Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (21,411)

Search Parameters:
Keywords = in situ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1379 KiB  
Review
Evolution and Innovations in Bone Marrow Cellular Therapy for Musculoskeletal Disorders: Tracing the Historical Trajectory and Contemporary Advances
by José Fábio Lana, Gabriela Caponero de Brito, André Kruel, Benjamim Brito, Gabriel Silva Santos, Carolina Caliari, Francesca Salamanna, Maria Sartori, Giovanni Barbanti Brodano, Fábio Ramos Costa, Madhan Jeyaraman, Ignácio Dallo, Pedro Bernaldez, Joseph Purita, Marco Antonio Percope de Andrade and Peter Albert Everts
Bioengineering 2024, 11(10), 979; https://doi.org/10.3390/bioengineering11100979 - 28 Sep 2024
Viewed by 717
Abstract
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone [...] Read more.
Bone marrow cellular therapy has undergone a remarkable evolution, significantly impacting the treatment of musculoskeletal disorders. This review traces the historical trajectory from early mythological references to contemporary scientific advancements. The groundbreaking work of Friedenstein in 1968, identifying fibroblast colony-forming cells in bone marrow, laid the foundation for future studies. Caplan’s subsequent identification of mesenchymal stem cells (MSCs) in 1991 highlighted their differentiation potential and immunomodulatory properties, establishing them as key players in regenerative medicine. Contemporary research has focused on refining techniques for isolating and applying bone marrow-derived MSCs. These cells have shown promise in treating conditions like osteonecrosis, osteoarthritis, and tendon injuries thanks to their ability to promote tissue repair, modulate immune responses, and enhance angiogenesis. Clinical studies have demonstrated significant improvements in pain relief, functional recovery, and tissue regeneration. Innovations such as the ACH classification system and advancements in bone marrow aspiration methods have standardized practices, improving the consistency and efficacy of these therapies. Recent clinical trials have validated the therapeutic potential of bone marrow-derived products, highlighting their advantages in both surgical and non-surgical applications. Studies have shown that MSCs can reduce inflammation, support bone healing, and enhance cartilage repair. However, challenges remain, including the need for rigorous characterization of cell populations and standardized reporting in clinical trials. Addressing these issues is crucial for advancing the field and ensuring the reliable application of these therapies. Looking ahead, future research should focus on integrating bone marrow-derived products with other regenerative techniques and exploring non-surgical interventions. The continued innovation and refinement of these therapies hold promise for revolutionizing the treatment of musculoskeletal disorders, offering improved patient outcomes, and advancing the boundaries of medical science. Full article
(This article belongs to the Special Issue Innovations in Regenerative Therapy: Cell and Cell-Free Approaches)
Show Figures

Figure 1

19 pages, 15275 KiB  
Article
Synthesis and Characterization of Recycled-TiC Reinforced AlZnMgCu Powder Metallurgy Composites
by Keerthivasan Navaneethakrishnan, Anandakrishnan Veeramani, Bharat Kumar Chigilipalli and Muralimohan Cheepu
Materials 2024, 17(19), 4773; https://doi.org/10.3390/ma17194773 - 28 Sep 2024
Viewed by 487
Abstract
Recycling’s value in conserving scarce resources, avoiding environmental damage to the land, and reducing energy consumption is well known. This research aims to develop a composite that uses recycled reinforcement that was formed through an in situ method to build confidence in the [...] Read more.
Recycling’s value in conserving scarce resources, avoiding environmental damage to the land, and reducing energy consumption is well known. This research aims to develop a composite that uses recycled reinforcement that was formed through an in situ method to build confidence in the usage of recycled materials. Thus, in connection with defense and aerospace industry applications, aluminum composite alloys receive more interest due to their light weight and high strength with improved mechanical properties; therefore, this research focuses on the fabrication of in situ-developed recycled TiC (r-TiC)-reinforced AlZnMgCu composites, i.e., new recycled materials. Experiments were conducted to determine the synthesized composites’ microstructural, mechanical, tribological, and corrosion properties. The microstructural study showed that r-TiC was distributed uniformly along the grain boundaries until the addition of 12% r-TiC. However, the accumulation of reinforcements began at 14% r-TiC addition and became more aggregated with subsequent increases in the percentage addition of r-TiC. The mechanical and tribological tests showed that the composite with 14% r-TiC was superior to all other compositions, with 60% improved mechanical qualities and the lowest wear rate of 0.0007 mm3/m. Composites containing 2% r-TiC showed the best corrosion resistance, an increase of 22% over AlZnMgCu, without reinforcement. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

