Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,757)

Search Parameters:
Keywords = wireless sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 622 KiB  
Article
Modeling and Performance Evaluation of a Cellular Network with OMA and NOMA Users with Batch Arrivals by Means of an M[X]/M/S/0 Model
by Luis Alberto Vásquez-Toledo, Carlos González-Flores, Miguel Lopez-Guerrero, Alfonso Prieto-Guerrero, José Alfredo Tirado-Méndez, Ricardo Marcelín-Jiménez, Enrique Rodriguez-Colina, Michael Pascoe-Chalke and Francisco R. Castillo-Soria
Mathematics 2024, 12(21), 3400; https://doi.org/10.3390/math12213400 - 30 Oct 2024
Viewed by 316
Abstract
Nowadays, efficient spectrum usage is one of the most important design principles to take into account in wireless communications due to the exponential growth of mobile devices. In that sense, solutions such as Non-Orthogonal Multiple Access (NOMA) and cognitive radio (CR) have been [...] Read more.
Nowadays, efficient spectrum usage is one of the most important design principles to take into account in wireless communications due to the exponential growth of mobile devices. In that sense, solutions such as Non-Orthogonal Multiple Access (NOMA) and cognitive radio (CR) have been proposed. In essence, NOMA allows some interference level by using non-orthogonal resource allocation with a tolerable increase in receiver complexity employing successive interference cancellation (SIC). In this work, a novel mathematical model of teletraffic for users performing accessment, simultaneously, by means of Orthogonal Multiple Access (OMA) and NOMA, is developed using a Markovian process that considers bursts of arrivals to model the access schemes. This novel procedure implies a closed-form solution of the proposed system compared to other works where these parameters are estimated assuming the moment generating function obtained with approximation models. The model is validated with a discrete event simulator, considering different scenarios and simulation conditions. The simulation results are in agreement with the mathematical solution proposed. Full article
(This article belongs to the Special Issue Stochastic Processes: Theory, Simulation and Applications)
Show Figures

Figure 1

15 pages, 2501 KiB  
Article
LIG-Based High-Sensitivity Multiplexed Sensing System for Simultaneous Monitoring of Metabolites and Electrolytes
by Sang Hyun Park and James Jungho Pak
Sensors 2024, 24(21), 6945; https://doi.org/10.3390/s24216945 - 29 Oct 2024
Viewed by 294
Abstract
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, [...] Read more.
With improvements in medical environments and the widespread use of smartphones, interest in wearable biosensors for continuous body monitoring is growing. We developed a wearable multiplexed bio-sensing system that non-invasively monitors body fluids and integrates with a smartphone application. The system includes sensors, readout circuits, and a microcontroller unit (MCU) for signal processing and wireless communication. Potentiometric and amperometric measurement methods were used, with calibration capabilities added to ensure accurate readings of analyte concentrations and temperature. Laser-induced graphene (LIG)-based sensors for glucose, lactate, Na+, K+, and temperature were developed for fast, cost-effective production. The LIG electrode’s 3D porous structure provided an active surface area 16 times larger than its apparent area, resulting in enhanced sensor performance. The glucose and lactate sensors exhibited high sensitivity (168.15 and 872.08 μAmM−1cm−2, respectively) and low detection limits (0.191 and 0.167 μM, respectively). The Na+ and K+ sensors demonstrated sensitivities of 65.26 and 62.19 mVdec−1, respectively, in a concentration range of 0.01–100 mM. Temperature sensors showed an average rate of resistance change per °C of 0.25%/°C, within a temperature range of 20–40 °C, providing accurate body temperature monitoring. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 714 KiB  
Article
Joint Design of Transmit Waveform and Altitude for Unmanned Aerial Vehicle-Enabled Integrated Sensing and Wireless Power Transfer Systems
by Jinho Kang
Electronics 2024, 13(21), 4237; https://doi.org/10.3390/electronics13214237 - 29 Oct 2024
Viewed by 398
Abstract
Recently, unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) has received great attention as a promising technology for providing stable power to energy-constrained devices by navigating three-dimensional (3D) space, particularly in challenging environments such as maritime networks and smart cities. Additionally, UAV-enabled radar [...] Read more.
Recently, unmanned aerial vehicle (UAV)-enabled wireless power transfer (WPT) has received great attention as a promising technology for providing stable power to energy-constrained devices by navigating three-dimensional (3D) space, particularly in challenging environments such as maritime networks and smart cities. Additionally, UAV-enabled radar sensing has gained significant attention as a key technology for future 6G networks, as it enables high-accuracy sensing for various applications, such as target detection and tracking, surveillance, and environmental monitoring, as well as autonomous UAV operation. In this regard, we investigated UAV-enabled integrated sensing and wireless power transfer (ISWPT) systems that combine radar sensing and WPT operations on a unified hardware platform, sharing the same spectrum of resources. In order to accurately sense multiple targets and efficiently transfer power to multiple devices at the same time, we propose a method for jointly designing the transmit waveform and UAV altitude, taking into account the fundamental trade-off between radar sensing performance with the desired beam pattern and WPT performance with the desired harvested power of the devices. We first developed an effective method to obtain the optimal waveform and altitude by solving a challenging non-convex optimization problem. Based on this, we developed another efficient, low-complexity method by exploring a novel transmit waveform and optimizing its parameters to reduce computational complexity and thereby lower power consumption in UAVs. The numerical results verify that the proposed method significantly improves both radar sensing and WPT performance, as well as substantially reduces computational complexity. Full article
Show Figures

