Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (744)

Search Parameters:
Keywords = wet–dry cycles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 8821 KiB  
Article
The Mesoscopic Damage Mechanism of Jointed Sandstone Subjected to the Action of Dry–Wet Alternating Cycles
by Liang Zhang, Guilin Wang, Runqiu Wang, Bolong Liu and Ke Wang
Appl. Sci. 2024, 14(22), 10346; https://doi.org/10.3390/app142210346 - 11 Nov 2024
Viewed by 146
Abstract
The effect of the dry–wet cycle, characterized by periodic water level changes in the Three Gorges Reservoir, will severely degrade the bearing performance of rock formations. In order to explore the effect of the dry–wet cycle on the mesoscopic damage mechanism of jointed [...] Read more.
The effect of the dry–wet cycle, characterized by periodic water level changes in the Three Gorges Reservoir, will severely degrade the bearing performance of rock formations. In order to explore the effect of the dry–wet cycle on the mesoscopic damage mechanism of jointed sandstone, a list of meso-experiments was carried out on sandstone subjected to dry–wet cycles. The pore structure, throat features and mesoscopic damage evolution of jointed sandstone with the action of the dry–wet cycle were analyzed using a-low-field nuclear magnetic resonance (NMR) technique. Subsequently, the impact on the mineral content of dry–wet cycles was studied by small angle X-ray scattering (SAXS). Based on this, the mesoscopic damage mechanism of sandstone subjected to dry–wet cycles was revealed. The results show that the effects of the drying–wetting cycle can promote the development of porous channels within sandstone, resulting in cumulative damage. Besides, with an increase in dry–wet cycles, the proportion of small pores and pore throats decreased, while the proportion of medium and large pores and pore throats increased. The combined effects of extrusion crush, tensile fracture, chemical reaction and dissolution of minerals inside the jointed sandstone contributed to the development of mesoscopic pores, resulting in the increase of porosity and permeability of rock samples under the dry–wet cycles. The results provide an important reference value for the stability evaluation of rock mass engineering under long-term dry–wet alternation. Full article
Show Figures