11 pages, 2025 KiB  
Article
Stabilometry in Relation to Hip and Knee Muscle Force in Children with Surgically Treated Unilateral Slipped Capital Femoral Epiphysis
by Marius Negru, Anca Raluca Dinu, Elena Amaricai, Liliana Catan, Andrei Daniel Bolovan, Adrian Emil Lazarescu, Corina Maria Stanciulescu, Eugen Sorin Boia and Calin Marius Popoiu
Children 2024, 11(10), 1186; https://doi.org/10.3390/children11101186 - 28 Sep 2024
Viewed by 297
Abstract
Background/Objectives: The main aim of our study was to analyze the stabilometric parameters in relation to hip and knee muscle force in children with unilateral slipped capital femoral epiphysis (SCFE) who had undergone surgical treatment. Another objective was to compare the stabilometry in [...] Read more.
Background/Objectives: The main aim of our study was to analyze the stabilometric parameters in relation to hip and knee muscle force in children with unilateral slipped capital femoral epiphysis (SCFE) who had undergone surgical treatment. Another objective was to compare the stabilometry in three testing situations (eyes open, eyes closed, and head retroflexed). Methods: In total, 26 patients with unilateral right SCFE treated via in situ fixation with one percutaneous screw performed stabilometry assessments under three different situations (with their eyes open, with their eyes closed, and with their head retroflexed) and isometric muscle force assessment of the bilateral hip flexors, extensors, abductors and adductors and bilateral knee flexors and extensors. Results: No significant differences between the right side (affected hip) and left side (non-affected hip) were recorded for all of the tested muscle groups. We found significant negative correlations between the 90% confidence ellipse area (eyes open condition) and left knee extensors (p = 0.028), right knee flexors (p = 0.041), and left knee flexors (p = 0.02), respectively. When performing the comparison between the eyes open and eyes closed situations, there were significant differences in CoP path length (p < 0.0001) and maximum CoP speed (p = 0.048); the parameters increased in the eyes closed situation. Conclusions: Better postural stability is acquired when assessed with eyes open or with the head retroflexed in contrast with eyes closed testing. Full article
(This article belongs to the Special Issue Research in Paediatric Orthopaedic Surgery (Volume II))
Show Figures

