships of bimetallic catalysts can be established. Furthermore, this review article provides a fundamental understanding of designing bimetallic catalysts with specific active components and the desired physicochemical properties for target reactions. In the end, related perspectives for future work are proposed. Full article
Show Figures

Graphical abstract

17 pages, 2691 KiB  
Article
Agro Active Potential of Bacillus subtilis PE7 against Didymella bryoniae (Auersw.), the Causal Agent of Gummy Stem Blight of Cucumis melo
by Seo Kyoung Jeong, Seong Eun Han, Prabhakaran Vasantha-Srinivasan, Woo Jin Jung, Chaw Ei Htwe Maung and Kil Yong Kim
Microorganisms 2024, 12(8), 1691; https://doi.org/10.3390/microorganisms12081691 (registering DOI) - 16 Aug 2024
Abstract
Microbial agents such as the Bacillus species are recognized for their role as biocontrol agents against various phytopathogens through the production of diverse bioactive compounds. This study evaluates the effectiveness of Bacillus subtilis PE7 in inhibiting the growth of Didymella bryoniae, the [...] Read more.
Microbial agents such as the Bacillus species are recognized for their role as biocontrol agents against various phytopathogens through the production of diverse bioactive compounds. This study evaluates the effectiveness of Bacillus subtilis PE7 in inhibiting the growth of Didymella bryoniae, the pathogen responsible for gummy stem blight (GSB) in cucurbits. Dual culture assays demonstrate significant antifungal activity of strain PE7 against D. bryoniae. Volatile organic compounds (VOCs) produced by strain PE7 effectively impede mycelial formation in D. bryoniae, resulting in a high inhibition rate. Light microscopy revealed that D. bryoniae hyphae exposed to VOCs exhibited abnormal morphology, including swelling and excessive branching. Supplementing a potato dextrose agar (PDA) medium with a 30% B. subtilis PE7 culture filtrate significantly decreased mycelial growth. Moreover, combining a 30% culture filtrate with half the recommended concentration of a chemical fungicide yielded a more potent antifungal effect than using the full fungicide concentration alone, inducing dense mycelial formation and irregular hyphal morphology in D. bryoniae. Strain PE7 was highly resilient and was able to survive in fungicide solutions. Additionally, B. subtilis PE7 enhanced the nutrient content, growth, and development of melon plants while mitigating the severity of GSB compared to fungicide and fertilizer treatments. These findings highlight B. subtilis PE7 as a promising biocontrol candidate for integrated disease management in crop production. Full article
(This article belongs to the Special Issue Antifungal Activity of Bacillus Species against Plant Pathogens)
Show Figures

Figure 1

19 pages, 2345 KiB  
Article
Change in Sunflower Oil Quality and Safety Depending on Number of Deodorisation Cycles Used
by Mariia Andreevna Makarenko, Alexey Dmitrievich Malinkin and Vladimir Vladimirovich Bessonov
Foods 2024, 13(16), 2555; https://doi.org/10.3390/foods13162555 (registering DOI) - 16 Aug 2024
Abstract
Deodorisation remains a beneficial aspect of the processing of edible oils and fats and is required during the first refining and after transportation, storage, and/or further processing, such as interesterification. While there is awareness among the scientific community that repeated deodorisation may negatively [...] Read more.
Deodorisation remains a beneficial aspect of the processing of edible oils and fats and is required during the first refining and after transportation, storage, and/or further processing, such as interesterification. While there is awareness among the scientific community that repeated deodorisation may negatively impact product quality, according to some technical and processing requirements, oils, fats, and their blends can still be treated with up to 3–4 cycles of deodorisation. However, the precise changes caused by sequential deodorising processes remain unknown. This study analysed fatty acid compositions, peroxide values, anisidine values, volatile profiles, and monochloropropanediol (MCPDEs) and glycidyl (GEs) fatty acid ester contents in pressed and repeatedly deodorised sunflower oils (SFOs). The latter had higher levels of saturated fatty acids (SFAs); monounsaturated fatty acids (MUFAs); and trans fatty acids (TFAs); as well as volatile aldehydes, such as pentanal, hexanal, (E)-2-hexenal, and (E)-2-heptenal, and MCPDE contents with each successive deodorisation. Most of these compounds have the potential to cause harmful health effects. Therefore, it is necessary to limit the number of edible oil deodorisation cycles in order to maintain their quality and safety. Full article
(This article belongs to the Special Issue Plant Oil: Processing, Chemical Contents and Nutritional Effects)
Show Figures