Figure 1

19 pages, 2186 KiB  
Article
Impact of Flooding on Lands with Emerging Contaminants on the Quality of Receiving Water Bodies
by Samir A. Haddad, Mohieyeddin M. Abd El-Azeim, Ahmad M. Menesi, Esam Ismail, Mariacrocetta Sambito, Mohamed S. Ahmed, Ahmed S. A. Sayed, Ibraheem A. H. Yousif and Nesrin S. Abdelkarim
Water 2024, 16(22), 3214; https://doi.org/10.3390/w16223214 (registering DOI) - 8 Nov 2024
Viewed by 306
Abstract
Among crucial factors that control flooding events are extreme climate, urban growth, and mismanagement. Islands in the Nile River have experienced successive cycles of flooding and drying due to recent rainy years in the Nile Basin countries. This paper focuses on the impact [...] Read more.
Among crucial factors that control flooding events are extreme climate, urban growth, and mismanagement. Islands in the Nile River have experienced successive cycles of flooding and drying due to recent rainy years in the Nile Basin countries. This paper focuses on the impact of floods on the amounts of ammonium-N released, total concentrations of heavy metals, enzyme activities, and microbial biomass (C and N) in flood soils of 11 Nile River islands. Field moist soils and their airdried counterparts were collected from the outskirts of the island and incubated for 15 days at 30 °C to be analyzed. Results reflected that the amounts of released NH4-N were higher in airdried than in wet soils. The average hydrolysis rates of the studied six enzyme substrates were correlated significantly with organic C, organic N, microbial bio-mass C and N in the field moist soils. The highest correlation coefficients (r) were with rates of hydrolysis of substrates of asparaginase, amidase, and β-glycosaminidase. A significant intercorrelation between rates of hydrolysis of the six studied enzyme substrates and r values which range from 0.81 to 0.98. At 10 mmol kg−1 soil, Co+2, Cd+2, Pb+2, Cu+2, Cr+3, and Ni+2 inhibited the release of NH4-N. Arginine hydrolysis was inhibited by the six heavy metals at 5 mmol kg−1 soil; the most effective inhibitors were Pb+2, Ni+2, and Cr+3. Due to the complex soil enzymatic and organic nitrogen hydrolase activities that occur during floods, fertile fields on the Nile River islands should not be fertilized before the summer flood seasons, which will prevent contamination of the Nile River water and loss of its island soil fertility. Full article
(This article belongs to the Special Issue Managing Water Resources Sustainably)
17 pages, 5812 KiB  
Article
Study on the Development Rule of Mudstone Cracks in Open-Pit Mine Dumps Improved with Xanthan Gum
by Xiang Qi, Wei Zhou, Rui Li, Ya Tian and Xiang Lu
Appl. Sci. 2024, 14(22), 10194; https://doi.org/10.3390/app142210194 - 6 Nov 2024
Viewed by 351
Abstract
The stability of open-pit mine slopes is crucial for safety, especially for spoil dump slopes, which are prone to cracks leading to landslides. This study investigates the use of xanthan gum (XG) to enhance the stability of mudstone in spoil dumps. Various concentrations [...] Read more.
The stability of open-pit mine slopes is crucial for safety, especially for spoil dump slopes, which are prone to cracks leading to landslides. This study investigates the use of xanthan gum (XG) to enhance the stability of mudstone in spoil dumps. Various concentrations of xanthan gum were mixed with mudstone and subjected to dry–wet cycle tests to assess the impact on crack development. Pore and crack analysis system (PCAS) was utilized for image recognition and crack analysis, comparing the efficiency of crack rate and length modification. The study found that xanthan gum addition significantly improved mudstone’s resistance to crack development post-drying shrinkage. A 2% xanthan gum content reduced the mudstone crack rate by 45% on average, while 1.5% xanthan gum reduced crack length by 46.2% and crack width by 26.3%. Xanthan gum also influenced the fractal dimension and water retention of mudstone cracks. The optimal xanthan gum content for mudstone modification was identified as between 1.5% and 2%. Scanning electron microscopy imaging and X-ray diffraction tests supported the findings, indicating that xanthan gum modifies mudstone by encapsulation and penetration in wet conditions and matrix concentration and connection in dry conditions. These results are expected to aid in the development of crack prevention methods and engineering applications for open-pit mine spoil dump slopes. Full article
Show Figures

Figure 1

14 pages, 1988 KiB  
Article
Impact of Drying–Wetting Cycles on Nitrification Inhibitors (DMPP and DMPSA) in a Greenhouse Experiment with Two Contrasting Mediterranean Soils
by Laura Sánchez-Martin, Adrián Bozal-Leorri, Janaina M. Rodrigues, Carmen González-Murua, Pedro Aparicio, Sonia García-Marco and Antonio Vallejo
Agronomy 2024, 14(11), 2620; https://doi.org/10.3390/agronomy14112620 - 6 Nov 2024
Viewed by 467
Abstract
Studies of the impact of nitrification inhibitors (NIs), specifically DMPP and DMPSA, on N2O emissions during “hot moments” have produced conflicting results regarding their effectiveness after rewetting. This study aimed to clarify the effectiveness of NIs in reducing N2O [...] Read more.
Studies of the impact of nitrification inhibitors (NIs), specifically DMPP and DMPSA, on N2O emissions during “hot moments” have produced conflicting results regarding their effectiveness after rewetting. This study aimed to clarify the effectiveness of NIs in reducing N2O emissions by assessing residual DMP concentration and its influence on ammonia-oxidizing bacteria (AOB) in two pot experiments using calcareous (Soil C, Calcic Haploxerept) and acidic soils (Soil A, Dystric Xerochrepts). Fertilizer treatments included urea (U), DMPP, and DMPSA. The experiments were divided into Phase I (water application to dry period, 44 days) and Phase II (rewetting from days 101 to 121). In both phases for Soil C, total N2O emissions were reduced by 88% and 90% for DMPP and DMPSA, respectively, compared with U alone. While in Phase I, the efficacy of NIs was linked to the regulation of AOB populations, in Phase II this group was not affected by NIs, suggesting that nitrification may not be the predominant process after rewetting. In Soil A, higher concentrations of DMP from DMPP were maintained compared to Soil C at the end of each phase. Despite this, NIs had no significant effect due to low nitrification rates and limited amoA gene abundance, indicating unfavorable conditions for nitrifiers. The study highlights the need to optimize NIs to reduce N2O emissions and improve nitrogen efficiency, while understanding their interactions with the soil. This knowledge is necessary in order to design fertilization strategies that improve the sustainability of agriculture under climate change. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