Figure 1

12 pages, 4521 KiB  
Article
Study on the Impact of Air Pressure on the Laser-Induced Breakdown Spectroscopy of Intumescent Fireproof Coatings
by Jun Wang, Honglin Jian, Shouhe Wang, Fengzhen Zhang and Xilin Wang
Appl. Sci. 2024, 14(19), 8765; https://doi.org/10.3390/app14198765 - 28 Sep 2024
Viewed by 464
Abstract
Intumescent fireproof coatings protect steel structures and cables by forming a thick, fire-resistant layer under high temperatures. These coatings can deteriorate over time, impacting their fire resistance. Current testing methods are largely lab-based, lacking in-service evaluation platforms. Laser-Induced Breakdown Spectroscopy (LIBS) is emerging [...] Read more.
Intumescent fireproof coatings protect steel structures and cables by forming a thick, fire-resistant layer under high temperatures. These coatings can deteriorate over time, impacting their fire resistance. Current testing methods are largely lab-based, lacking in-service evaluation platforms. Laser-Induced Breakdown Spectroscopy (LIBS) is emerging as a promising in situ detection technology but is influenced by low air pressure in high-altitude areas. This study investigates how air pressure affects LIBS signals in intumescent coatings on galvanized steel. Using pressures between 35 and 101 kPa, a linear model was developed to correlate laser pulses to ablation depth for characterizing coating thickness. Results show that spectral intensity decreases with lower air pressure. However, a strong linear relationship persists between laser pulses and ablation depth, with a fitting accuracy above 0.9. The coating thickness is identified by the number of laser pulses required to detect the Zn spectral line from the underlying galvanized steel. As air pressure decreases, the ablation depth increases. The study effectively models and corrects for air pressure effects on LIBS data, enabling its application for field detection of fireproof coatings. This advancement enhances the reliability of LIBS technology in assessing the fire performance of these materials, providing a reference for their in situ evaluation and ensuring better fire safety standards for building steel structures and cables. Full article
(This article belongs to the Special Issue Development and Application of Laser-Induced Breakdown Spectroscopy)
Show Figures

Figure 1

24 pages, 9283 KiB  
Article
Application of Direct and Indirect Methodologies for Beach Litter Detection in Coastal Environments
by Angelo Sozio, Vincenzo Mariano Scarrica, Angela Rizzo, Pietro Patrizio Ciro Aucelli, Giovanni Barracane, Luca Antonio Dimuccio, Rui Ferreira, Marco La Salandra, Antonino Staiano, Maria Pia Tarantino and Giovanni Scicchitano
Remote Sens. 2024, 16(19), 3617; https://doi.org/10.3390/rs16193617 - 28 Sep 2024
Viewed by 964
Abstract
In this study, different approaches for detecting of beach litter (BL) items in coastal environments are applied: the direct in situ survey, an indirect image analysis based on the manual visual screening approach, and two different automatic segmentation and classification tools. One is [...] Read more.
In this study, different approaches for detecting of beach litter (BL) items in coastal environments are applied: the direct in situ survey, an indirect image analysis based on the manual visual screening approach, and two different automatic segmentation and classification tools. One is a Mask-RCNN based-algorithm, already used in a previous work, but specifically improved in this study for multi-class analysis. Test cases were carried out at the Torre Guaceto Marine Protected Area (Apulia Region, southern Italy), using a novel dataset from images acquired in different coastal environments by tailored photogrammetric Unmanned Aerial Vehicle (UAV) surveys. The analysis of the overall methodologies used in this study highlights the potential exhibited by the two machine learning (ML) techniques (Mask-RCCN-based and SVM algorithms), but they still show some limitations concerning direct methodologies. The results of the analysis show that the Mask-RCNN-based algorithm requires further improvements and a consistent increase in the number of training elements, while the SVM algorithm shows limitations related to pixel-based classification. Furthermore, the outcomes of this research highlight the high suitability of ML tools for assessing BL pollution and contributing to coastal conservation efforts. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