Graphical abstract

35 pages, 2175 KiB  
Review
Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications—A Comprehensive Overview
by José S. Câmara, Rosa Perestrelo, Rui Ferreira, Cristina V. Berenguer, Jorge A. M. Pereira and Paula C. Castilho
Molecules 2024, 29(16), 3861; https://doi.org/10.3390/molecules29163861 - 15 Aug 2024
Viewed by 484
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered [...] Read more.
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword “terpenoids”. A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered. Full article
(This article belongs to the Special Issue Functional Foods and Dietary Bioactives in Human Health)
Show Figures

Figure 1

21 pages, 8190 KiB  
Article
Effect of Melamine Formaldehyde Resin Encapsulated UV Acrylic Resin Primer Microcapsules on the Properties of UV Primer Coating
by Yuming Zou, Yongxin Xia and Xiaoxing Yan
Polymers 2024, 16(16), 2308; https://doi.org/10.3390/polym16162308 - 15 Aug 2024
Viewed by 206
Abstract
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; [...] Read more.
Ultra-Violet (UV) coatings are widely adaptable of substrates and produce low emissions of volatile organic compounds. UV coatings can extend service life by adding self-healing microcapsules that restore integrity after sustaining damage. In this study, UV coating was used as a core material; microcapsules were produced and added to the UV coating to enhance its self-healing property, providing a good protection for both the UV coating and the substrate. UV primer microcapsules were prepared with UV primer as the core material and melamine formaldehyde resin as the wall material. The UV primer containing more than 98.0% solids content was mainly composed of epoxy acrylic resin, polyester acrylic resin, trihydroxy methacrylate, trimethyl methacrylate, and photo initiator. The preparation process of the UV primer microcapsules was optimized. Further, the UV coating was prepared with better UV primer microcapsules, and the effects of the UV primer microcapsules alongside the comprehensive properties of the coating were studied. The best preparation process for the UV primer microcapsules was as follows: the wall-core mass ratio was 1:0.50, Triton X-100 and Span-20 as emulsifiers with an HLB value of 10.04, the microcapsule reaction temperature was 70 °C, and the reaction time of the was 3.0 h. When the quantity of the UV primer microcapsules increased in the coating, color difference ΔE of the coating increased, gloss decreased, transmittance decreased, elongation at break increased and then decreased, roughness increased, and self-healing rate first increased and then decreased. When the addition of the UV primer microcapsules reached 2.0%, the color difference ΔE of the coating was 1.71, the gloss was 106.63 GU, the transmittance was 78.80%, the elongation at break was 3.62%, the roughness was 0.204 μm, and the self-healing rate was 28.56%, which were the best comprehensive properties of the UV primer. To improve the comprehensive properties of the UV coatings, the UV coatings were modified by a microcapsule technology, which gave the UV coatings a better self-healing property. The application range of microcapsules for the UV coatings was broadened. Based on the previous research of microcapsules in UV coatings, the results further refined the study of the effects of adding self-healing microcapsules to UV coatings using the UV coating itself as the core material. Full article
(This article belongs to the Special Issue Recent Advances in Polymer Composites for Functional Applications)
Show Figures