18 pages, 3820 KiB  
Article
Numerical Thermo-Hydraulic Simulation of Infiltration and Evaporation of Small-Scale Replica of Typical Dike Covers
by Elisa Ponzoni, Rafaela Cardoso and Cristina Jommi
Appl. Sci. 2024, 14(22), 10170; https://doi.org/10.3390/app142210170 - 6 Nov 2024
Viewed by 288
Abstract
Measurements taken on a historical dike in the Netherlands over one year showed that interaction with the atmosphere led to oscillation of the piezometric surface of about 0.7 m. The observation raised concerns about the long-term performance of similar dikes and promoted a [...] Read more.
Measurements taken on a historical dike in the Netherlands over one year showed that interaction with the atmosphere led to oscillation of the piezometric surface of about 0.7 m. The observation raised concerns about the long-term performance of similar dikes and promoted a deeper investigation of the response of the cover layer to increasing climatic stresses. An experimental and numerical study was undertaken, which included an investigation in the laboratory of the unsaturated behavior of a scaled replica of the field cover. A sample extracted from the top clayey layer in the dike was subjected to eight drying and wetting cycles in a HYPROP™ device. Data recorded during the test provide an indication of the delayed response with depth during evaporation and infiltration. The measurements taken during this continuous dynamic process were simulated by means of a finite element discretization of the time-dependent coupled thermohydraulic response. The results of the numerical simulations are affected by the way in which the environmental loads are translated into numerical boundary conditions. Here, it was chosen to model drying considering only the transport of water vapor after equilibrium with the room atmosphere, while water in the liquid phase was added upon wetting. The simulation was able to reproduce the water mass balance exchange observed during four complete drying–wetting cycles, although the simulated drying rate was faster than the observed one. The numerical curves describing suction, the amount of vapor and temperature are identical, confirming that vapor generation and its equilibrium is control the hydraulic response of the material. Vapor generation and diffusion depend on temperature; therefore, correct characterization of the thermal properties of the soil is of paramount importance when dealing with evaporation and related non-steady equilibrium states. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

22 pages, 7258 KiB  
Article
Self-Healing and Mechanical Behaviour of Fibre-Reinforced Ultra-High-Performance Concrete Incorporating Superabsorbent Polymer Under Repeated and Sustained Loadings
by Mohammad Alameri, M.S. Mohamed Ali, Mohamed Elchalakani, Abdul Sheikh and Rong Fan
Fibers 2024, 12(11), 95; https://doi.org/10.3390/fib12110095 - 5 Nov 2024
Viewed by 401
Abstract
This study investigated the mechanical responses and self-healing capability of incorporating superabsorbent polymer (SAP) particles in Fibre-Reinforced Ultra-High-Performance Concrete (UHPC) mixes under repetitive flexural and sustained tensile loadings. UHPC with SAP addition of 0.3% and 0.4% of the binder ratio were studied along [...] Read more.
This study investigated the mechanical responses and self-healing capability of incorporating superabsorbent polymer (SAP) particles in Fibre-Reinforced Ultra-High-Performance Concrete (UHPC) mixes under repetitive flexural and sustained tensile loadings. UHPC with SAP addition of 0.3% and 0.4% of the binder ratio were studied along with a control UHPC mix. The methodology included investigating the mechanical properties of these mixes under ambient, water, and 100% of relative humidity (RH) curing conditions. In addition, the mechanical performance of ambient-, water-, and 100% RH-cured prismatic specimens (100 mm × 100 mm × 500 mm) under repeated load was studied under the same curing conditions. Prismatic specimens (75 mm × 75 mm × 500 mm) were kept under cure conditions of wet and dry cycles with applied tensile load for 28 days for the sustained tensile load. The results showed that incorporating SAP into UHPC enhances the elastic modulus, flexural strength, and tensile strength. Also, mixes with SAP have exhibited compressive strength above 120 MPa after 90 days. Furthermore, the load recovery of the prisms under repetitive flexural load and prisms under sustained tensile loading demonstrated the self-healing efficiency of SAP incorporated into the UHPC mixes higher than the control mix specimens. Full article
Show Figures

