Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,953)

Search Parameters:
Keywords = visual content

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6263 KiB  
Article
Implementation and Evaluation of Walk-in-Place Using a Low-Cost Motion-Capture Device for Virtual Reality Applications
by Rawoo Shin, Bogyu Choi, Sang-Min Choi and Suwon Lee
Sensors 2024, 24(9), 2848; https://doi.org/10.3390/s24092848 - 30 Apr 2024
Viewed by 901
Abstract
Virtual reality (VR) is used in many fields, including entertainment, education, training, and healthcare, because it allows users to experience challenging and dangerous situations that may be impossible in real life. Advances in head-mounted display technology have enhanced visual immersion, offering content that [...] Read more.
Virtual reality (VR) is used in many fields, including entertainment, education, training, and healthcare, because it allows users to experience challenging and dangerous situations that may be impossible in real life. Advances in head-mounted display technology have enhanced visual immersion, offering content that closely resembles reality. However, several factors can reduce VR immersion, particularly issues with the interactions in the virtual world, such as locomotion. Additionally, the development of locomotion technology is occurring at a moderate pace. Continuous research is being conducted using hardware such as treadmills, and motion tracking using depth cameras, but they are costly and space-intensive. This paper presents a walk-in-place (WIP) algorithm that uses Mocopi, a low-cost motion-capture device, to track user movements in real time. Additionally, its feasibility for VR applications was evaluated by comparing its performance with that of a treadmill using the absolute trajectory error metric and survey data collected from human participants. The proposed WIP algorithm with low-cost Mocopi exhibited performance similar to that of the high-cost treadmill, with significantly positive results for spatial awareness. This study is expected to contribute to solving the issue of spatial constraints when experiencing infinite virtual spaces. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

11 pages, 22882 KiB  
Article
Eye-Tracking and Visual Preference: Maybe Beauty Is in the Eye of the Beholder?
by Patrick A. Miller
Land 2024, 13(5), 598; https://doi.org/10.3390/land13050598 - 29 Apr 2024
Viewed by 638
Abstract
The “Content-Identifying Methodology”, or CIM, is an approach developed by environmental psychologists Rachel and Stephen Kaplan to understand the landscape characteristics that people find visually attractive. The Kaplans did this by surveying people’s landscape preferences and then analyzing the preferences to develop sets [...] Read more.
The “Content-Identifying Methodology”, or CIM, is an approach developed by environmental psychologists Rachel and Stephen Kaplan to understand the landscape characteristics that people find visually attractive. The Kaplans did this by surveying people’s landscape preferences and then analyzing the preferences to develop sets of landscape scenes to which people reacted in a similar pattern. The underlying assumption is that a common stimulus or content exists in the photographs of a set responsible for the preference. However, identifying the common stimulus or content in each set or grouping of scenes and how it affects preference can still be challenging. Eye-tracking is a tool that can identify what the survey participants were looking at when indicating their preference for a landscape. This paper demonstrates how eye-tracking was used in two different landscape preference studies to identify the content important to people’s preferences and provide insights into how the content affected preference. Eye-tracking can help identify a common stimulus, help determine if the stimulus is a physical or spatial characteristic of the landscape, and show how the stimulus varies in different landscape contexts. Full article
Show Figures

Figure 1

30 pages, 6877 KiB  
Article
Hyperfidelis: A Software Toolkit to Empower Precision Agriculture with GeoAI
by Vasit Sagan, Roberto Coral, Sourav Bhadra, Haireti Alifu, Omar Al Akkad, Aviskar Giri and Flavio Esposito
Remote Sens. 2024, 16(9), 1584; https://doi.org/10.3390/rs16091584 - 29 Apr 2024
Viewed by 973
Abstract
The potential of artificial intelligence (AI) and machine learning (ML) in agriculture for improving crop yields and reducing the use of water, fertilizers, and pesticides remains a challenge. The goal of this work was to introduce Hyperfidelis, a geospatial software package that provides [...] Read more.
The potential of artificial intelligence (AI) and machine learning (ML) in agriculture for improving crop yields and reducing the use of water, fertilizers, and pesticides remains a challenge. The goal of this work was to introduce Hyperfidelis, a geospatial software package that provides a comprehensive workflow that includes imagery visualization, feature extraction, zonal statistics, and modeling of key agricultural traits including chlorophyll content, yield, and leaf area index in a ML framework that can be used to improve food security. The platform combines a user-friendly graphical user interface with cutting-edge machine learning techniques, bridging the gap between plant science, agronomy, remote sensing, and data science without requiring users to possess any coding knowledge. Hyperfidelis offers several data engineering and machine learning algorithms that can be employed without scripting, which will prove essential in the plant science community. Full article
(This article belongs to the Section Biogeosciences Remote Sensing)
Show Figures