14 pages, 5187 KiB  
Article
Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material
by Yang Wu, Yuezhou Liu, Fulei Gao, Bin Chen, Tingting Lu and Yinglei Wang
Molecules 2024, 29(19), 4607; https://doi.org/10.3390/molecules29194607 - 27 Sep 2024
Viewed by 386
Abstract
The synthesis and characterization of low-melting-point insensitive energetic materials are crucial due to their increasing applications in melt–cast explosives. In this work, a furazan-derived energetic compound, 3,4-bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF), exhibiting insensitive and high-energy characteristics, is rationally designed and synthesized. The structure of DAeTF is [...] Read more.
The synthesis and characterization of low-melting-point insensitive energetic materials are crucial due to their increasing applications in melt–cast explosives. In this work, a furazan-derived energetic compound, 3,4-bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF), exhibiting insensitive and high-energy characteristics, is rationally designed and synthesized. The structure of DAeTF is characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, elemental analysis, mass spectrometry, and single-crystal X-ray diffraction. The thermal properties of DAeTF are investigated using differential scanning calorimetry, in situ FTIR spectroscopy and thermogravimetric-differential scanning calorimetry–Fourier transform infrared–mass spectrometry and thermal decomposition mechanism was elucidated in combination with bond energy calculations. The detonation performance of DAeTF is predicted by the EXPLO5 program. The results indicate that DAeTF has thermal stability (Td = 251.7 °C), high energy level (D = 7270 m/s) and significant insensitivity (IS = 60 J). Additionally, its relatively low melting point (Tm = 60.5 °C) facilitates processing and loading. These characteristics indicate that DAeTF is a promising candidate as an insensitive melt–cast explosive in future applications. Full article
Show Figures

Graphical abstract

9 pages, 2332 KiB  
Communication
Fe2NiSe4 Nanowires Array for Highly Efficient Electrochemical H2S Splitting and Simultaneous Energy-Saving H2 Production
by Tong Ding, Nanheng Cen, Rui Fan, Long Li, Yonghong Du, Chun Tang, Heng Guo, Yiping Li and Zongshe Liu
Processes 2024, 12(10), 2111; https://doi.org/10.3390/pr12102111 - 27 Sep 2024
Viewed by 414
Abstract
The electrochemical removal of abundant and toxic H2S from highly sour reservoirs has emerged as a promising method for hydrogen production and desulfurization. Nevertheless, the ineffectiveness and instability of current electrocatalysts have impeded further utilization of H2S. In this [...] Read more.
The electrochemical removal of abundant and toxic H2S from highly sour reservoirs has emerged as a promising method for hydrogen production and desulfurization. Nevertheless, the ineffectiveness and instability of current electrocatalysts have impeded further utilization of H2S. In this communication, we introduce a robust array of Fe2NiSe4 nanowires synthesized in situ on a FeNi3 foam (Fe2NiSe4/FeNi3) via hydrothermal treatment. This array acts as an active electrocatalyst for ambient H2S splitting. It offers numerous exposed active sites and a rapid electron transport channel, significantly enhancing charge transport rates. As an electrode material, Fe2NiSe4/FeNi3 displays remarkable electrocatalytic efficiency for both sulfide oxidation and hydrogen evolution reactions. This bifunctional electrode achieves efficient electrochemical H2S splitting at a low potential of 440 mV to reach a current density of 100 mA∙cm−2, with a faradaic efficiency for hydrogen production of approximately 98%. These findings highlight its significant potential for desulfurization and energy-efficient hydrogen generation. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 3196 KiB  
Article
The Role of Hypergenic and Technogenic Processes in Contamination the Ecosphere
by Valentina Zvereva and Konstantin Frolov
Minerals 2024, 14(10), 976; https://doi.org/10.3390/min14100976 - 27 Sep 2024
Viewed by 423
Abstract
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and [...] Read more.
Mining in the Russian Far East has been developing for more than 100 years, resulting in the formation of mining technogenic systems that negatively affect all components of the environment. The purpose of this paper is to develop and present an ecological and geochemical model of supergene processes in tinsulfide and polymetallic ore mining systems. This paper presents, for the first time, the results of long-term field observations (more than 50 years): studies of numerous secondary minerals (more than 80) identified in mine workings and tailings, their natural associations, as well as the sequence, zonality, and stages of mineral formation as well as the characteristics of hydrochemical samples of river waters, contaminated by acid mine drainage (30 years of observations). Experimental modeling of sulfide oxidation was carried out under laboratory conditions (electrochemical method) and using Selektor software, which made it possible to study the process of acid mine drainage formation and to show the metal ions and ionic complexes composition, to establish Eh-pH parameters of crystallization for 52 secondary minerals, associations of primary and secondary minerals. The influence of water components on the formation of slurry and drainage in different time periods (dry, heavy rainfall, and snowmelt) is shown, and their mixing at the geochemical barrier “acid mine drainage—surface natural waters” is described. Experimental results are verified with numerous in-situ observations and mineralogical studies. The work allowed for the presentation of an environmental–geochemical model of ecosphere pollution, which describes not only the negative impact of sulfide-bearing systems of Russian Far East mining districts but locations all over the world. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
23 pages, 2778 KiB  
Review
Self-Tumor Antigens in Solid Tumors Turned into Vaccines by α-gal Micelle Immunotherapy
by Uri Galili
Pharmaceutics 2024, 16(10), 1263; https://doi.org/10.3390/pharmaceutics16101263 - 27 Sep 2024
Viewed by 340
Abstract
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in [...] Read more.
A major reason for the failure of the immune system to detect tumor antigens (TAs) is the insufficient uptake, processing, and presentation of TAs by antigen-presenting cells (APCs). The immunogenicity of TAs in the individual patient can be markedly increased by the in situ targeting of tumor cells for robust uptake by APCs, without the need to identify and characterize the TAs. This is feasible by the intra-tumoral injection of α-gal micelles comprised of glycolipids presenting the carbohydrate-antigen “α-gal epitope” (Galα1-3Galβ1-4GlcNAc-R). Humans produce a natural antibody called “anti-Gal” (constituting ~1% of immunoglobulins), which binds to α-gal epitopes. Tumor-injected α-gal micelles spontaneously insert into tumor cell membranes, so that multiple α-gal epitopes are presented on tumor cells. Anti-Gal binding to these epitopes activates the complement system, resulting in the killing of tumor cells, and the recruitment of multiple APCs (dendritic cells and macrophages) into treated tumors by the chemotactic complement cleavage peptides C5a and C3a. In this process of converting the treated tumor into a personalized TA vaccine, the recruited APC phagocytose anti-Gal opsonized tumor cells and cell membranes, process the internalized TAs and transport them to regional lymph-nodes. TA peptides presented on APCs activate TA-specific T cells to proliferate and destroy the metastatic tumor cells presenting the TAs. Studies in anti-Gal-producing mice demonstrated the induction of effective protection against distant metastases of the highly tumorigenic B16 melanoma following injection of natural and synthetic α-gal micelles into primary tumors. This treatment was further found to synergize with checkpoint inhibitor therapy by the anti-PD1 antibody. Phase-1 clinical trials indicated that α-gal micelle immunotherapy is safe and can induce the infiltration of CD4+ and CD8+ T cells into untreated distant metastases. It is suggested that, in addition to converting treated metastases into an autologous TA vaccine, this treatment should be considered as a neoadjuvant therapy, administering α-gal micelles into primary tumors immediately following their detection. Such an immunotherapy will convert tumors into a personalized anti-TA vaccine for the period prior to their resection. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Figure 1