Figure 1

18 pages, 8730 KiB  
Article
A Novel Non-Contact Multi-User Online Indoor Positioning Strategy Based on Channel State Information
by Yixin Zhuang, Yue Tian and Wenda Li
Sensors 2024, 24(21), 6896; https://doi.org/10.3390/s24216896 - 27 Oct 2024
Viewed by 523
Abstract
The IEEE 802.11bf-based wireless fidelity (WiFi) indoor positioning system has gained significant attention recently. It is important to recognize that multi-user online positioning occurs in real wireless environments. This paper proposes an indoor positioning sensing strategy that includes an optimized preprocessing process and [...] Read more.
The IEEE 802.11bf-based wireless fidelity (WiFi) indoor positioning system has gained significant attention recently. It is important to recognize that multi-user online positioning occurs in real wireless environments. This paper proposes an indoor positioning sensing strategy that includes an optimized preprocessing process and a new machine learning (ML) method called NKCK. The NKCK method can be broken down into three components: neighborhood component analysis (NCA) for dimensionality reduction, K-means clustering, and K-nearest neighbor (KNN) classification with cross-validation (CV). The KNN algorithm is particularly suitable for our dataset since it effectively classifies data based on proximity, relying on the spatial relationships between points. Experimental results indicate that the NKCK method outperforms traditional methods, achieving reductions in error rates of 82.4% compared to naive Bayes (NB), 85.0% compared to random forest (RF), 72.1% compared to support vector machine (SVM), 64.7% compared to multilayer perceptron (MLP), 50.0% compared to density-based spatial clustering of applications with noise (DBSCAN)-based methods, 42.0% compared to linear discriminant analysis (LDA)-based channel state information (CSI) amplitude fingerprinting, and 33.0% compared to principal component analysis (PCA)-based approaches. Due to the sensitivity of CSI, our multi-user online positioning system faces challenges in detecting dynamic human activities, such as human tracking, which requires further investigation in the future. Full article
Show Figures