Figure 1

13 pages, 2115 KiB  
Article
Influence of Time–Activity Patterns on Indoor Air Quality in Italian Restaurant Kitchens
by Marta Keller, Davide Campagnolo, Francesca Borghi, Alessio Carminati, Giacomo Fanti, Sabrina Rovelli, Carolina Zellino, Rocco Loris Del Vecchio, Giovanni De Vito, Andrea Spinazzé, Viktor Gábor Mihucz, Carlo Dossi, Mariella Carrieri, Andrea Cattaneo and Domenico Maria Cavallo
Atmosphere 2024, 15(8), 976; https://doi.org/10.3390/atmos15080976 - 15 Aug 2024
Viewed by 198
Abstract
This study aims to delve deeper into the relationship between the professional activities carried out in restaurant kitchens and some key air pollutants. The ultrafine particles (UFPs), nitrogen dioxide (NO2), ozone (O3), Total Volatile Organic Compounds (TVOCs) and formaldehyde [...] Read more.
This study aims to delve deeper into the relationship between the professional activities carried out in restaurant kitchens and some key air pollutants. The ultrafine particles (UFPs), nitrogen dioxide (NO2), ozone (O3), Total Volatile Organic Compounds (TVOCs) and formaldehyde (HCHO) indoor air concentrations were determined using real-time monitors. Simultaneously, the kitchen environment was characterized using video recordings with the aim to retrieve information pertaining to cooking, cookware washing and surface cleaning activities. Statistical analysis was carried out separately for the winter and summer campaigns. The obtained results confirmed that the professional activities carried out in restaurant kitchens had a significant impact on the concentrations of all the selected pollutants. Specifically, this study revealed the following key results: (i) indoor UFPs and NO2 concentrations were significantly higher during cooking than during washing activities (e.g., about +60% frying vs. handwashing and dishwasher running), mainly in the winter; (ii) washing activity had a statistically significant impact on the TVOC (+39% on average) and HCHO (+67% on average) concentrations compared to other activities; (iii) some specific sources of short-term pollutant emissions have been identified, such as the different types of cooking and opening the dishwasher; and (iv) in some restaurants, a clear time-dependent relationship between O3 and UFP, TVOC and HCHO has been observed, underlining the occurrence of ozonolysis reactions. Full article
(This article belongs to the Special Issue Exposure Assessment of Air Pollution (2nd Edition))
Show Figures

Figure 1

17 pages, 960 KiB  
Article
Comparison of Volatile Organic Compounds, Quality, and Nutritional Parameters from Local Italian and International Apple Cultivars
by Aurora Cirillo, Natasha D. Spadafora, Lily James-Knight, Richard A. Ludlow, Carsten T. Müller, Lucia De Luca, Raffaele Romano, Hilary J. Rogers and Claudio Di Vaio
Horticulturae 2024, 10(8), 863; https://doi.org/10.3390/horticulturae10080863 - 15 Aug 2024
Viewed by 217
Abstract
Apple cultivars ‘Annurca’ and ‘Limoncella’ are grown locally in the Campania region of Italy and are valued for their distinctive flavour and characteristics, including a high content of nutritionally important bioactive compounds. However, apples are typically stored chilled for several months before consumption, [...] Read more.
Apple cultivars ‘Annurca’ and ‘Limoncella’ are grown locally in the Campania region of Italy and are valued for their distinctive flavour and characteristics, including a high content of nutritionally important bioactive compounds. However, apples are typically stored chilled for several months before consumption, so it is important to assess if the valuable characteristics are still present after postharvest storage. Here, we compare the quality, nutritional parameters, and aroma of these two cultivars with two widely grown international cultivars, ‘Golden Delicious’ and ‘Fuji’, after 60 days of storage. The aroma profiles of all four apples were analysed using thermal desorption and gas chromatography–time-of-flight mass spectrometry. We show that the local cultivars are distinct from the international cultivars in their bioactive compound content and their antioxidant activity. ‘Limoncella’ shows high sugar content, which may be acting as a cryoprotectant during storage, and high total phenolics in the flesh, which is of nutritional interest. We identified 104 volatile organic compounds (VOCs) and showed that the overall aroma profile is distinct for each cultivar, containing 11 published odorant compounds. The ‘Annurca’ profile is uniquely low in esters. Seven VOCs retain good discrimination across the four cultivars and, together with the quality and nutritional data, separate the two local cultivars from the international cultivars by hierarchical clustering. Overall, the data emphasize the unique characteristics of the two local cultivars and their value. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

