Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,062)

Search Parameters:
Keywords = digital terrain models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9784 KiB  
Article
Forest Height Inversion by Combining Single-Baseline TanDEM-X InSAR Data with External DTM Data
by Wenjie He, Jianjun Zhu, Juan M. Lopez-Sanchez, Cristina Gómez, Haiqiang Fu and Qinghua Xie
Remote Sens. 2023, 15(23), 5517; https://doi.org/10.3390/rs15235517 - 27 Nov 2023
Cited by 2 | Viewed by 1391
Abstract
Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). [...] Read more.
Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation. Full article
Show Figures

Graphical abstract

21 pages, 34432 KiB  
Article
Optimizing Image Compression Ratio for Generating Highly Accurate Local Digital Terrain Models: Experimental Study for Martian Moons eXploration Mission
by Yuta Shimizu, Hideaki Miyamoto and Shingo Kameda
Remote Sens. 2023, 15(23), 5500; https://doi.org/10.3390/rs15235500 - 25 Nov 2023
Viewed by 1182
Abstract
Recent technological advances have significantly increased the data volume obtained from deep space exploration missions, making the downlink rate a primary limiting factor. Particularly, JAXA’s Martian Moons eXploration (MMX) mission encounters this problem when identifying safe and scientifically valuable landing sites on Phobos [...] Read more.
Recent technological advances have significantly increased the data volume obtained from deep space exploration missions, making the downlink rate a primary limiting factor. Particularly, JAXA’s Martian Moons eXploration (MMX) mission encounters this problem when identifying safe and scientifically valuable landing sites on Phobos using high-resolution images. A strategic approach in which we effectively reduce image data volumes without compromising essential scientific information is thus required. In this work, we investigate the influence of image data compression, especially as it concerns the accuracy of generating the local Digital Terrain Models (DTMs) that will be used to determine MMX’s landing sites. We obtain simulated images of Phobos that are compressed using the algorithm with integer/float-point discrete wavelet transform (DWT) defined by the Consultative Committee for Space Data Systems (CCSDS), which are candidate algorithms for the MMX mission. Accordingly, we show that, if the compression ratio is 70% or lower, the effect of image compression remains constrained, and local DTMs can be generated within altitude errors of 40 cm on the surface of Phobos, which is ideal for selecting safe landing spots. We conclude that the compression ratio can be increased as high as 70%, and such compression enables us to facilitate critical phases in the MMX mission even with the limited downlink rate. Full article
(This article belongs to the Special Issue Planetary Geodesy and Geophysics of Asteroid: Data and Modeling)
Show Figures

Graphical abstract

22 pages, 2908 KiB  
Article
G-DMD: A Gated Recurrent Unit-Based Digital Elevation Model for Crop Height Measurement from Multispectral Drone Images
by Jinjin Wang, Nobuyuki Oishi, Phil Birch and Bao Kha Nguyen
Machines 2023, 11(12), 1049; https://doi.org/10.3390/machines11121049 - 25 Nov 2023
Cited by 1 | Viewed by 1456
Abstract
Crop height is a vital indicator of growth conditions. Traditional drone image-based crop height measurement methods primarily rely on calculating the difference between the Digital Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more ground information, which remains [...] Read more.
Crop height is a vital indicator of growth conditions. Traditional drone image-based crop height measurement methods primarily rely on calculating the difference between the Digital Elevation Model (DEM) and the Digital Terrain Model (DTM). The calculation often needs more ground information, which remains labour-intensive and time-consuming. Moreover, the variations of terrains can further compromise the reliability of these ground models. In response to these challenges, we introduce G-DMD, a novel method based on Gated Recurrent Units (GRUs) using DEM and multispectral drone images to calculate the crop height. Our method enables the model to recognize the relation between crop height, elevation, and growth stages, eliminating reliance on DTM and thereby mitigating the effects of varied terrains. We also introduce a data preparation process to handle the unique DEM and multispectral image. Upon evaluation using a cotton dataset, our G-DMD method demonstrates a notable increase in accuracy for both maximum and average cotton height measurements, achieving a 34% and 72% reduction in Root Mean Square Error (RMSE) when compared with the traditional method. Compared to other combinations of model inputs, using DEM and multispectral drone images together as inputs results in the lowest error for estimating maximum cotton height. This approach demonstrates the potential of integrating deep learning techniques with drone-based remote sensing to achieve a more accurate, labour-efficient, and streamlined crop height assessment across varied terrains. Full article
(This article belongs to the Special Issue New Trends in Robotics, Automation and Mechatronics)
Show Figures