Figure 1

13 pages, 12469 KiB  
Article
Space–Ground Remote Sensor Network for Monitoring Suspended Sediments in the Yellow River Basin
by Yingzhuo Hou, Yonggang Ma, Zheng Hou, Maham Arif, Jinghu Li, Xing Ming, Xinyue Liu and Qianguo Xing
Sensors 2024, 24(21), 6888; https://doi.org/10.3390/s24216888 - 27 Oct 2024
Viewed by 448
Abstract
The Yellow River, China’s second-largest river, is renowned for its high sediment content. In response to the potential impacts of climate change on Yellow River water resources and water environmental management, an advanced monitoring and forecasting system for water and sediment throughout the [...] Read more.
The Yellow River, China’s second-largest river, is renowned for its high sediment content. In response to the potential impacts of climate change on Yellow River water resources and water environmental management, an advanced monitoring and forecasting system for water and sediment throughout the entire Yellow River basin—from its source to the sea—is urgently needed. In this paper, based on the current status of water and sediment monitoring technologies, we proposed an integrated remote sensing monitoring network that combines satellite remote sensing, drone remote sensing, and ground-based wireless automatic monitoring networks, aiming to achieve the digital monitoring of water and sediment across the entire Yellow River basin, from its upper reaches to its estuary in the Bohai Sea. By utilizing ground-based in situ hyperspectral stations for sediment source areas in the upper reaches, such as the Qingshui River basin in Ningxia, and satellite remote sensing for midstream processes in the Xiaolangdi reservoir before the flood season in 2023, as well as downstream monitoring at the Yellow River estuary, this paper demonstrates the novelty and efficiency of the space–air–ground integrated remote sensing monitoring technology. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

20 pages, 8716 KiB  
Article
Real-Time Indoor Environmental Quality (IEQ) Monitoring Using an IoT-Based Wireless Sensing Network
by Tsz-Wun Tsang, Kwok-Wai Mui, Ling-Tim Wong, Angus Chun-Yu Chan and Ricky Chi-Wai Chan
Sensors 2024, 24(21), 6850; https://doi.org/10.3390/s24216850 - 25 Oct 2024
Viewed by 443
Abstract
In recent years, our time spent indoors has risen to around 90% and to maintain an occupant’s comfort and well-being, Indoor Environmental Quality (IEQ) is monitored. Concerned with inhabitant’s satisfaction and health, the adoption of smart solutions for IEQ monitoring and improvement has [...] Read more.
In recent years, our time spent indoors has risen to around 90% and to maintain an occupant’s comfort and well-being, Indoor Environmental Quality (IEQ) is monitored. Concerned with inhabitant’s satisfaction and health, the adoption of smart solutions for IEQ monitoring and improvement has expanded. The solution this study explores is an occupant-centric approach involving the implementation of an Internet of Things (IoT) IEQ sensing network in a prominent office skyscraper in Hong Kong. Over the course of 15 months, real-time IEQ data were collected from 12 locations within the building. The data were collected at 1-min time intervals and consisted of readings of indoor air temperature, radiant temperature, relative humidity, air velocity, carbon dioxide (CO2), particulate matter (PM10 and PM2.5), horizontal illuminance levels, and sound pressure levels, which served as the basis of the assessment made about the qualities of thermal comfort, indoor air quality (IAQ), aural comfort, and visual comfort. Compared to traditional periodic surveys, this IoT-based sensing network captured instantaneous environmental variations, providing valuable insights into the indoor environment’s spatial characterization and temporal dynamics. This smart solution also assisted facility management in terms of identifying sources of discomfort and developing effective mitigation strategies accordingly. This study presents an occupant-centric approach to improve occupant comfort and energy efficiency within office buildings. By customizing the built environment to enhance occupants’ well-being, comfort, and productivity, an emphasis is placed on a more personalized and occupant-focused design strategy. This approach integrates technical design with human experience, highlighting the importance of real-time physical and subjective surveys for achieving optimal results. Full article
(This article belongs to the Special Issue Advanced IoT Systems in Smart Cities: 2nd Edition)
Show Figures