14 pages, 949 KiB  
Article
Potentially Bioactive Compounds and Sensory Compounds in By-Products of Several Cultivars of Blackberry (Rubus fruticosus L.)
by Indrė Čechovičienė, Jonas Viškelis, Pranas Viškelis, Ewelina Hallman, Marcin Kruk and Živilė Tarasevičienė
Horticulturae 2024, 10(8), 862; https://doi.org/10.3390/horticulturae10080862 - 15 Aug 2024
Viewed by 213
Abstract
This study aimed to determine the amounts of phenols, antioxidant activity, and sensory compounds in three commercial cultivars of blackberries popular in Lithuania: ‘Polar’, ‘Brzezina’, and ‘Orkan’. Blackberry pomace was analyzed by the spectrophotometric method for total phenolic content, total flavonoid content and [...] Read more.
This study aimed to determine the amounts of phenols, antioxidant activity, and sensory compounds in three commercial cultivars of blackberries popular in Lithuania: ‘Polar’, ‘Brzezina’, and ‘Orkan’. Blackberry pomace was analyzed by the spectrophotometric method for total phenolic content, total flavonoid content and radical-scavenging capacity using the DPPH and ABTS•+ assays. The phenolic profiles, organic acids, and sugars were analyzed by HPLC. The Heracles II electronic nose, which is based on ultrafast gas chromatography, was used for the quantification of volatile organic compounds. The results show that the total phenolic content of blackberry pomace varied from 2380.60 to 2088.00 mg 100 g−1 and that the total flavonoid content varied from 161.29 to 148.10 mg 100 g−1, depending on the cultivar. A total of 14 polyphenols were also identified, with epigallocatechin and anthocyanin cyanidin-3-O-glucoside being quantified in the highest concentrations (7.28 to 9.72 and 6.19 to 9.79 mg g−1, respectively) and being the predominant phenolic compounds in the blackberry-pomace samples. The odor profiles of blackberry pomace from different cultivars varied. The main volatile organic compounds found in all blackberry pomace were 1-Nonanol and cis-3-Hexen-1-ol, are associated with herbaceous and citrusy aromas. All these results show the potential of using blackberry pomace to enrich food products with bioactive phytochemicals. Full article
Show Figures

Figure 1

13 pages, 28394 KiB  
Article
Emissions of Oxygenated Volatile Organic Compounds and Their Roles in Ozone Formation in Beijing
by Xiao Yan, Xionghui Qiu, Zhen Yao, Jiye Liu and Lin Wang
Atmosphere 2024, 15(8), 970; https://doi.org/10.3390/atmos15080970 - 14 Aug 2024
Viewed by 192
Abstract
Oxygenated volatile organic compound (OVOC) emissions play a critical role in tropospheric ozone (O3) formation. This paper aims to establish an emission inventory and source profile database for OVOCs in Beijing, utilizing revised and reconstructed data from field measurements and existing [...] Read more.
Oxygenated volatile organic compound (OVOC) emissions play a critical role in tropospheric ozone (O3) formation. This paper aims to establish an emission inventory and source profile database for OVOCs in Beijing, utilizing revised and reconstructed data from field measurements and existing literature. The study also assesses their potential impact on the O3 base on the ozone formation potential (OFP). Results indicate that OVOC emissions in Beijing predominantly originate from natural and residential sources, encompassing commercial solvent usage, cooking, residential combustion, construction adhesives, and construction coatings. OVOCs contributed 5.6% to OFP, which is significantly less than their emission contribution of 20.1%. Major OFP contributors include plant sources (26.2%), commercial solvent use (21.0%), cooking (20.5%), and construction adhesives (8.4%). The primary OVOC species contributing to OFP for OVOCs are acetaldehyde, methanol, hexanal, ethanol, and acetone, collectively contributing 59.0% of the total OFP. Natural sources exhibit significant seasonal variability, particularly in summer when plant emissions peak, constituting 78.9% of annual emissions and significantly impacting summer ozone pollution (OFP of 13,954 t). Conversely, emissions from other OVOC sources remain relatively stable year-round. Thus, strategies to mitigate summer ozone pollution in Beijing should prioritize plant sources while comprehensively addressing residential sources in other seasons. District-specific annual OVOC emissions are from Fangshan (3967 t), Changping (3958 t), Daxing (3853 t), and Chaoyang (3616 t), which reflect year-round forested areas in these regions and high populations. Full article
Show Figures