Figure 1

26 pages, 9936 KiB  
Article
PointDMM: A Deep-Learning-Based Semantic Segmentation Method for Point Clouds in Complex Forest Environments
by Jiang Li, Jinhao Liu and Qingqing Huang
Forests 2023, 14(12), 2276; https://doi.org/10.3390/f14122276 - 21 Nov 2023
Cited by 4 | Viewed by 2454
Abstract
Background. With the advancement of “digital forestry” and “intelligent forestry”, point cloud data have emerged as a powerful tool for accurately capturing three-dimensional forest scenes. It enables the creation and presentation of digital forest systems, facilitates the monitoring of dynamic changes such as [...] Read more.
Background. With the advancement of “digital forestry” and “intelligent forestry”, point cloud data have emerged as a powerful tool for accurately capturing three-dimensional forest scenes. It enables the creation and presentation of digital forest systems, facilitates the monitoring of dynamic changes such as forest growth and logging processes, and facilitates the evaluation of forest resource fluctuations. However, forestry point cloud data are characterized by its large volume and the need for time-consuming and labor-intensive manual processing. Deep learning, with its exceptional learning capabilities, holds tremendous potential for processing forestry environment point cloud data. This potential is attributed to the availability of accurately annotated forestry point cloud data and the development of deep learning models specifically designed for forestry applications. Nonetheless, in practical scenarios, conventional direct annotation methods prove to be inefficient and time-consuming due to the complex terrain, dense foliage occlusion, and uneven sparsity of forestry point clouds. Furthermore, directly applying deep learning frameworks to forestry point clouds results in subpar accuracy and performance due to the large size, occlusion, sparsity, and unstructured nature of these scenes. Therefore, the proposal of accurately annotated forestry point cloud datasets and the establishment of semantic segmentation methods tailored for forestry environments hold paramount importance. Methods. A point cloud data annotation method based on single-tree positioning to enhance annotation efficiency was proposed and challenges such as occlusions and sparse distribution in forestry environments were addressed. This method facilitated the construction of a forestry point cloud semantic segmentation dataset, consisting of 1259 scenes and 214.4 billion points, encompassing four distinct categories. The pointDMM framework was introduced, a semantic segmentation framework specifically designed for forestry point clouds. The proposed method first integrates tree features using the DMM module and constructs key segmentation graphs utilizing energy segmentation functions. Subsequently, the cutpursuit algorithm is employed to solve the graph and achieve the pre-segmentation of semantics. The locally extracted forestry point cloud features from the pre-segmentation are comprehensively inputted into the network. Feature fusion is performed using the MLP method of multi-layer features, and ultimately, the point cloud is segmented using the lightweight PointNet. Result. Remarkable segmentation results are demonstrated on the DMM dataset, achieving an accuracy rate of 93% on a large-scale forest environment point cloud dataset known as DMM-3. Compared to other algorithms, the proposed method improves the accuracy of standing tree recognition by 21%. This method exhibits significant advantages in extracting feature information from artificially planted forest point clouds obtained from TLS. It establishes a solid foundation for the automation, intelligence, and informatization of forestry, thereby possessing substantial scientific significance. Full article
(This article belongs to the Special Issue Application of Laser Scanning Technology in Forestry)
Show Figures