Figure 1

21 pages, 7207 KiB  
Article
Consolidation Enhancement of Weathered Coal Gangue Utilized for Aggregate Filling of Cement Pavement in Mining Area
by Wei Tian, Zike Xu, Kaipeng Gu, Siying Wang, Mingxing Huang and Wei Guo
Coatings 2024, 14(11), 1400; https://doi.org/10.3390/coatings14111400 - 4 Nov 2024
Viewed by 511
Abstract
The large-scale, open-air storage of coal gangue often leads to oxidation and decomposition due to natural weathering, resulting in decreased strength and instability, which limits its wider application in concrete pavement. To address these issues, this paper proposed a composite consolidation treatment for [...] Read more.
The large-scale, open-air storage of coal gangue often leads to oxidation and decomposition due to natural weathering, resulting in decreased strength and instability, which limits its wider application in concrete pavement. To address these issues, this paper proposed a composite consolidation treatment for weathered coal gangue (WCG), assessing its effectiveness and enhancement mechanisms through aggregate performance tests, mixture performance tests, and microscopic visualization analyses. Results indicated that the initial and post-20 dry–wet cycle crushing values of WCG were 23.96% and 47.94%, respectively, failing to meet required standards. However, applying a composite consolidation treatment using a lithium curing agent and cement paste significantly improved WCG’s robustness and stability. After 4 days of treatment, the crushing value, impact value, and Vickers hardness of WCG had reached 18.3%, 6.58%, and 113.52 kgf/mm², respectively, fully meeting the standards for aggregate filling in mini concrete pavements. Furthermore, tests demonstrated that the lithium curing agent induced the formation of hydrated calcium silicate and calcium aluminate on both the surface and interior of the WCG, enhancing its structural stability. Approximately 5–12 wt.% of the curing agent penetrates and encapsulates the WCG, strongly bonding and reinforcing its internal weak surfaces. These findings offer potential solutions and technical insights for the large-scale management of weathered coal gangue. Full article
Show Figures

Figure 1

22 pages, 16310 KiB  
Article
Experimental Study on Mechanical Properties and Stability of Marine Dredged Mud with Improvement by Waste Steel Slag
by Qiaoling Ji, Yingjian Wang, Xiuru Jia and Yu Cheng
Buildings 2024, 14(11), 3472; https://doi.org/10.3390/buildings14113472 - 30 Oct 2024
Viewed by 314
Abstract
As marine-dredged mud and waste steel slag in coastal port cities continue to soar, the traditional treatment method of land stockpiling has caused ecological problems. Thus, it is necessary to find a large-scale resource-comprehensive utilization method for dredged mud and waste steel slag. [...] Read more.
As marine-dredged mud and waste steel slag in coastal port cities continue to soar, the traditional treatment method of land stockpiling has caused ecological problems. Thus, it is necessary to find a large-scale resource-comprehensive utilization method for dredged mud and waste steel slag. This study uses waste steel slag and composite solidifying agents (cement, lime, fly ash) to physically and chemically improve marine-dredged mud. The physical improvement effect of the particle size and dosage of waste steel slag was studied by the shear strength test under the effect of freeze–thaw cycle. Then, based on the Box–Behnken design of the response surface method, the interaction effects of the solidifying agent components on the unconfined compressive strength were studied. Then, the water stability under dry–wet cycles and a microscopic mechanism were analyzed by XRD and SEM tests. The results show that the waste steel slag with a dosage of 30% and a particle size of 1.18~2.36 mm has the best improvement. The interaction between cement and lime and lime and fly ash has a significant effect on the linear effect and surface effect of 7d unconfined compressive strength, and the strength increases first and then decreases with the increase in its dosage. For the 14d unconfined compressive strength, only the interaction between cement and lime is still significant. The unconfined compressive strength prediction model is established to optimize the mix ratio of the composite solidifying agent. In the water stability, the water stability coefficients of the 7d and 14d tests are 0.68 and 0.95, respectively, and the volume and mass loss rates are all below 1.5%, showing a good performance in dry–wet resistance and durability. Microscopic mechanism analysis shows that waste steel slag provides an ‘anchoring surface’ as a skeleton, which improves the pore structure of dredged mud, and the hydration products generated by the solidifying agent play a role in filling and cementation. The results of the study can provide an experimental and technical basis for the resource engineering of marine-dredged mud and waste steel slag, helping the construction of green low-carbon and resource-saving ports. Full article
(This article belongs to the Special Issue Carbon-Neutral Infrastructure)
Show Figures