Figure 1

11 pages, 1515 KiB  
Article
K-WISC-V Processing Speed Index Analysis to Verify the Effectiveness of ADHD Symptom Improvement Using Pediatric Digital Content
by Seon-Chil Kim
Appl. Sci. 2024, 14(9), 3792; https://doi.org/10.3390/app14093792 - 29 Apr 2024
Viewed by 652
Abstract
The most common treatment approach for children diagnosed with attention deficit hyperactivity disorder (ADHD) involves drug therapy; however, persuading parents and motivating children in the early stages of treatment is challenging. Consequently, there is a growing interest among parents of children with ADHD [...] Read more.
The most common treatment approach for children diagnosed with attention deficit hyperactivity disorder (ADHD) involves drug therapy; however, persuading parents and motivating children in the early stages of treatment is challenging. Consequently, there is a growing interest among parents of children with ADHD in non-drug therapies. Moreover, recent advancements in information and communication technology have increased the accessibility of digital treatments for ADHD and non-drug therapy content. However, some challenges persist in confirming specific and objective effects. In this retrospective study, we developed game-type digital therapy content for children aged 6–16 years and monitored improvements in ADHD symptoms using the K-WISC-V subtest processing speed index. The analysis revealed that the rate of change in the sum of converted scores on the 14th day was 0.64% lower in the experimental group compared with the control group; however, on the 28th day, the rate of change increased by 6.93%. This suggests that the supplementary use of Neuroworld DTx therapy proved effective for visual enhancement. Furthermore, improvements were observed in visual discrimination, short-term memory, and motor cooperation abilities. Consequently, game-based digital content is an effective adjunctive therapy for children dealing with ADHD. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

22 pages, 26369 KiB  
Article
Seedling-YOLO: High-Efficiency Target Detection Algorithm for Field Broccoli Seedling Transplanting Quality Based on YOLOv7-Tiny
by Tengfei Zhang, Jinhao Zhou, Wei Liu, Rencai Yue, Mengjiao Yao, Jiawei Shi and Jianping Hu
Agronomy 2024, 14(5), 931; https://doi.org/10.3390/agronomy14050931 - 28 Apr 2024
Viewed by 953
Abstract
The rapid and accurate detection of broccoli seedling planting quality is crucial for the implementation of robotic intelligent field management. However, existing algorithms often face issues of false detections and missed detections when identifying the categories of broccoli planting quality. For instance, the [...] Read more.
The rapid and accurate detection of broccoli seedling planting quality is crucial for the implementation of robotic intelligent field management. However, existing algorithms often face issues of false detections and missed detections when identifying the categories of broccoli planting quality. For instance, the similarity between the features of broccoli root balls and soil, along with the potential for being obscured by leaves, leads to false detections of “exposed seedlings”. Additionally, features left by the end effector resemble the background, making the detection of the “missed hills” category challenging. Moreover, existing algorithms require substantial computational resources and memory. To address these challenges, we developed Seedling-YOLO, a deep-learning model dedicated to the visual detection of broccoli planting quality. Initially, we designed a new module, the Efficient Layer Aggregation Networks-Pconv (ELAN_P), utilizing partial convolution (Pconv). This module serves as the backbone feature extraction network, effectively reducing redundant calculations. Furthermore, the model incorporates the Content-aware ReAssembly of Features (CARAFE) and Coordinate Attention (CA), enhancing its focus on the long-range spatial information of challenging-to-detect samples. Experimental results demonstrate that our Seedling-YOLO model outperforms YOLOv4-tiny, YOLOv5s, YOLOv7-tiny, and YOLOv7 in terms of speed and precision, particularly in detecting ‘exposed seedlings’ and ‘missed hills’-key categories impacting yield, with Average Precision (AP) values of 94.2% and 92.2%, respectively. The model achieved a mean Average Precision of 0.5 ([email protected]) of 94.3% and a frame rate of 29.7 frames per second (FPS). In field tests conducted with double-row vegetable ridges at a plant spacing of 0.4 m and robot speed of 0.6 m/s, Seedling-YOLO exhibited optimal efficiency and precision. It achieved an actual detection precision of 93% and a detection efficiency of 180 plants/min, meeting the requirements for real-time and precise detection. This model can be deployed on seedling replenishment robots, providing a visual solution for robots, thereby enhancing vegetable yield. Full article
Show Figures