17 pages, 6082 KiB  
Article
Tailoring Crystallization Kinetics in Thin Sucrose Films during Convective Drying: Impact of Temperature and Humidity on Onset, Growth, and Nucleation Rate
by Martin Schugmann and Petra Foerst
Pharmaceutics 2024, 16(10), 1260; https://doi.org/10.3390/pharmaceutics16101260 - 27 Sep 2024
Viewed by 415
Abstract
Drying experiments with varying air temperature and humidity were conducted to investigate the influence of the drying process on the crystallization of thin sucrose films. For the first time, the effects of the nucleation onset, nucleation rate, and growth rate were investigated in [...] Read more.
Drying experiments with varying air temperature and humidity were conducted to investigate the influence of the drying process on the crystallization of thin sucrose films. For the first time, the effects of the nucleation onset, nucleation rate, and growth rate were investigated in situ and their differentiated influence on product crystallinity could be assessed. The growth rate was not influenced by air humidity but showed a strong dependence on temperature. It increased with drying temperature; however, at high temperatures, growth was inhibited when the water content falls below a critical level. Noticeable differences in nucleation behavior could be observed with regard to air humidity. Dry air led to crystallization onsets at lower levels of supersaturation, while moderately humid air retarded it. At higher temperatures, nucleation onset commenced at lower water contents but at a constant supersaturation level. The nucleation rate doubled in experiments with moderately humid air (15% RH), while an elevated drying temperature showed generally lower nucleation rates. The observed differences in the nucleation onset and rate could be explained by the film-internal concentration profile, which is strongly influenced by drying parameters. The insights therefore provide a differentiated understanding of the formation of the physical state and how it can be influenced during convective drying. Full article
Show Figures