Figure 1

19 pages, 4946 KiB  
Article
Directivity Improved Antenna with a Planar Dielectric Lens for Reducing the Physical Size of the On-Vehicle Communication System
by Seongbu Seo, Woogon Kim, Hongsik Park, Yejune Seo, Dohyun Park, Hyoungjong Kim, Kwonhee Lee, Hosub Lee and Sungtek Kahng
Sensors 2024, 24(21), 6831; https://doi.org/10.3390/s24216831 - 24 Oct 2024
Viewed by 360
Abstract
As the physical size of a communication system for satellites or unmanned aerial vehicles demands to be reduced, a compact antenna with high directivity is proposed as a core element essential to the wireless device. Instead of using a horn or an array [...] Read more.
As the physical size of a communication system for satellites or unmanned aerial vehicles demands to be reduced, a compact antenna with high directivity is proposed as a core element essential to the wireless device. Instead of using a horn or an array antenna, a unit planar antenna is combined with a surface-modulated lens to convert a low antenna gain to a high antenna gain. The lens is not a metal-patterned PCB but is dielectric, which is neither curved nor very wide. This palm-sized lens comprises pixels with different heights from the backside of PolyPhenylene Sulfide (PPS) as the dielectric base. The antenna gain from the unit antenna of 4.5 cm × 4.5 cm is enhanced by 10 dB with the help of a compact dielectric lens of 7.5 cm × 7.5 cm at 24.5 GHz as the frequency of interest. The antenna design is verified by far-field measurement as well as near-field observation, including sensing a metal object behind a blocking wall by using an RF test bench. Moreover, antenna performance is understood by making a comparison with conventional designs of antennas in terms of directivity and physical sizes. Full article
Show Figures

Figure 1

10 pages, 1415 KiB  
Article
The Interplay of Core Diameter and Diameter Ratio on the Magnetic Properties of Bistable Glass-Coated Microwires
by Valeria Kolesnikova, Irina Baraban, Alexander Omelyanchik, Larissa Panina and Valeria Rodionova
Micromachines 2024, 15(11), 1284; https://doi.org/10.3390/mi15111284 - 22 Oct 2024
Viewed by 496
Abstract
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D [...] Read more.
Glass-coated microwires exhibiting magnetic bistability have garnered significant attention as promising wireless sensing elements, primarily due to their rapid magnetization switching capabilities. These microwires consist of a metallic core with diameter d, encased in a glass coating, with a total diameter D. In this study, we investigated how the dimensions of both components and their ratio (d/D) influence the magnetization reversal behavior of Fe-based microwires. While previous studies have focused on either d or d/D individually, our research uniquely considered the combined effect of both parameters to provide a comprehensive understanding of their impact on magnetic properties. The metallic core diameter d varied from 10 to 19 µm and the d/D ratio was in the range of 0.48–0.68. To assess the magnetic properties of these microwires, including the shape of the hysteresis loop, coercivity, remanent magnetization, and the critical length of bistability, we employed vibrating sample magnetometry in conjunction with FORC-analysis. Additionally, to determine the critical length of bistability, magnetic measurements were conducted on microwires with various lengths, ranging from 1.5 cm down to 0.05 cm. Our findings reveal that coercivity is primarily dependent on the d/D parameter. These observations are effectively explained through an analysis that considers the competition between magnetostatic and magnetoelastic anisotropy energies. This comprehensive study paves the way for the tailored design of glass-coated microwires for diverse wireless sensing applications. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