Figure 1

9 pages, 3685 KiB  
Article
Build Deep Neural Network Models to Detect Common Edible Nuts from Photos and Estimate Nutrient Portfolio
by Ruopeng An, Joshua M. Perez-Cruet, Xi Wang and Yuyi Yang
Nutrients 2024, 16(9), 1294; https://doi.org/10.3390/nu16091294 - 26 Apr 2024
Viewed by 828
Abstract
Nuts are nutrient-dense foods and can be incorporated into a healthy diet. Artificial intelligence-powered diet-tracking apps may promote nut consumption by providing real-time, accurate nutrition information but depend on data and model availability. Our team developed a dataset comprising 1380 photographs, each in [...] Read more.
Nuts are nutrient-dense foods and can be incorporated into a healthy diet. Artificial intelligence-powered diet-tracking apps may promote nut consumption by providing real-time, accurate nutrition information but depend on data and model availability. Our team developed a dataset comprising 1380 photographs, each in RGB color format and with a resolution of 4032 × 3024 pixels. These images feature 11 types of nuts that are commonly consumed. Each photo includes three nut types; each type consists of 2–4 nuts, so 6–9 nuts are in each image. Rectangular bounding boxes were drawn using a visual geometry group (VGG) image annotator to facilitate the identification of each nut, delineating their locations within the images. This approach renders the dataset an excellent resource for training models capable of multi-label classification and object detection, as it was meticulously divided into training, validation, and test subsets. Utilizing transfer learning in Python with the IceVision framework, deep neural network models were adeptly trained to recognize and pinpoint the nuts depicted in the photographs. The ultimate model exhibited a mean average precision of 0.7596 in identifying various nut types within the validation subset and demonstrated a 97.9% accuracy rate in determining the number and kinds of nuts present in the test subset. By integrating specific nutritional data for each type of nut, the model can precisely (with error margins ranging from 0.8 to 2.6%) calculate the combined nutritional content—encompassing total energy, proteins, carbohydrates, fats (total and saturated), fiber, vitamin E, and essential minerals like magnesium, phosphorus, copper, manganese, and selenium—of the nuts shown in a photograph. Both the dataset and the model have been made publicly available to foster data exchange and the spread of knowledge. Our research underscores the potential of leveraging photographs for automated nut calorie and nutritional content estimation, paving the way for the creation of dietary tracking applications that offer real-time, precise nutritional insights to encourage nut consumption. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

20 pages, 4604 KiB  
Article
Full-Process Adaptive Encoding and Decoding Framework for Remote Sensing Images Based on Compression Sensing
by Huiling Hu, Chunyu Liu, Shuai Liu, Shipeng Ying, Chen Wang and Yi Ding
Remote Sens. 2024, 16(9), 1529; https://doi.org/10.3390/rs16091529 - 26 Apr 2024
Viewed by 610
Abstract
Faced with the problem of incompatibility between traditional information acquisition mode and spaceborne earth observation tasks, starting from the general mathematical model of compressed sensing, a theoretical model of block compressed sensing was established, and a full-process adaptive coding and decoding compressed sensing [...] Read more.
Faced with the problem of incompatibility between traditional information acquisition mode and spaceborne earth observation tasks, starting from the general mathematical model of compressed sensing, a theoretical model of block compressed sensing was established, and a full-process adaptive coding and decoding compressed sensing framework for remote sensing images was proposed, which includes five parts: mode selection, feature factor extraction, adaptive shape segmentation, adaptive sampling rate allocation and image reconstruction. Unlike previous semi-adaptive or local adaptive methods, the advantages of the adaptive encoding and decoding method proposed in this paper are mainly reflected in four aspects: (1) Ability to select encoding modes based on image content, and maximizing the use of the richness of the image to select appropriate sampling methods; (2) Capable of utilizing image texture details for adaptive segmentation, effectively separating complex and smooth regions; (3) Being able to detect the sparsity of encoding blocks and adaptively allocate sampling rates to fully explore the compressibility of images; (4) The reconstruction matrix can be adaptively selected based on the size of the encoding block to alleviate block artifacts caused by non-stationary characteristics of the image. Experimental results show that the method proposed in this article has good stability for remote sensing images with complex edge textures, with the peak signal-to-noise ratio and structural similarity remaining above 35 dB and 0.8. Moreover, especially for ocean images with relatively simple image content, when the sampling rate is 0.26, the peak signal-to-noise ratio reaches 50.8 dB, and the structural similarity is 0.99. In addition, the recovered images have the smallest BRISQUE value, with better clarity and less distortion. In the subjective aspect, the reconstructed image has clear edge details and good reconstruction effect, while the block effect is effectively suppressed. The framework designed in this paper is superior to similar algorithms in both subjective visual and objective evaluation indexes, which is of great significance for alleviating the incompatibility between traditional information acquisition methods and satellite-borne earth observation missions. Full article
Show Figures