Figure 1

23 pages, 8131 KiB  
Article
Catalytic Reactivity Assessment of AgM and CuM (M = Cr, Fe) Catalysts for Dry Reforming of Methane Process with CO2
by Amel Barr, Rafik Benrabaa, Hayat Henni, Laaldja Meddour-Boukhobza, Pascal Roussel and Axel Löfberg
Molecules 2024, 29(19), 4597; https://doi.org/10.3390/molecules29194597 - 27 Sep 2024
Viewed by 373
Abstract
CuM and AgM (M = Cr, Fe) catalysts were synthesized, characterized, and evaluated in methane reforming with CO2 with and without pretreatment under a H2 atmosphere. Their textural and structural characteristics were evaluated using various physicochemical methods, including XRD, B.E.T., SEM-EDS, [...] Read more.
CuM and AgM (M = Cr, Fe) catalysts were synthesized, characterized, and evaluated in methane reforming with CO2 with and without pretreatment under a H2 atmosphere. Their textural and structural characteristics were evaluated using various physicochemical methods, including XRD, B.E.T., SEM-EDS, XPS, and H2-TPR. It was shown that the nature of the species has a significant effect on these structural, textural, and reactivity properties. AgCr catalysts, presenting several oxidation states (Ag0, Ag+1, Cr3+, and Cr6+ in Ag, AgCrO2, and AgCr2O4), showed the most interesting catalytic performance in their composition. The intermediate Cr2O3 phase, formed during the catalytic reaction, played an important role as a catalytic precursor in the in situ production of highly dispersed nanoparticles, being less prone to coke formation in spite of the severe reaction conditions. In contrast, the AgFe catalyst showed low activity and a low selectivity for DRM in the explored temperature range, due to a significant contribution of the reverse water–gas shift reaction, which accounted for the low H2/CO ratios. Full article
Show Figures

Figure 1

22 pages, 3708 KiB  
Article
Prediction Model for Movement and Life Expectancy of Subsea Cables under Wave and Current Action
by Luke R. Munro, Qingping Zou, Wenshuo Tang and David Flynn
J. Mar. Sci. Eng. 2024, 12(10), 1711; https://doi.org/10.3390/jmse12101711 - 27 Sep 2024
Viewed by 548
Abstract
Over recent years, the emergence of the offshore wind sector has spurred much interest in subsea cables. The predominant failure modes of subsea cables are associated with extreme environmental conditions. Wave-forcing during severe storms is less expected and causes more damage. A generalized [...] Read more.
Over recent years, the emergence of the offshore wind sector has spurred much interest in subsea cables. The predominant failure modes of subsea cables are associated with extreme environmental conditions. Wave-forcing during severe storms is less expected and causes more damage. A generalized multiphysics cable model is constructed to predict the movement, damage, and lifetime of subsea cables subject to dynamic wave and current action due to abrasion and corrosion. The present cable lifespan prediction model extended the previous tide-only model by considering the contribution of hydrodynamic forces by waves and the effect of wave and current incident angle relative to the cable. The predicted cable sliding distance at each section of the cable is combined with the Archard abrasion wear model and the corrosion model to predict the loss of cable protective layers and the resulting expected lifespan of the cable. The model is the first of its kind that can predict the spatial variation of wave and current loading, cable movement, damage, remaining lifetime, and cable failure modes and location. In addition, spatial and temporal variations of magnitude and direction of wave, current, and tide can be incorporated into the model for realistic large-scale simulations of cable performance in field conditions. The model compares well with previous laboratory experiments and numerical models. The present model was applied for the first time to the European Marine Energy Centre (EMEC)’s wave test site located at Billia Croo off the west coast of mainland Orkney, Scotland, and validated by the cable lifespan data. The 1-year and 100-year return period wave height and period and the average wave and tide conditions are used to drive the present cable lifespan model. It was found that the cable movement is predominantly driven by waves, and the previous tide-only model would predict zero cable movement, indicating the importance of the incorporation of wave contribution into the cable model. Furthermore, besides wave height and period, the wave angle relative to cable was found to be a determining factor for the cable movement and lifespan. The present multiphysics cable model provides a new capability to predict 70% of failure modes currently not monitored in situ and to deploy, plan, and manage subsea cables with improved fidelity, reduced cost, and human risk. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

