Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = whole-arm grasping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7070 KiB  
Article
A Pre-Grasping Motion Planning Method Based on Improved Artificial Potential Field for Continuum Robots
by Lihua Wang, Zezhou Sun, Yaobing Wang, Jie Wang, Zhijun Zhao, Chengxu Yang and Chuliang Yan
Sensors 2023, 23(22), 9105; https://doi.org/10.3390/s23229105 - 10 Nov 2023
Viewed by 1011
Abstract
Secure and reliable active debris removal methods are crucial for maintaining the stability of the space environment. Continuum robots, with their hyper-redundant degrees of freedom, offer the ability to capture targets of varying sizes and shapes through whole-arm grasping, making them well-suited for [...] Read more.
Secure and reliable active debris removal methods are crucial for maintaining the stability of the space environment. Continuum robots, with their hyper-redundant degrees of freedom, offer the ability to capture targets of varying sizes and shapes through whole-arm grasping, making them well-suited for active debris removal missions. This paper proposes a pre-grasping motion planning method for continuum robots based on an improved artificial potential field to restrict the movement area of the grasping target and prevent its escape during the pre-grasping phase. The analysis of the grasping workspace ensures that the target is within the workspace when starting the pre-grasping motion planning by dividing the continuum robot into delivery and grasping segments. An improved artificial potential field is proposed to guide the continuum robot in surrounding the target and creating a grasping area. Specifically, the improved artificial potential field consists of a spatial rotating potential field, an attractive potential field incorporating position and posture potential fields, and a repulsive potential field. The simulation results demonstrate the effectiveness of the proposed method. A comparison of motion planning results between methods that disregard and consider the posture potential field shows that the inclusion of the posture potential field improves the performance of pre-grasping motion planning for spatial targets, achieving a success rate of up to 97.8%. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

15 pages, 1566 KiB  
Article
Phenotypic Disease Network-Based Multimorbidity Analysis in Idiopathic Cardiomyopathy Patients with Hospital Discharge Records
by Lei Wang, Ye Jin, Jingya Zhou, Cheng Pang, Yi Wang and Shuyang Zhang
J. Clin. Med. 2022, 11(23), 6965; https://doi.org/10.3390/jcm11236965 - 25 Nov 2022
Viewed by 1590
Abstract
Background: Idiopathic cardiomyopathy (ICM) is a rare disease affecting numerous physiological and biomolecular systems with multimorbidity. However, due to the small sample size of uncommon diseases, the whole spectrum of chronic disease co-occurrence, especially in developing nations, has not yet been investigated. To [...] Read more.
Background: Idiopathic cardiomyopathy (ICM) is a rare disease affecting numerous physiological and biomolecular systems with multimorbidity. However, due to the small sample size of uncommon diseases, the whole spectrum of chronic disease co-occurrence, especially in developing nations, has not yet been investigated. To grasp the multimorbidity pattern, we aimed to present a multidimensional model for ICM and differences among age groups. Methods: Hospital discharge records were collected from a rare disease centre of ICM inpatients (n = 1036) over 10 years (2012 to 2021) for this retrospective analysis. One-to-one matched controls were also included. First, by looking at the first three digits of the ICD-10 code, we concentrated on chronic illnesses with a prevalence of more than 1%. The ICM and control inpatients had a total of 71 and 69 chronic illnesses, respectively. Second, to evaluate the multimorbidity pattern in both groups, we built age-specific cosine-index-based multimorbidity networks. Third, the associated rule mining (ARM) assessed the comorbidities with heart failure for ICM, specifically. Results: The comorbidity burden of ICM was 78% larger than that of the controls. All ages were affected by the burden, although those over 50 years old had more intense interactions. Moreover, in terms of disease connectivity, central, hub, and authority diseases were concentrated in the metabolic, musculoskeletal and connective tissue, genitourinary, eye and adnexa, respiratory, and digestive systems. According to the age-specific connection, the impaired coagulation function was required for raising attention (e.g., autoimmune-attacked digestive and musculoskeletal system disorders) in young adult groups (ICM patients aged 20–49 years). For the middle-aged (50–60 years) and older (≥70 years) groups, malignant neoplasm and circulatory issues were the main confrontable problems. Finally, according to the result of ARM, the comorbidities and comorbidity patterns of heart failure include diabetes mellitus and metabolic disorder, sleeping disorder, renal failure, liver, and circulatory diseases. Conclusions: The main cause of the comorbid load is aging. The ICM comorbidities were concentrated in the circulatory, metabolic, musculoskeletal and connective tissue, genitourinary, eye and adnexa, respiratory, and digestive systems. The network-based approach optimizes the integrated care of patients with ICM and advances our understanding of multimorbidity associated with the disease. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