Figure 1

24 pages, 5275 KiB  
Article
Assessment of ‘Golden Delicious’ Apples Using an Electronic Nose and Machine Learning to Determine Ripening Stages
by Mira Trebar, Anamarie Žalik and Rajko Vidrih
Foods 2024, 13(16), 2530; https://doi.org/10.3390/foods13162530 - 14 Aug 2024
Viewed by 297
Abstract
Consumers often face a lack of information regarding the quality of apples available in supermarkets. General appearance factors, such as color, mechanical damage, or microbial attack, influence consumer decisions on whether to purchase or reject the apples. Recently, devices known as electronic noses [...] Read more.
Consumers often face a lack of information regarding the quality of apples available in supermarkets. General appearance factors, such as color, mechanical damage, or microbial attack, influence consumer decisions on whether to purchase or reject the apples. Recently, devices known as electronic noses provide an easy-to-use and non-destructive assessment of ripening stages based on Volatile Organic Compounds (VOCs) emitted by the fruit. In this study, the ‘Golden Delicious’ apples, stored and monitored at the ambient temperature, were analyzed in the years 2022 and 2023 to collect data from four Metal Oxide Semiconductor (MOS) sensors (MQ3, MQ135, MQ136, and MQ138). Three ripening stages (less ripe, ripe, and overripe) were identified using Principal Component Analysis (PCA) and the K-means clustering approach from various datasets based on sensor measurements in four experiments. After applying the K-Nearest Neighbors (KNN) model, the results showed successful classification of apples for specific datasets, achieving an accuracy higher than 75%. For the dataset with measurements from all experiments, an impressive accuracy of 100% was achieved on specific test sets and on the evaluation set from new, completely independent experiments. Additionally, correlation and PCA analysis showed that choosing two or three sensors can provide equally successful results. Overall, the e-nose results highlight the importance of analyzing data from several experiments performed over a longer period after the harvest of apples. There are similarities and differences in investigated VOC parameters (ethylene, esters, alcohols, and aldehydes) for less or more mature apples analyzed during autumn or spring, which can improve the determination of the ripening stage with higher predicting success for apples investigated in the spring. Full article
(This article belongs to the Special Issue Sensors for Food Safety and Quality Assessment—Volume II)
Show Figures

Figure 1

13 pages, 1549 KiB  
Article
De Novo Transcriptome Assembly of Cedar (Cedrela odorata L.) and Differential Gene Expression Involved in Herbivore Resistance
by Luis Felipe Guzmán, Bibiana Tirado, Carlos Iván Cruz-Cárdenas, Edith Rojas-Anaya and Marco Aurelio Aragón-Magadán
Curr. Issues Mol. Biol. 2024, 46(8), 8794-8806; https://doi.org/10.3390/cimb46080520 - 14 Aug 2024
Viewed by 520
Abstract
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes [...] Read more.
Timber trees are targets of herbivorous attacks. The identification of genes associated with pest resistance can be accomplished through differential expression analysis using transcriptomes. We reported the de novo assembly of cedar (Cedrela odorata L.) transcriptome and the differential expression of genes involved in herbivore resistance. The assembly and annotation of the transcriptome were obtained using RNAseq from healthy cedar plants and those infested with Chrysobothris yucatanensis. A total of 325.6 million reads were obtained, and 127,031 (97.47%) sequences were successfully assembled. A total of 220 herbivory-related genes were detected, of which 170 genes were annotated using GO terms, and 161 genes with 245 functions were identified—165, 75, and 5 were molecular functions, biological processes, and cellular components, respectively. To protect against herbivorous infestation, trees produce toxins and volatile compounds which are modulated by signaling pathways and gene expression related to molecular functions and biological processes. The limited number of genes identified as cellular components suggests that there are minimal alterations in cellular structure in response to borer attack. The chitin recognition protein, jasmonate ZIM-domain (JAZ) motifs, and response regulator receiver domain were found to be overexpressed, whereas the terpene synthase, cytochrome P450, and protein kinase domain gene families were underexpressed. This is the first report of a cedar transcriptome focusing on genes that are overexpressed in healthy plants and underexpressed in infested plants. This method may be a viable option for identifying genes associated with herbivore resistance. Full article
Show Figures