Figure 1

21 pages, 20175 KiB  
Article
From Cell Populations to Molecular Complexes: Multiplexed Multimodal Microscopy to Explore p53-53BP1 Molecular Interaction
by Simone Pelicci, Laura Furia, Pier Giuseppe Pelicci and Mario Faretta
Int. J. Mol. Sci. 2024, 25(9), 4672; https://doi.org/10.3390/ijms25094672 - 25 Apr 2024
Viewed by 966
Abstract
Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel [...] Read more.
Surpassing the diffraction barrier revolutionized modern fluorescence microscopy. However, intrinsic limitations in statistical sampling, the number of simultaneously analyzable channels, hardware requirements, and sample preparation procedures still represent an obstacle to its widespread diffusion in applicative biomedical research. Here, we present a novel pipeline based on automated multimodal microscopy and super-resolution techniques employing easily available materials and instruments and completed with open-source image-analysis software developed in our laboratory. The results show the potential impact of single-molecule localization microscopy (SMLM) on the study of biomolecules’ interactions and the localization of macromolecular complexes. As a demonstrative application, we explored the basis of p53-53BP1 interactions, showing the formation of a putative macromolecular complex between the two proteins and the basal transcription machinery in situ, thus providing visual proof of the direct role of 53BP1 in sustaining p53 transactivation function. Moreover, high-content SMLM provided evidence of the presence of a 53BP1 complex on the cell cytoskeleton and in the mitochondrial space, thus suggesting the existence of novel alternative 53BP1 functions to support p53 activity. Full article
Show Figures

Figure 1

25 pages, 13896 KiB  
Article
A New Generation of Collaborative Immersive Analytics on the Web: Open-Source Services to Capture, Process and Inspect Users’ Sessions in 3D Environments
by Bruno Fanini and Giorgio Gosti
Future Internet 2024, 16(5), 147; https://doi.org/10.3390/fi16050147 - 25 Apr 2024
Cited by 1 | Viewed by 1090
Abstract
Recording large amounts of users’ sessions performed through 3D applications may provide crucial insights into interaction patterns. Such data can be captured from interactive experiences in public exhibits, remote motion tracking equipment, immersive XR devices, lab installations or online web applications. Immersive analytics [...] Read more.
Recording large amounts of users’ sessions performed through 3D applications may provide crucial insights into interaction patterns. Such data can be captured from interactive experiences in public exhibits, remote motion tracking equipment, immersive XR devices, lab installations or online web applications. Immersive analytics (IA) deals with the benefits and challenges of using immersive environments for data analysis and related design solutions to improve the quality and efficiency of the analysis process. Today, web technologies allow us to craft complex applications accessible through common browsers, and APIs like WebXR allow us to interact with and explore virtual 3D environments using immersive devices. These technologies can be used to access rich, immersive spaces but present new challenges related to performance, network bottlenecks and interface design. WebXR IA tools are still quite new in the literature: they present several challenges and leave quite unexplored the possibility of synchronous collaborative inspection. The opportunity to share the virtual space with remote analysts in fact improves sense-making tasks and offers new ways to discuss interaction patterns together, while inspecting captured records or data aggregates. Furthermore, with proper collaborative approaches, analysts are able to share machine learning (ML) pipelines and constructively discuss the outcomes and insights through tailored data visualization, directly inside immersive 3D spaces, using a web browser. Under the H2IOSC project, we present the first results of an open-source pipeline involving tools and services aimed at capturing, processing and inspecting interactive sessions collaboratively in WebXR with other analysts. The modular pipeline can be easily deployed in research infrastructures (RIs), remote dedicated hubs or local scenarios. The developed WebXR immersive analytics tool specifically offers advanced features for volumetric data inspection, query, annotation and discovery, alongside spatial interfaces. We assess the pipeline through users’ sessions captured during two remote public exhibits, by a WebXR application presenting generative AI content to visitors. We deployed the pipeline to assess the different services and to better understand how people interact with generative AI environments. The obtained results can be easily adopted for a multitude of case studies, interactive applications, remote equipment or online applications, to support or accelerate the detection of interaction patterns among remote analysts collaborating in the same 3D space. Full article
Show Figures