13 pages, 12191 KiB  
Article
MTAP and p16 IHC as Markers for CDKN2A/B Loss in Meningiomas
by Hanim I. Ozkizilkaya, Anjali Vinocha, Antonio Dono, Oluwaseun Basit Ogunbona, Gokce A. Toruner, Phyu P. Aung, Carlos Kamiya Matsuoka, Yoshua Esquenazi, Franco DeMonte and Leomar Y. Ballester
Cancers 2024, 16(19), 3299; https://doi.org/10.3390/cancers16193299 - 27 Sep 2024
Viewed by 427
Abstract
Background: Homozygous cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss is one of the parameters that support the designation of meningiomas as Central Nervous System (CNS) WHO grade 3 tumors. Evaluation of CDKN2A/B by sequencing or Fluorescence in situ hybridization (FISH) is costly and not [...] Read more.
Background: Homozygous cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) loss is one of the parameters that support the designation of meningiomas as Central Nervous System (CNS) WHO grade 3 tumors. Evaluation of CDKN2A/B by sequencing or Fluorescence in situ hybridization (FISH) is costly and not always readily accessible. An immunohistochemistry (IHC)-based marker for the evaluation of CDKN2A/B loss would provide faster results at a lower cost. Methods: This retrospective study included patients diagnosed with meningioma at our institution between 2016 and 2019. Archival tumor tissue was used for analysis. MTAP immunohistochemistry (IHC) was performed at various dilutions (1:1200, 1:400, 1:200, 1:100) using two different antibodies, and p16 IHC was conducted simultaneously. These analyses were carried out at two different institutions. To determine the sensitivity and specificity of MTAP and p16 as surrogate markers for CDKN2A/B loss, CDKN2A FISH was utilized as the gold standard. Results: Overall, 46/49 tumors showed strong MTAP staining (94%) at institution 1, and 44/49 (90%) showed either faint positive or positive results at institution 2. One grade 3 meningioma that demonstrated homozygous CDKN2A loss by FISH also showed loss of MTAP expression by IHC. One grade 2 meningioma showed regional CDKN2A loss by FISH and variable MTAP expression under different IHC conditions. MTAP expression evaluation was superior at a dilution of 1:100 with the Abnova Anti-MTAP Monoclonal antibody. Conclusions: P16 expression was variable and did not correlate with either MTAP expression or CDKN2A FISH results. MTAP IHC is a promising surrogate marker for the evaluation of CDKN2A status in meningiomas. Full article
Show Figures