11 pages, 18597 KiB  
Article
Demodulating Optical Wireless Communication of FBG Sensing with Turbulence-Caused Noise by Stacked Denoising Autoencoders and the Deep Belief Network
by Shegaw Demessie Bogale, Cheng-Kai Yao, Yibeltal Chanie Manie, Amare Mulatie Dehnaw, Minyechil Alehegn Tefera, Wei-Long Li, Zi-Gui Zhong and Peng-Chun Peng
Electronics 2024, 13(20), 4127; https://doi.org/10.3390/electronics13204127 - 20 Oct 2024
Viewed by 587
Abstract
Free-space optics communication (FSO) can be used as a transmission medium for fiber optic sensing signals to make fiber optic sensing easier to implement; however, interference with the sensing signals caused by the optical turbulence and scattering of airborne particles in the FSO [...] Read more.
Free-space optics communication (FSO) can be used as a transmission medium for fiber optic sensing signals to make fiber optic sensing easier to implement; however, interference with the sensing signals caused by the optical turbulence and scattering of airborne particles in the FSO path is a potential problem. This work aims to deep denoise sensed signals from fiber Bragg grating (FBG) sensors based on FSO link transmission using advanced denoising deep learning techniques, such as stacked denoising autoencoders (SDAE). Furthermore, it will demodulate the sensed wavelength of FBGs by applying the deep belief network (DBN) technique. This is the first time the real FBG sensing experiment has utilized the actual noise interference caused by the environmental turbulence from an FSO link rather than adding noise through numerical processing. Consequently, the spectrum of the FBG sensors is clearly modulated by the noise and the issue with peak power variation. This complicates the determination of the center wavelengths of multiple stacked FBG spectra, requiring the use of machine learning techniques to predict these wavelengths. The results indicate that SDAE is efficient in denoising from the FBG spectrum, and DBN is effective in demodulating the central wavelength of the overlapped FBG spectrum. Thus, it is beneficial to implement an FSO link-based FBG sensing system in adverse weather conditions or atmospheric turbulence. Full article
(This article belongs to the Special Issue Advances in Deep Learning-Based Wireless Communication Systems)
Show Figures

Figure 1

21 pages, 6832 KiB  
Article
A SAW Wireless Passive Sensing System for Rotating Metal Parts
by Yue Zhou, Jing Ding, Bingji Wang, Feng Gao, Shurong Dong and Hao Jin
Sensors 2024, 24(20), 6703; https://doi.org/10.3390/s24206703 - 18 Oct 2024
Viewed by 510
Abstract
Passive wireless surface acoustic wave (SAW) sensors are very useful for on-site monitoring of the working status of machines in complex environments, such as high-temperature rotating objects. For rotating parts, it is difficult to realize real-time and continuous monitoring because of the unstable [...] Read more.
Passive wireless surface acoustic wave (SAW) sensors are very useful for on-site monitoring of the working status of machines in complex environments, such as high-temperature rotating objects. For rotating parts, it is difficult to realize real-time and continuous monitoring because of the unstable sensing signal caused by the continuous change of the relative position of the rotating part to the sensor and shielding of the signal. In our SAW sensing system, we propose a loop antenna integrated with the rotating part to obtain a stable sensing signal owing to its omnidirectional radiation pattern. Methodologies for determining the antenna dimension, system operating frequency, and procedures for designing a SAW sensor tag are discussed in this paper. By fully utilizing the influence of metal rotor on antenna performance, the antenna needs no impedance matching elements while it provides sufficient gain, which equips the antenna with nearly zero temperature drift at a wide temperature-sensing range. Experimental verification results show that this sensing system can greatly improve the stability of the sensing signal significantly and can achieve a temperature sensing accuracy of ~1 °C at different rotational speeds, demonstrated by the feasibility of the loop antenna for monitoring the working status of rotating metal parts. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

12 pages, 3068 KiB  
Article
Performance Exploration of Optical Wireless Video Communication Based on Adaptive Block Sampling Compressive Sensing
by Jinwang Li, Haifeng Yao, Keyan Dong, Yansong Song, Tianci Liu, Zhongyu Cao, Weihao Wang, Yixiang Zhang, Kunpeng Jiang and Zhi Liu
Photonics 2024, 11(10), 969; https://doi.org/10.3390/photonics11100969 - 16 Oct 2024
Viewed by 398
Abstract
Optical wireless video transmission technology combines the advantages of high data rates, enhanced security, large bandwidth capacity, and strong anti-interference capabilities inherent in optical communication, establishing it as a pivotal technology in contemporary data transmission networks. However, video data comprises a large volume [...] Read more.
Optical wireless video transmission technology combines the advantages of high data rates, enhanced security, large bandwidth capacity, and strong anti-interference capabilities inherent in optical communication, establishing it as a pivotal technology in contemporary data transmission networks. However, video data comprises a large volume of image information, resulting in substantial data flow with significant redundant bits. To address this, we propose an adaptive block sampling compressive sensing algorithm that overcomes the limitations of sampling inflexibility in traditional compressive sensing, which often leads to either redundant or insufficient local sampling. This method significantly reduces the presence of redundant bits in video images. First, the sampling mechanism of the block-based compressive sensing algorithm was optimized. Subsequently, a wireless optical video transmission experimental system was developed using a Field-Programmable Gate Array chip. Finally, experiments were conducted to evaluate the transmission of video optical signals. The results demonstrate that the proposed algorithm improves the peak signal-to-noise ratio by over 3 dB compared to other algorithms, with an enhancement exceeding 1.5 dB even in field tests, thereby significantly optimizing video transmission quality. This research contributes essential technical insights for the enhancement of wireless optical video transmission performance. Full article
(This article belongs to the Special Issue Next-Generation Free-Space Optical Communication Technologies)
Show Figures