Figure 1

19 pages, 11263 KiB  
Article
Inter-Channel Correlation Modeling and Improved Skewed Histogram Shifting for Reversible Data Hiding in Color Images
by Dan He, Zhanchuan Cai, Dujuan Zhou and Zhihui Chen
Mathematics 2024, 12(9), 1283; https://doi.org/10.3390/math12091283 - 24 Apr 2024
Viewed by 550
Abstract
Reversible data hiding (RDH) is an advanced data protection technology that allows the embedding of additional information into an original digital medium while maintaining its integrity. Color images are typical carriers for information because of their rich data content, making them suitable for [...] Read more.
Reversible data hiding (RDH) is an advanced data protection technology that allows the embedding of additional information into an original digital medium while maintaining its integrity. Color images are typical carriers for information because of their rich data content, making them suitable for data embedding. Compared to grayscale images, color images with their three color channels (RGB) enhance data embedding capabilities while increasing algorithmic complexity. When implementing RDH in color images, researchers often exploit the inter-channel correlation to enhance embedding efficiency and minimize the impact on image visual quality. This paper proposes a novel RDH method for color images based on inter-channel correlation modeling and improved skewed histogram shifting. Initially, we construct an inter-channel correlation model based on the relationship among the RGB channels. Subsequently, an extended method for calculating the local complexity of pixels is proposed. Then, we adaptively select the pixel prediction context and design three types of extreme predictors. The improved skewed histogram shifting method is utilized for data embedding and extraction. Finally, experiments conducted on the USC-SIPI and Kodak datasets validate the superiority of our proposed method in terms of image fidelity. Full article
(This article belongs to the Special Issue Advanced Research on Information System Security and Privacy)
Show Figures

Figure 1

17 pages, 2524 KiB  
Article
Development, Validation, and Application of High-Performance Liquid Chromatography with Diode-Array Detection Method for Simultaneous Determination of Ginkgolic Acids and Ginkgols in Ginkgo biloba
by Isaac Duah Boateng, Fengnan Li and Xiao-Ming Yang
Foods 2024, 13(8), 1250; https://doi.org/10.3390/foods13081250 - 19 Apr 2024
Cited by 1 | Viewed by 728
Abstract
Ginkgo biloba leaves (GBLs), which comprise many phytoconstituents, also contain a toxic substance named ginkgolic acid (GA). Our previous research showed that heating could decarboxylate and degrade GA into ginkgols with high levels of bioactivity. Several methods are available to measure GA in [...] Read more.
Ginkgo biloba leaves (GBLs), which comprise many phytoconstituents, also contain a toxic substance named ginkgolic acid (GA). Our previous research showed that heating could decarboxylate and degrade GA into ginkgols with high levels of bioactivity. Several methods are available to measure GA in GBLs, but no analytical method has been developed to measure ginkgols and GA simultaneously. Hence, for the first time, an HPLC-DAD method was established to simultaneously determine GA and ginkgols using acetonitrile (0.01% trifluoroacetic acid, v/v) as mobile phase A and water (0.01% trifluoroacetic acid, v/v) as mobile phase B. The gradient elution conditions were: 0–30 min, 75–90% phase A; 30–35 min, 90–90% phase A; 35–36 min, 90–75% phase A; 36–46 min, 75–75% phase A. The detection wavelength of GA and ginkgol were 210 and 270 nm, respectively. The flow rate and injection volume were 1.0 mL/min and 50 μL, respectively. The linearity was excellent (R2 > 0.999), and the RSD of the precision, stability, and repeatability of the total ginkgols was 0.20%, 2.21%, and 2.45%, respectively, in six parallel determinations. The recoveries for the low, medium, and high groups were 96.58%, 97.67%, and 101.52%, respectively. The limit of detection of ginkgol C13:0, C15:1, and C17:1 was 0.61 ppm, 0.50 ppm, and 0.06 ppm, respectively. The limit of quantification of ginkgol C13:0, C15:1, and C17:1 was 2.01 ppm, 1.65 ppm, and 0.20 ppm, respectively. Finally, this method accurately measured the GA and ginkgol content in ginkgo leaves and ginkgo tea products (ginkgo black tea, ginkgo dark tea, ginkgo white tea, and ginkgo green tea), whereas principal component analysis (PCA) was performed to help visualize the association between GA and ginkgols and five different processing methods for GBLs. Thus, this research provides an efficient and accurate quantitative method for the subsequent detection of GA and ginkgols in ginkgo tea. Full article
(This article belongs to the Topic Advances in Analysis of Food and Beverages)
Show Figures