Figure 1

16 pages, 3382 KiB  
Article
Infestation of Rice Striped Stem Borer (Chilo suppressalis) Larvae Induces Emission of Volatile Organic Compounds in Rice and Repels Female Adult Oviposition
by Chen Shen, Shan Yu, Xinyang Tan, Guanghua Luo, Zhengping Yu, Jiafei Ju, Lei Yang, Yuxuan Huang, Shuai Li, Rui Ji, Chunqing Zhao and Jichao Fang
Int. J. Mol. Sci. 2024, 25(16), 8827; https://doi.org/10.3390/ijms25168827 - 13 Aug 2024
Viewed by 313
Abstract
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female [...] Read more.
Plants regulate the biosynthesis and emission of metabolic compounds to manage herbivorous stresses. In this study, as a destructive pest, the pre-infestation of rice striped stem borer (SSB, Chilo suppressalis) larvae on rice (Oryza sativa) reduced the subsequent SSB female adult oviposition preference. Widely targeted volatilomics and transcriptome sequencing were used to identify released volatile metabolic profiles and differentially expressed genes in SSB-infested and uninfested rice plants. SSB infestation significantly altered the accumulation of 71 volatile organic compounds (VOCs), including 13 terpenoids. A total of 7897 significantly differentially expressed genes were identified, and genes involved in the terpenoid and phenylpropanoid metabolic pathways were highly enriched. Correlation analysis revealed that DEGs in terpenoid metabolism-related pathways were likely involved in the regulation of VOC biosynthesis in SSB-infested rice plants. Furthermore, two terpenoids, (−)-carvone and cedrol, were selected to analyse the behaviour of SSB and predators. Y-tube olfactometer tests demonstrated that both (−)-carvone and cedrol could repel SSB adults at higher concentrations; (−)-carvone could simultaneously attract the natural enemies of SSB, Cotesia chilonis and Trichogramma japonicum, and cedrol could only attract T. japonicum at lower concentrations. These findings provide a better understanding of the response of rice plants to SSB and contribute to the development of new strategies to control herbivorous pests. Full article
(This article belongs to the Special Issue Physiology and Molecular Biology of Plant Stress Tolerance)
Show Figures

Figure 1

13 pages, 2327 KiB  
Article
Variation in the Aroma Composition of Jasmine Tea with Storage Duration
by Zihao Qi, Wenjing Huang, Qiuyan Liu and Jingming Ning
Foods 2024, 13(16), 2524; https://doi.org/10.3390/foods13162524 - 13 Aug 2024
Viewed by 377
Abstract
This study investigated the changes in the aroma of jasmine tea during storage. Solid-phase micro-extraction (SPME)–gas chromatography (GC)-mass spectrometry (MS) and stir bar sorptive extraction (SBSE)-GC-MS were combined to detect all volatile compounds. GC-olfactometry (GC-O), odor activity value (OAV), and p-value were [...] Read more.
This study investigated the changes in the aroma of jasmine tea during storage. Solid-phase micro-extraction (SPME)–gas chromatography (GC)-mass spectrometry (MS) and stir bar sorptive extraction (SBSE)-GC-MS were combined to detect all volatile compounds. GC-olfactometry (GC-O), odor activity value (OAV), and p-value were employed to analyze and identify the key aroma compounds in six jasmine tea samples stored for different durations. Nine key aroma compounds were discovered, namely (Z)-3-hexen-1-yl acetate, methyl anthranilate, methyl salicylate, trans-β-ionone, linalool, geraniol, (Z)-4-heptenal, benzoic acid methyl ester, and benzoic acid ethyl ester. The importance of these compounds was confirmed through the aroma addition experiment. Correlation analysis showed that (Z)-4-heptenal might be the main reason for the increase in the stale aroma of jasmine tea. Through sensory evaluation and specific experimental analysis, it can be concluded that jasmine tea had the best aroma after 3 years of storage, and too long a storage time may cause the overall aroma of the tea to weaken and produce an undesirable odor. The findings can provide a reference for the change in aroma during the storage of jasmine tea and provide the best storage time (3 years) in terms of jasmine tea aroma. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Graphical abstract