Figure 1

16 pages, 1323 KiB  
Article
Device-Free Crowd Size Estimation Using Wireless Sensing on Subway Platforms
by Robin Janssens, Erik Mannens, Rafael Berkvens and Stijn Denis
Appl. Sci. 2024, 14(20), 9386; https://doi.org/10.3390/app14209386 - 15 Oct 2024
Viewed by 476
Abstract
Dense urban environments pose significant challenges when it comes to detecting and measuring crowd size due to their nature of being free-flow environments containing many dynamic factors. In this paper, we use a wireless sensor network (WSN) to perform device-free crowd size estimation [...] Read more.
Dense urban environments pose significant challenges when it comes to detecting and measuring crowd size due to their nature of being free-flow environments containing many dynamic factors. In this paper, we use a wireless sensor network (WSN) to perform device-free crowd size estimation in a subway station. Our sensing solution uses the change in attenuation of the communication links between sensor nodes to estimate the number of people standing on the platform. In order to achieve this, we use the same attenuation information coming from the WSN to detect the presence of a rail vehicle in the station and compensate for the channel fading caused by the introduced rail vehicle. We make use of two separately trained regression models depending on the presence or absence of a rail vehicle to estimate the people count. The detection of rail vehicles occurred with a near-perfect accuracy. When evaluating the resulting estimation model on our test set, we achieved a mean average error of 3.567 people, which is a significant improvement over 6.192 people when using a single regression model. This demonstrates that device-free sensing technologies can be successfully implemented in dynamic environments by implementing detection techniques and using different regression models depending on the environment’s state. Full article
(This article belongs to the Special Issue Advanced Applications of Wireless Sensor Network (WSN))
Show Figures

Figure 1

21 pages, 4833 KiB  
Article
Remote Sensing and Assessment of Compound Groundwater Flooding Using an End-to-End Wireless Environmental Sensor Network and Data Model at a Coastal Cultural Heritage Site in Portsmouth, NH
by Michael R. Routhier, Benjamin R. Curran, Cynthia H. Carlson and Taylor A. Goddard
Sensors 2024, 24(20), 6591; https://doi.org/10.3390/s24206591 - 13 Oct 2024
Viewed by 692
Abstract
The effects of climate change in the forms of rising sea levels and increased frequency of storms and storm surges are being noticed across many coastal communities around the United States. These increases are impacting the timing and frequency of tidal and rainfall [...] Read more.
The effects of climate change in the forms of rising sea levels and increased frequency of storms and storm surges are being noticed across many coastal communities around the United States. These increases are impacting the timing and frequency of tidal and rainfall influenced compound groundwater flooding events. These types of events can be exemplified by the recent and ongoing occurrence of groundwater flooding within building basements at the historic Strawbery Banke Museum (SBM) living history campus in Portsmouth, New Hampshire. Fresh water and saline groundwater intrusion within basements of historic structures can be destructive to foundations, mortar, joists, fasteners, and the overlaying wood structure. Although this is the case, there appears to be a dearth of research that examines the use of wireless streaming sensor networks to monitor and assess groundwater inundation within historic buildings in near-real time. Within the current study, we designed and deployed a three-sensor latitudinal network at the SBM. This network includes the deployment and remote monitoring of water level sensors in the basements of two historic structures 120 and 240 m from the river, as well as one sensor within the river itself. Groundwater salinity levels were also monitored within the basements of the two historic buildings. Assessments and model results from the recorded sensor data provided evidence of both terrestrial rainfall and tidal influences on the flooding at SBM. Understanding the sources of compound flooding within historic buildings can allow site managers to mitigate better and adapt to the effects of current and future flooding events. Data and results of this work are available via the project’s interactive webpage and through a public touchscreen kiosk interface developed for and deployed within the SBM Rowland Gallery’s “Water Has a Memory” exhibit. Full article
Show Figures