Figure 1

35 pages, 4762 KiB  
Article
Ecogeographic Study of Ipomoea Species in Mauritius, Indian Ocean
by Yakshini Boyjnath, Mohammad Ehsan Dulloo, Vishwakalyan Bhoyroo and Vijayanti Mala Ranghoo-Sanmukhiya
Plants 2024, 13(19), 2706; https://doi.org/10.3390/plants13192706 - 27 Sep 2024
Viewed by 478
Abstract
The wild relatives of crops play a critical role in enhancing agricultural resilience and sustainability by contributing valuable traits for crop improvement. Shifts in climatic conditions and human activities threaten plant genetic resources for food and agriculture (PGRFA), jeopardizing contributions to future food [...] Read more.
The wild relatives of crops play a critical role in enhancing agricultural resilience and sustainability by contributing valuable traits for crop improvement. Shifts in climatic conditions and human activities threaten plant genetic resources for food and agriculture (PGRFA), jeopardizing contributions to future food production and security. Studies and inventories of the extant agrobiodiversity, in terms of numbers and distribution patterns of species and their genetic diversity, are primordial for developing effective and comprehensive conservation strategies. We conducted an ecogeographic study on Ipomoea species and assessed their diversity, distribution, and ecological preferences across different topographic, altitudinal, geographical, and climatic gradients, at a total of 450 sites across Mauritius. Species distribution maps overlaid with climatic data highlighted specific ecological distribution. Principal Component Analysis (PCA) revealed species distribution was influenced by geographical factors. Regional richness analyses indicated varying densities, with some species exhibiting localized distributions and specific ecological preferences while the other species showed diverse distribution patterns. Field surveys identified 14 species and 2 subspecies out of 21 species and 2 subspecies of Ipomoea reported in Mauritius. A gap in ex situ germplasm collections was observed and several species were identified as threatened. Further investigations and a more long-term monitoring effort to better guide conservation decisions are proposed. Full article
Show Figures

Figure 1

16 pages, 5494 KiB  
Article
Growth and Faceting of Tungsten and Oxides in Scandate Cathode Particles during In Situ Heating in the Scanning Electron Microscope
by Huanhuan Bai and Thomas John Balk
Crystals 2024, 14(10), 840; https://doi.org/10.3390/cryst14100840 - 27 Sep 2024
Viewed by 409
Abstract
Tungsten-based scandate dispenser cathodes are promising next-generation thermionic electron sources for vacuum electron devices, due to their excellent emission performance at temperatures lower than those required for conventional cathodes. There has been a significant recent effort to understand scandate cathode performance and to [...] Read more.
Tungsten-based scandate dispenser cathodes are promising next-generation thermionic electron sources for vacuum electron devices, due to their excellent emission performance at temperatures lower than those required for conventional cathodes. There has been a significant recent effort to understand scandate cathode performance and to characterize the tungsten and other materials on the emitting surface, primarily via the study of cathodes before and after emission testing. Moreover, these scandate cathodes have typically been characterized at room temperature only. In situ observations of scandate cathodes is challenging, as these devices are thermionic emitters that operate in a high-vacuum environment, and because the sizes of relevant material features range from the micron (2.0 µm) to the nanometer (<50 nm diameter) length scales. In the current study, a series of in situ heating experiments was conducted on un-activated impregnated scandate cathode fragments, utilizing a micro-electro-mechanical system-based heater chip in a scanning electron microscope, enabling the real-time observation of cathode material evolution at elevated temperature (up to 1200 °C) under a pressure of 10−6 to 10−7 mbar. This study revealed how impregnant materials grow and migrate within the cathode matrix at elevated temperatures, and these observations are key to a thorough understanding of the behavior of scandate cathode materials. It also enabled direct observation of the incipient faceting of tungsten surfaces at high temperature while surrounded by impregnant materials. These are the first in situ observations of scandate cathode material evolution in relevant environmental conditions and at sufficiently high resolution to provide insights into the morphological and phase changes that occur in the near-surface regions of scandate cathodes. Full article
Show Figures

Figure 1

Back to TopTop