Figure 1

14 pages, 5102 KiB  
Article
Pluvial Flood Risk Assessment in Urban Areas: A Case Study for the Archaeological Site of the Roman Agora, Athens
by Theano Iliopoulou, Panayiotis Dimitriadis and Demetris Koutsoyiannis
Heritage 2023, 6(11), 7230-7243; https://doi.org/10.3390/heritage6110379 - 20 Nov 2023
Cited by 3 | Viewed by 1955
Abstract
Ancient monuments located in urbanized areas are subject to numerous short- and long-term environmental hazards with flooding being among the most critical ones. Flood hazards in the complex urban environment are subject to large spatial and temporal variability and, thus, require location-specific risk [...] Read more.
Ancient monuments located in urbanized areas are subject to numerous short- and long-term environmental hazards with flooding being among the most critical ones. Flood hazards in the complex urban environment are subject to large spatial and temporal variability and, thus, require location-specific risk assessment and mitigation. We devise a methodological scheme for assessing flood hazard in urban areas, at the monument’s scale, by directly routing rainfall events over a fine-resolution digital terrain model at the region of interest. This is achieved using an open-source 2D hydraulic modelling software under unsteady flow conditions, employing a scheme known as ‘direct rainfall modelling’ or ‘rain-on-grid’. The method allows for the realistic representation of buildings and, thus, is appropriate for detailed storm-induced (pluvial) flood modelling in urbanized regions, within which a major stream is usually not present and conventional hydrological methodologies do not apply. As a case study, we perform a pilot assessment of the flood hazard in the Roman Agora, a major archaeological site of Greece located in the center of Athens. The scheme is incorporated within an intelligent decision-support system for the protection of monumental structures (ARCHYTAS), allowing for a fast and informative assessment of the flood risk within the monument’s region for different scenarios that account for rainfall’s return period and duration as well as uncertainty in antecedent wetness conditions. Full article
(This article belongs to the Special Issue Protection of Cultural Heritage from Natural and Manmade Hazards)
Show Figures

Figure 1

17 pages, 3851 KiB  
Article
Snow Avalanche Hazard Mapping Using a GIS-Based AHP Approach: A Case of Glaciers in Northern Pakistan from 2012 to 2022
by Afia Rafique, Muhammad Y. S. Dasti, Barkat Ullah, Fuad A. Awwad, Emad A. A. Ismail and Zulfiqar Ahmad Saqib
Remote Sens. 2023, 15(22), 5375; https://doi.org/10.3390/rs15225375 - 16 Nov 2023
Cited by 8 | Viewed by 2714
Abstract
Snow avalanches are a type of serious natural disaster that commonly occur in snow-covered mountains with steep terrain characteristics. Susceptibility analysis of avalanches is a pressing issue today and helps decision makers to implement appropriate avalanche risk reduction strategies. Avalanche susceptibility maps provide [...] Read more.
Snow avalanches are a type of serious natural disaster that commonly occur in snow-covered mountains with steep terrain characteristics. Susceptibility analysis of avalanches is a pressing issue today and helps decision makers to implement appropriate avalanche risk reduction strategies. Avalanche susceptibility maps provide a preliminary method for evaluating places that are likely to be vulnerable to avalanches to stop or reduce the risks of such disasters. The current study aims to identify areas that are vulnerable to avalanches (ranging from extremely high and low danger) by considering geo-morphological and geological variables and employing an Analytical Hierarchy Approach (AHP) in the GIS platform to identify potential snow avalanche zones in the Karakoram region in Northern Pakistan. The Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was used to extract the elevation, slope, aspect, terrain roughness, and curvature of the study area. This study includes the risk identification variable of land cover (LC), which was obtained from the Landsat 8 Operational Land Imager (OLI) satellite. The obtained result showed that the approach established in this study provided a quick and reliable tool to map avalanches in the study area, and it might also work with other glacier sites in other parts of the world for snow avalanche susceptibility and risk assessments. Full article
Show Figures