Figure 1

23 pages, 3437 KiB  
Article
Advanced Asphalt Mixtures for Tropical Climates Incorporating Pellet-Type Slaked Lime and Epoxy Resin
by Sang-Yum Lee and Tri Ho Minh Le
J. Compos. Sci. 2024, 8(11), 442; https://doi.org/10.3390/jcs8110442 - 30 Oct 2024
Viewed by 258
Abstract
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. [...] Read more.
The escalating impacts of climate change have led to significant challenges in maintaining road infrastructure, particularly in tropical climates. Abnormal weather patterns, including increased precipitation and temperature fluctuations, contribute to the accelerated deterioration of asphalt pavements, resulting in cracks, plastic deformation, and potholes. This study aims to evaluate the durability of a novel pellet-type stripping prevention material incorporating slaked lime and epoxy resin for pothole restoration in tropical climates. The modified asphalt mixtures were subjected to a series of laboratory tests, including the Tensile Strength Ratio (TSR) test, Indirect Tension Strength (ITS) test, Hamburg Wheel Tracking (HWT) test, Cantabro test, and Dynamic Modulus test, to assess their moisture resistance, rutting resistance, abrasion resistance, and viscoelastic properties. Quantitative results demonstrated significant improvements in the modified mixture’s performance. The TSR test showed a 6.67% improvement in moisture resistance after 10 drying–wetting cycles compared to the control mixture. The HWT test indicated a 10.16% reduction in rut depth under standard conditions and a 27.27% improvement under double load conditions. The Cantabro test revealed a 44.29% reduction in mass loss, highlighting enhanced abrasion resistance. Additionally, the Dynamic Modulus test results showed better stress absorption and reduced likelihood of cracking, with the modified mixture demonstrating superior flexibility and stiffness under varying temperatures and loading frequencies. These findings suggest that the incorporation of slaked lime and epoxy resin significantly enhances the durability and performance of asphalt mixtures for pothole repair, making them a viable solution for sustainable road maintenance in tropical climates. Full article
(This article belongs to the Special Issue Advanced Asphalt Composite Materials)
Show Figures

Figure 1

13 pages, 1053 KiB  
Article
Assessing the Impact of Climate Change on Methane Emissions from Rice Production Systems in Southern India
by Boomiraj Kovilpillai, Gayathri Jawahar Jothi, Diogenes L. Antille, Prabu P. Chidambaram, Senani Karunaratne, Arti Bhatia, Mohan Kumar Shanmugam, Musie Rose, Senthilraja Kandasamy, Selvakumar Selvaraj, Mohammed Mainuddin, Guruanand Chandrasekeran, Sangeetha Piriya Ramasamy and Geethalakshmi Vellingiri
Atmosphere 2024, 15(11), 1270; https://doi.org/10.3390/atmos15111270 - 24 Oct 2024
Viewed by 602
Abstract
The impact of climate change on methane (CH4) emissions from rice production systems in the Coimbatore region (Tamil Nadu, India) was studied by leveraging field experiments across two main treatments and four sub-treatments in a split-plot design. Utilizing the closed-chamber method [...] Read more.
The impact of climate change on methane (CH4) emissions from rice production systems in the Coimbatore region (Tamil Nadu, India) was studied by leveraging field experiments across two main treatments and four sub-treatments in a split-plot design. Utilizing the closed-chamber method for gas collection and gas chromatography analysis, this study identified significant differences in CH4 emissions between conventional cultivation methods and the system of rice intensification (henceforth SRI). Over two growing seasons, conventional cultivation methods reported higher CH4 emissions (range: from 36.9 to 59.3 kg CH4 ha−1 season−1) compared with SRI (range: from 2.2 to 12.8 kg CH4 ha−1 season−1). Experimental data were subsequently used to guide parametrization and validation of the DeNitrification–DeComposition (DNDC) model. The validation of the model showed good agreement between the measured and modeled data, as denoted by the statistical tests performed, which included CRM (0.09), D-index (0.99), RMSE (7.16), EF (0.96), and R2 (0.92). The validated model was then used to develop future CH4 emissions projections under various shared socio-economic pathways (henceforth SSPs) for the mid- (2021–2050) and late (2051–2080) century. The analysis revealed a potential increase in CH4 emissions for the simulated scenarios, which was dependent on specific soil and irrigation management practices. Conventional cultivation produced the highest CH4 emissions, but it was shown that they could be reduced if the current practice was replaced by minimal flooding or through irrigation with alternating wetting and drying cycles. Emissions were predicted to rise until SSP 370, with a marginal increase in SSP 585 thereafter. The findings of this work underscored an urgency to develop climate-smart location-specific mitigation strategies focused on simultaneously improving current water and nutrient management practices. The use of methanotrophs to reduce CH4 production from rice systems should be considered in future work. This research also highlighted the critical interaction that exists between agricultural practices and climate change, and emphasized the need to implement adaptive crop management strategies that can sustain productivity and mitigate the environmental impacts of rice-based systems in southern India. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