Figure 1

18 pages, 2712 KiB  
Article
TL-YOLO: Foreign-Object Detection on Power Transmission Line Based on Improved Yolov8
by Yeqin Shao, Ruowei Zhang, Chang Lv, Zexing Luo and Meiqin Che
Electronics 2024, 13(8), 1543; https://doi.org/10.3390/electronics13081543 - 18 Apr 2024
Cited by 3 | Viewed by 1272
Abstract
Foreign objects on power transmission lines carry a significant risk of triggering large-scale power interruptions which may have serious consequences for daily life if they are not detected and handled in time. To accurately detect foreign objects on power transmission lines, this paper [...] Read more.
Foreign objects on power transmission lines carry a significant risk of triggering large-scale power interruptions which may have serious consequences for daily life if they are not detected and handled in time. To accurately detect foreign objects on power transmission lines, this paper proposes a TL-Yolo method based on the Yolov8 framework. Firstly, we design a full-dimensional dynamic convolution (ODConv) module as a backbone network to enhance the feature extraction capability, thus retaining richer semantic content and important visual features. Secondly, we present a feature fusion framework combining a weighted bidirectional feature pyramid network (BiFPN) and multiscale attention (MSA) module to mitigate the degradation effect of multiscale feature representation in the fusion process, and efficiently capture the high-level feature information and the core visual elements. Thirdly, we utilize a lightweight GSConv cross-stage partial network (GSCSP) to facilitate efficient cross-level feature fusion, significantly reducing the complexity and computation of the model. Finally, we employ the adaptive training sample selection (ATSS) strategy to balance the positive and negative samples, and dynamically adjust the selection process of the training samples according to the current state and performance of the model, thus effectively reducing the object misdetection and omission. The experimental results show that the average detection accuracy of the TL-Yolo method reaches 91.30%, which is 4.20% higher than that of the Yolov8 method. Meanwhile, the precision and recall metrics of our method are 4.64% and 3.53% higher than those of Yolov8. The visualization results also show the superior detection performance of the TL-Yolo algorithm in real scenes. Compared with the state-of-the-art methods, our method achieves higher accuracy and speed in the detection of foreign objects on power transmission lines. Full article
Show Figures

Figure 1

16 pages, 1753 KiB  
Article
Sustainable Environmental Communication Project: Eco-Friendly and Sensory Materials for Museums
by Cristiana Cellucci and Teresa Villani
Sustainability 2024, 16(8), 3358; https://doi.org/10.3390/su16083358 - 17 Apr 2024
Viewed by 800
Abstract
In the context of large museum centers, numerous national and international methodological experiments show the need to consider, in wayfinding design, both the intangible issues of experience arising from perception and involvement (user-centered design), and social and environmental issues (environment-centered design). The aim [...] Read more.
In the context of large museum centers, numerous national and international methodological experiments show the need to consider, in wayfinding design, both the intangible issues of experience arising from perception and involvement (user-centered design), and social and environmental issues (environment-centered design). The aim of this research is to propose a tool for organizing integrated information on so-called smart materials that takes both perspectives into account. This study was performed by conducting a two-phase systematic literature and library review of materials. Specifically, 63 scientific articles—selected by keywords, publication date and content—and 7 national and international material libraries were investigated. The investigation highlighted how the sensory characteristics of wayfinding materials in museums are treated separately from the environmental characteristics and how the quality of the technical information of the materials filed in the material libraries could be improved. The result of the research concerns the structuring of a ‘standard sheet’ for the cataloguing of materials that integrates technical (sensory and environmental) information while also offering a contextualization of the material within wayfinding application cases in known museums. The proposed tool facilitates designers in the selection of materials to be adopted in the wayfinding project, offering information both on their ability to offer alternative communication channels in response to different users’ sense–perceptual functioning and on their quantitative environmental impact properties. This study conducted through the integration of different multidisciplinary fields (technological approach to design, inclusive design, environmental psychology, material science, visual communication, environmental protection related to people’s well-being) offers a significant contribution in the context of museum wayfinding design, providing stakeholders with practical tools to select materials that promote inclusion and sustainability. Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