Figure 1

12 pages, 5721 KiB  
Article
Realizing Multi-Parameter Measurement Using PT-Symmetric LC Sensors
by Bin-Bin Zhou, Dan Chen, Chi Zhang and Lei Dong
Sensors 2024, 24(20), 6570; https://doi.org/10.3390/s24206570 - 12 Oct 2024
Viewed by 396
Abstract
With the rapid development in sensor network technology, the complexity and diversity of application scenarios have put forward more and more new requirements for inductor–capacitor (LC) sensors, for instance, multi-parameter simultaneous monitoring. Here, the parity–time (PT) symmetry concept in quantum mechanics [...] Read more.
With the rapid development in sensor network technology, the complexity and diversity of application scenarios have put forward more and more new requirements for inductor–capacitor (LC) sensors, for instance, multi-parameter simultaneous monitoring. Here, the parity–time (PT) symmetry concept in quantum mechanics is applied to LC passive wireless sensing. Two or even three parameters can be monitored simultaneously by observing the frequency response of the reflection coefficient at the end of the readout circuit. In particular, for three-parameter detection, a novel detection method is studied to extract the three resonant frequencies of the system through the phase–frequency characteristics of the reflection coefficient, which has never appeared in the previous literature on PT symmetry. The changes in three resonant frequencies are in response to changes in the three parameters in the environment. We show theoretically and demonstrate experimentally that the PT-symmetric LC sensor can realize multi-parameter measurement using a series LCR circuit as the sensor and a symmetric adjustable LCR circuit as the readout circuit. Our work paves the way for applying PT symmetry in multi-parameter detection. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 4342 KiB  
Review
A Survey on Data-Driven Approaches for Reliability, Robustness, and Energy Efficiency in Wireless Body Area Networks
by Pulak Majumdar, Satyaki Roy, Sudipta Sikdar, Preetam Ghosh and Nirnay Ghosh
Sensors 2024, 24(20), 6531; https://doi.org/10.3390/s24206531 - 10 Oct 2024
Viewed by 670
Abstract
Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time [...] Read more.
Wireless Body Area Networks (WBANs) are pivotal in health care and wearable technologies, enabling seamless communication between miniature sensors and devices on or within the human body. These biosensors capture critical physiological parameters, ranging from body temperature and blood oxygen levels to real-time electrocardiogram readings. However, WBANs face significant challenges during and after deployment, including energy conservation, security, reliability, and failure vulnerability. Sensor nodes, which are often battery-operated, expend considerable energy during sensing and transmission due to inherent spatiotemporal patterns in biomedical data streams. This paper provides a comprehensive survey of data-driven approaches that address these challenges, focusing on device placement and routing, sampling rate calibration, and the application of machine learning (ML) and statistical learning techniques to enhance network performance. Additionally, we validate three existing models (statistical, ML, and coding-based models) using two real datasets, namely the MIMIC clinical database and biomarkers collected from six subjects with a prototype biosensing device developed by our team. Our findings offer insights into strategies for optimizing energy efficiency while ensuring security and reliability in WBANs. We conclude by outlining future directions to leverage approaches to meet the evolving demands of healthcare applications. Full article
(This article belongs to the Special Issue Wearable Sensors for Physical Activity Monitoring and Motion Control)
Show Figures

Figure 1

Back to TopTop