27 pages, 12734 KiB  
Article
Cellular Automata-Based Experimental Study on the Evolution of Corrosion Damage in Bridge Cable Steel Wire
by Liping Zhou, Guowen Yao, Guiping Zeng, Zhiqiang He, Xuetong Gou, Xuanbo He and Mingxu Liu
Buildings 2024, 14(11), 3354; https://doi.org/10.3390/buildings14113354 - 23 Oct 2024
Viewed by 405
Abstract
Cable-stayed bridges have become the preferred bridge type for large-span bridges due to their unique advantages, and the long-term performance of the cable under the extreme conditions has been facing great challenges. An accelerated corrosion test was carried out using in-service cable, and [...] Read more.
Cable-stayed bridges have become the preferred bridge type for large-span bridges due to their unique advantages, and the long-term performance of the cable under the extreme conditions has been facing great challenges. An accelerated corrosion test was carried out using in-service cable, and the evolution model of the etch pit was established based on cellular automata to study the evolution law of corrosion damage to steel wire. This study showed that with the increase in the number of dry-wet cycles in the electrified accelerated corrosion, the macro- and micromorphology of the steel wire showed more serious corrosion damage, the tensile strength decreased, the ductility index decreased, and the tensile strength of the steel wire after corrosion decreased by nearly 5%; the geometric dimension of the steel wire etch pits all met a right-skewed distribution with a broader range of etch pit depth, mainly consisting of shallow spherical etch pits and deep ellipsoidal etch pits. The length, width, and depth sizes were mainly distributed in the range of 0.005 mm to 0.015 mm, 0.005 mm to 0.02 mm, and 0 mm to 0.04 mm; at the early stage of corrosion, the etch pits were first developed along the longitudinal direction. As the corrosion process progressed, the iron matrix participated in the electrochemical reaction, leading to the rapid expansion of the etch pits’ dimensions. The stress concentration effect at the bottom of the etch pit caused the maximum stress to approach 1800 MPa, with a stress concentration coefficient of more than 3.0; when the cable anchorage system was located in the connecting sleeve and the threaded splice seam, where corrosion protection was prone to failure, the outer steel wire bore most of the corrosive effects, and the internal cable was less eroded by the corrosive medium. Full article
(This article belongs to the Special Issue Recent Scientific Developments in Structural Damage Identification)
Show Figures