15 pages, 5602 KiB  
Article
Dynamic and Full-Time Acquisition Technology and Method of Ice Data of Yellow River
by Yu Deng, Chunjiang Li, Zhijun Li and Baosen Zhang
Sensors 2022, 22(1), 176; https://doi.org/10.3390/s22010176 - 28 Dec 2021
Cited by 5 | Viewed by 1702
Abstract
Regarding the ice periods of the Yellow River, it is difficult to obtain ice data information. To effectively grasp the ice evolution process in the ice periods of the typical reach of the Yellow River, a fixed-point air-coupled radar remote monitoring device is [...] Read more.
Regarding the ice periods of the Yellow River, it is difficult to obtain ice data information. To effectively grasp the ice evolution process in the ice periods of the typical reach of the Yellow River, a fixed-point air-coupled radar remote monitoring device is proposed in this paper. The device is mainly composed of an air-coupled radar ice thickness measurement sensor, radar water level measurement sensor, temperature measurement sensor, high-definition infrared night vision instrument, remote switch control, telemetry communication machine, solar and wind power supply, lightning protection, and slewing arm steel tower. The integrated monitoring device can monitor ice thickness, water level, air temperature, ice surface temperature, and other related parameters in real time. At present, devices have obtained the ice change process of fixed points in ice periods from 2020 to 2021. Through a comparison with manual data, the mean error of the monitoring results of the water level and ice thickness was approximately 1 cm. The device realizes the real-time monitoring of ice thickness and water level change in the whole cycle at the fixed position. Through video monitoring, it can take pictures and videos regularly and realize the connection between the visual river and monitoring data. The research results provide a new model and new technology for hydrological monitoring in the ice periods of the Yellow River, which has broad application prospects. Full article
(This article belongs to the Special Issue RADAR Sensors and Digital Signal Processing)
Show Figures

Figure 1

15 pages, 3365 KiB  
Article
Grasped Object Weight Compensation in Reference to Impedance Controlled Robots
by Tomasz Winiarski, Szymon Jarocki and Dawid Seredyński
Energies 2021, 14(20), 6693; https://doi.org/10.3390/en14206693 - 15 Oct 2021
Cited by 5 | Viewed by 1709
Abstract
This paper addresses the problem of grasped object weight compensation in the one-handed manipulation of impedance controlled robots. In an exemplary identification procedure, the weight of an object and its centre of mass together with gripper kinematic configuration are identified. The procedure is [...] Read more.
This paper addresses the problem of grasped object weight compensation in the one-handed manipulation of impedance controlled robots. In an exemplary identification procedure, the weight of an object and its centre of mass together with gripper kinematic configuration are identified. The procedure is based on the measurements from a 6-axis force/torque sensor mounted near the gripper. The proposed method reduces trajectory tracking errors coming from the model imprecision without compromising the main advantages of impedance control. The whole approach is applied according to the embodied agent paradigm and verified on the two-arm service robot both in simulation and on hardware. Due to the general description that follows system engineering standards, the method can be easily modified or applied to similar systems. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Graphical abstract

897 KiB  
Article
Bioinspired Soft Actuation System Using Shape Memory Alloys
by Matteo Cianchetti, Alessia Licofonte, Maurizio Follador, Francesco Rogai and Cecilia Laschi
Actuators 2014, 3(3), 226-244; https://doi.org/10.3390/act3030226 - 9 Jul 2014
Cited by 79 | Viewed by 14048
Abstract
Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically [...] Read more.
Soft robotics requires technologies that are capable of generating forces even though the bodies are composed of very light, flexible and soft elements. A soft actuation mechanism was developed in this work, taking inspiration from the arm of the Octopus vulgaris, specifically from the muscular hydrostat which represents its constitutive muscular structure. On the basis of the authors’ previous works on shape memory alloy (SMA) springs used as soft actuators, a specific arrangement of such SMA springs is presented, which is combined with a flexible braided sleeve featuring a conical shape and a motor-driven cable. This robot arm is able to perform tasks in water such as grasping, multi-bending gestures, shortening and elongation along its longitudinal axis. The whole structure of the arm is described in detail and experimental results on workspace, bending and grasping capabilities and generated forces are presented. Moreover, this paper demonstrates that it is possible to realize a self-contained octopus-like robotic arm with no rigid parts, highly adaptable and suitable to be mounted on underwater vehicles. Its softness allows interaction with all types of objects with very low risks of damage and limited safety issues, while at the same time producing relatively high forces when necessary. Full article
(This article belongs to the Special Issue Soft Actuators)
Show Figures

Graphical abstract

Back to TopTop