17 pages, 2143 KiB  
Article
Two-Stage Screening of Metschnikowia spp. Bioprotective Properties: From Grape Juice to Fermented Must by Saccharomyces cerevisiae
by Julie Aragno, Pascale Fernandez-Valle, Angèle Thiriet, Cécile Grondin, Jean-Luc Legras, Carole Camarasa and Audrey Bloem
Microorganisms 2024, 12(8), 1659; https://doi.org/10.3390/microorganisms12081659 - 13 Aug 2024
Viewed by 277
Abstract
Gluconobacter oxydans (Go) and Brettanomyces bruxellensis (Bb) are detrimental micro-organisms compromising wine quality through the production of acetic acid and undesirable aromas. Non-Saccharomyces yeasts, like Metschnikowia species, offer a bioprotective approach to control spoilage micro-organisms growth. Antagonist effects of forty-six Metschnikowia strains [...] Read more.
Gluconobacter oxydans (Go) and Brettanomyces bruxellensis (Bb) are detrimental micro-organisms compromising wine quality through the production of acetic acid and undesirable aromas. Non-Saccharomyces yeasts, like Metschnikowia species, offer a bioprotective approach to control spoilage micro-organisms growth. Antagonist effects of forty-six Metschnikowia strains in a co-culture with Go or Bb in commercial grape juice were assessed. Three profiles were observed against Go: no effect, complete growth inhibition, and intermediate bioprotection. In contrast, Metschnikowia strains exhibited two profiles against Bb: no effect and moderate inhibition. These findings indicate a stronger antagonistic capacity against Go compared to Bb. Four promising Metschnikowia strains were selected and their bioprotective impact was investigated at lower temperatures in Chardonnay must. The antagonistic effect against Go was stronger at 16 °C compared to 20 °C, while no significant impact on Bb growth was observed. The bioprotection impact on Saccharomyces cerevisiae fermentation has been assessed. Metschnikowia strains’ presence did not affect the fermentation time, but lowered the fermentation rate of S. cerevisiae. An analysis of central carbon metabolism and volatile organic compounds revealed a strain-dependent enhancement in the production of metabolites, including glycerol, acetate esters, medium-chain fatty acids, and ethyl esters. These findings suggest Metschnikowia species’ potential for bioprotection in winemaking and wine quality through targeted strain selection. Full article
(This article belongs to the Special Issue Microbial Fermentation, Food and Food Sustainability)
Show Figures

Figure 1

17 pages, 7835 KiB  
Article
Effects of Inoculation with Koji and Strain Exiguobacterium profundum FELA1 on the Taste, Flavor, and Bacterial Community of Rapidly Fermented Shrimp Paste
by Huanming Liu, Ailian Huang, Jiawen Yi, Meiyan Luo, Guili Jiang, Jingjing Guan, Shucheng Liu, Chujin Deng and Donghui Luo
Foods 2024, 13(16), 2523; https://doi.org/10.3390/foods13162523 - 13 Aug 2024
Viewed by 313
Abstract
This study was conducted to investigate the effect of inoculation with Exiguobacterium profundum FELA1 isolated from traditional shrimp paste and koji on the taste, flavor characteristics, and bacterial community of rapidly fermented shrimp paste. E-nose and e-tongue results showed higher levels of alcohols, [...] Read more.
This study was conducted to investigate the effect of inoculation with Exiguobacterium profundum FELA1 isolated from traditional shrimp paste and koji on the taste, flavor characteristics, and bacterial community of rapidly fermented shrimp paste. E-nose and e-tongue results showed higher levels of alcohols, aldehydes, and ketones, enhanced umami and richness, and reduced bitterness and astringency in samples of shrimp paste inoculated with fermentation (p < 0.05). Eighty-two volatile compounds were determined using headspace solid-phase microextraction and gas chromatography–mass spectrometry (HS-SPEM-GC-MS). The contents of 3-methyl-1-butanol, phenylethanol, isovaleraldehyde, and 2-nonanone in the inoculated samples were significantly increased (p < 0.05), resulting in pleasant odors such as almond, floral, and fruity. High-throughput sequencing results showed that the addition of koji and FELA1 changed the composition and abundance of bacteria and reduced the abundance of harmful bacteria. Spearman’s correlation coefficient indicated that the alcohols, aldehydes, and ketones of the inoculated fermented samples showed a strong correlation (|ρ| > 0.6) with Virgibacillus and Exiguobacterium, which contributed to the formation of good flavor in the fast fermented shrimp paste. This study may offer new insights into the production of rapidly fermented shrimp paste with better taste and flavor. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

Back to TopTop