Figure 1

20 pages, 3049 KiB  
Article
Enhancing Compressive Strength of Cement by Indigenous Individual and Co-Culture Bacillus Bacteria
by Tiana Milović, Vesna Bulatović, Lato Pezo, Miroslav Dramićanin, Ana Tomić, Milada Pezo and Olja Šovljanski
Materials 2024, 17(20), 4975; https://doi.org/10.3390/ma17204975 - 11 Oct 2024
Viewed by 676
Abstract
Using a Taguchi experimental design, this research focuses on utilizing indigenous bacteria from the Danube River to enhance the self-healing capabilities and structural integrity of cementitious materials. Bacillus licheniformis and Bacillus muralis were used as individual bacterium or in co-culture, with a concentration [...] Read more.
Using a Taguchi experimental design, this research focuses on utilizing indigenous bacteria from the Danube River to enhance the self-healing capabilities and structural integrity of cementitious materials. Bacillus licheniformis and Bacillus muralis were used as individual bacterium or in co-culture, with a concentration of 8 logs CFU, while the humidity variation involved testing wet and wet–dry conditions. Additionally, artificial neural network (ANN) modeling of the compressive strength of cement samples results in improvements in compressive strength, particularly under wet–dry conditions. By inducing targeted bacterial activity, the formation of calcium carbonate precipitates was initiated, which effectively sealed formed cracks, thus restoring and even enhancing the material’s strength. In addition to short-term improvements, this study also evaluates long-term improvements, with compressive strength measured over periods extending to 180 days. The results demonstrate sustained self-healing capabilities and strength improvements under varied environmental conditions, emphasizing the potential for long-term application in real-world infrastructure. This study also explores the role of environmental conditions, such as wet and wet–dry cycles, in optimizing the self-healing process, revealing that cyclic exposure conditions further improve the efficiency of strength recovery. The findings suggest that autochthonous bacterial co-cultures can be a viable solution for enhancing the durability and lifespan of concrete structures. This research provides a foundation for further exploration into bio-based self-healing mechanisms and their practical applications in the concrete industry. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 9963 KiB  
Article
Study on the Influence of Thermoplastic Microcapsules on the Sulfate Resistance and Self-Healing Performance of Limestone Calcined Clay Cement Concrete
by Wei Du, Lu Jiang, Quantao Liu, Wei Chen and Qingjun Ding
Molecules 2024, 29(20), 4797; https://doi.org/10.3390/molecules29204797 - 10 Oct 2024
Viewed by 562
Abstract
Limestone calcined clay cement (LC3), enhanced through reactions with volcanic ash and the interaction between limestone and clay, significantly improves the performance of cementitious materials. It has the potential to cut CO2 emissions by up to 30% and energy consumption in cement [...] Read more.
Limestone calcined clay cement (LC3), enhanced through reactions with volcanic ash and the interaction between limestone and clay, significantly improves the performance of cementitious materials. It has the potential to cut CO2 emissions by up to 30% and energy consumption in cement manufacture by 15% to 20%, providing a promising prospect for the large-scale production of low-carbon cement with a lower environmental effect. To effectively manufacture LC3 concrete, this study utilized limestone (15%), calcined clay (30%), and gypsum (5%) as supplementary cementitious materials (SCMs), replacing 50% of ordinary Portland cement (OPC). However, in regions abundant in sulfate, sulfate attack can cause interior cracking of concrete, reducing the longevity of the building. To address this issue, microcapsules containing microcrystalline wax, ceresine wax, and nano-CaCO3 encapsulated in epoxy resin were prepared and successfully incorporated into LC3 concrete. Sulfate resistance tests were conducted through sulfate dry–wet cycles, comparing samples with and without microcapsules. The findings revealed that the initial mechanical and permeability properties of LC3 concrete did not significantly differ from OPC concrete. LC3 concrete with added microcapsules (SP4) exhibited enhanced resistance to sulfate attack, reducing mass loss and compressive strength degradation. SEM images displayed a mesh-like structure of repair products in SP4. After 14 days of self-repair, SP4 exhibited a 44.2% harmful pore ratio, 98.1% compressive strength retention, 88.7% chloride ion diffusion coefficient retention, 91.12 mV maximum amplitude, and 9.14 mV maximum frequency amplitude. The experimental results indicate that the presence of microcapsules enhances the sulfate attack self-healing performance of LC3 concrete. Full article
Show Figures