15 pages, 2038 KiB  
Article
McmIQA: Multi-Module Collaborative Model for No-Reference Image Quality Assessment
by Han Miao and Qingbing Sang
Mathematics 2024, 12(8), 1185; https://doi.org/10.3390/math12081185 - 15 Apr 2024
Viewed by 626
Abstract
No reference image quality assessment is a technique that uses computers to simulate the human visual system and automatically evaluate the perceived quality of images. In recent years, with the widespread success of deep learning in the field of computer vision, many end-to-end [...] Read more.
No reference image quality assessment is a technique that uses computers to simulate the human visual system and automatically evaluate the perceived quality of images. In recent years, with the widespread success of deep learning in the field of computer vision, many end-to-end image quality assessment algorithms based on deep learning have emerged. However, unlike other computer vision tasks that focus on image content, an excellent image quality assessment model should simultaneously consider distortions in the image and comprehensively evaluate their relationships. Motivated by this, we propose a Multi-module Collaborative Model for Image Quality Assessment (McmIQA). The image quality assessment is divided into three subtasks: distortion perception, content recognition, and correlation mapping. And specific modules are constructed for each subtask: the distortion perception module, the content recognition module, and the correlation mapping module. Specifically, we apply two contrastive learning frameworks on two constructed datasets to train the distortion perception module and the content recognition module to extract two types of features from the image. Subsequently, using these extracted features as input, we employ a ranking loss to train the correlation mapping module to predict image quality on image quality assessment datasets. Extensive experiments conducted on seven relevant datasets demonstrated that the proposed method achieves state-of-the-art performance in both synthetic distortion and natural distortion image quality assessment tasks. Full article
(This article belongs to the Section Mathematics and Computer Science)
Show Figures

Figure 1

25 pages, 924 KiB  
Article
Graph-Based Interpretability for Fake News Detection through Topic- and Propagation-Aware Visualization
by Kayato Soga, Soh Yoshida and Mitsuji Muneyasu
Computation 2024, 12(4), 82; https://doi.org/10.3390/computation12040082 - 15 Apr 2024
Viewed by 1295
Abstract
In the context of the increasing spread of misinformation via social network services, in this study, we addressed the critical challenge of detecting and explaining the spread of fake news. Early detection methods focused on content analysis, whereas recent approaches have exploited the [...] Read more.
In the context of the increasing spread of misinformation via social network services, in this study, we addressed the critical challenge of detecting and explaining the spread of fake news. Early detection methods focused on content analysis, whereas recent approaches have exploited the distinctive propagation patterns of fake news to analyze network graphs of news sharing. However, these accurate methods lack accountability and provide little insight into the reasoning behind their classifications. We aimed to fill this gap by elucidating the structural differences in the spread of fake and real news, with a focus on opinion consensus within these structures. We present a novel method that improves the interpretability of graph-based propagation detectors by visualizing article topics and propagation structures using BERTopic for topic classification and analyzing the effect of topic agreement on propagation patterns. By applying this method to a real-world dataset and conducting a comprehensive case study, we not only demonstrated the effectiveness of the method in identifying characteristic propagation paths but also propose new metrics for evaluating the interpretability of the detection methods. Our results provide valuable insights into the structural behavior and patterns of news propagation, contributing to the development of more transparent and explainable fake news detection systems. Full article
(This article belongs to the Special Issue Computational Social Science and Complex Systems)
Show Figures

Figure 1

Back to TopTop