Figure 1

23 pages, 9999 KiB  
Article
Optimization of Proportions of Alkali-Activated Slag–Fly Ash-Based Cemented Tailings Backfill and Its Strength Characteristics and Microstructure under Combined Action of Dry–Wet and Freeze–Thaw Cycles
by Jianlin Hu, Zhipeng Meng, Tongtong Gao, Shaohui Dong, Peng Ni, Zhilin Li, Wenlong Yang and Kai Wang
Materials 2024, 17(20), 4945; https://doi.org/10.3390/ma17204945 - 10 Oct 2024
Viewed by 799
Abstract
To enhance the application of alkali-activated materials in mine filling, cemented tailings backfill was prepared using slag, fly ash, sodium silicate, and NaOH as primary constituents. The effects of the raw material type and dosage on the backfill were examined through a single-factor [...] Read more.
To enhance the application of alkali-activated materials in mine filling, cemented tailings backfill was prepared using slag, fly ash, sodium silicate, and NaOH as primary constituents. The effects of the raw material type and dosage on the backfill were examined through a single-factor experiment. Additionally, response surface methodology (RSM) was utilized to optimize the mixing ratios of the backfill, with a focus on fluidity and compressive strength as key objectives. The evolution of backfill quality and compressive strength under the combined effects of dry–wet and freeze–thaw (DW-FT) cycles was analyzed. The hydration products, microstructure, and pore characteristics of the specimens were analyzed using X-ray diffraction (XRD), scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), and nitrogen adsorption tests (NATs) across varying cycles. The results demonstrate that the optimal backfill composition includes 47.8% fly ash, 6.10% alkali equivalent, and a 1.44 sodium silicate modulus. The macroscopic behavior of the backfill under DW-FT coupling followed this progression: pore initiation → pore expansion → crack formation → crack propagation → structural damage. After a minor initial increase, the backfill strength steadily decreased. Microscopic analysis revealed that the decline in internal cementation products and the deterioration of pore structure were the primary causes of this strength reduction. Thus, the DW-FT coupling can cause significant erosion of the backfill. The technical solutions presented in this paper offer a reference for solid waste utilization and provide valuable insights into the durability of backfill under DW-FT coupling. Full article
Show Figures

Figure 1

20 pages, 4721 KiB  
Article
Study on the Effect of Hot and Humid Environmental Factors on the Mechanical Properties of Asphalt Concrete
by Xin Yan, Zhigang Zhou, Yingjia Fang, Chongsen Ma and Guangtao Yu
Materials 2024, 17(20), 4942; https://doi.org/10.3390/ma17204942 - 10 Oct 2024
Viewed by 449
Abstract
To investigate the effect of hot and humid environmental factors on the mechanical properties of asphalt mixtures research, in this paper, the dynamic modulus of asphalt mixtures under the effects of aging, dry–wet cycling, and coupled effects of aging and dry–wet cycling were [...] Read more.
To investigate the effect of hot and humid environmental factors on the mechanical properties of asphalt mixtures research, in this paper, the dynamic modulus of asphalt mixtures under the effects of aging, dry–wet cycling, and coupled effects of aging and dry–wet cycling were measured by the simple performance tester (SPT) system, and the dynamic modulus principal curves were fitted based on the sigmoidal function. The results show that under the aging effect, the dynamic modulus of asphalt mixture increases with the aging degree; the dynamic modulus of short-term aged, medium-term aged, long-term aged, and ultra-long-term aged asphalt mixtures increased by 9.3%, 26.4%, 44.8%, and 57%, respectively, compared to unaged asphalt mixtures at 20 °C and 10 Hz; the high-temperature stability performance is enhanced, and the low temperature cracking resistance performance is enhanced; under the dry–wet cycle, the aging effect of asphalt water is more obvious in the early stage, and dynamic modulus of resilience of the mixture is slightly increased. In the long-term wet–dry cycle process, water on the asphalt and aggregate erosion increased, the structural bearing capacity attenuation, and the dynamic modulus of rebound greatly reduced at 20 °C and 10 Hz. For example, the dynamic modulus of asphalt mixtures with seven wet and dry cycles increased by 3% compared to asphalt mixtures without wet and dry cycles, and the dynamic modulus of asphalt mixtures with 14 cycles of wet and dry cycles and 21 cycles of wet and dry cycles decreased by 10.8% and 16.5%, respectively, compared to asphalt mixtures without wet and dry cycles. The main curve as a whole shifted downward; the high-temperature performance decreased significantly; in the aging wet–dry cycle coupling, the aging asphalt mixture is more susceptible to water erosion, and the first wet–dry cycle after the mix by the degree of water erosion is relatively small, along with the dynamic modulus of rebound. The dynamic modulus of resilience is relatively larger, and the high-temperature performance is relatively better, while the low-temperature performance is worse. Full article
Show Figures

Figure 1

Back to TopTop