Graphical abstract

22 pages, 7537 KiB  
Article
High-Resolution Real-Time Coastline Detection Using GNSS RTK, Optical, and Thermal SfM Photogrammetric Data in the Po River Delta, Italy
by Massimo Fabris, Mirco Balin and Michele Monego
Remote Sens. 2023, 15(22), 5354; https://doi.org/10.3390/rs15225354 - 14 Nov 2023
Cited by 7 | Viewed by 1757
Abstract
High-resolution coastline detection and monitoring are challenging on a global scale, especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify the coastal environment. While the coastline related to the 0-level contour line can be extracted from accurate [...] Read more.
High-resolution coastline detection and monitoring are challenging on a global scale, especially in flat areas where natural events, sea level rise, and anthropic activities constantly modify the coastal environment. While the coastline related to the 0-level contour line can be extracted from accurate Digital Terrain Models (DTMs), the detection of the real-time, instantaneous coastline, especially at low tide, is a challenge that warrants further study and evaluation. In order to investigate an efficient combination of methods that allows to contribute to the knowledge in this field, this work uses topographic total station measurements, Global Navigation Satellite System Real-Time Kinematic (GNSS RTK) technique, and the Structure from Motion (SfM) approach (using a low-cost drone equipped with optical and thermal cameras). All the data were acquired at the beginning of 2022 and refer to the areas of Boccasette and Barricata, in the Po River Delta (Northeastern of Italy). The real-time coastline obtained from the GNSS data was validated using the topographic total station measurements; the correspondent polylines obtained from the photogrammetric data (using both automatic extraction and manual restitutions by visual inspection of orhophotos) were compared with the GNSS data to evaluate the performances of the different techniques. The results provided good agreement between the real-time coastlines obtained from different approaches. However, using the optical images, the accuracy was strictly connected with the radiometric changes in the photos and using thermal images, both manual and automatic polylines provided differences in the order of 1–2 m. Multi-temporal comparison of the 0-level coastline with those obtained from a LiDAR survey performed in 2018 provided the detection of the erosion and accretion areas in the period 2018–2022. The investigation on the two case studies showed a better accuracy of the GNSS RTK method in the real-time coastline detection. It can be considered as reliable ground-truth reference for the evaluation of the photogrammetric coastlines. While GNSS RTK proved to be more productive and efficient, optical and thermal SfM provided better results in terms of morphological completeness of the data. Full article
(This article belongs to the Special Issue Advances in Remote Sensing in Coastal Geomorphology Ⅱ)
Show Figures

Figure 1

16 pages, 4249 KiB  
Article
Drone Lidar Deep Learning for Fine-Scale Bare Earth Surface and 3D Marsh Mapping in Intertidal Estuaries
by Cuizhen Wang, Grayson R. Morgan and James T. Morris
Sustainability 2023, 15(22), 15823; https://doi.org/10.3390/su152215823 - 10 Nov 2023
Cited by 6 | Viewed by 1771
Abstract
Tidal marshes are dynamic environments providing important ecological and economic services in coastal regions. With accelerating climate change and sea level rise (SLR), marsh mortality and wetland conversion have been observed on global coasts. For sustainable coastal management, accurate projection of SLR-induced tidal [...] Read more.
Tidal marshes are dynamic environments providing important ecological and economic services in coastal regions. With accelerating climate change and sea level rise (SLR), marsh mortality and wetland conversion have been observed on global coasts. For sustainable coastal management, accurate projection of SLR-induced tidal inundation and flooding requires fine-scale 3D terrain of the intertidal zones. The airborne Lidar systems, although successful in extracting terrestrial topography, suffer from high vertical uncertainties in coastal wetlands due to tidal effects. This study tests the feasibility of drone Lidar leveraging deep learning of point clouds on 3D marsh mapping. In an ocean-front, pristine estuary dominated by Spartina alterniflora, drone Lidar point clouds, and in-field marsh samples were collected. The RandLA-Net deep learning model was applied to classify the Lidar point cloud to ground, low vegetation, and high vegetation with an overall accuracy of around 0.84. With the extracted digital terrain model and digital surface model, the cm-level bare earth surfaces and marsh heights were mapped. The bare earth terrain reached a vertical accuracy (root-mean-square error, or RMSE) of 5.55 cm. At the 65 marsh samples, the drone Lidar-extracted marsh height was lower than the in-field height measurements. However, their strongly significantly linear relationship (Pearson’s r = 0.93) reflects the validity of the drone Lidar for measuring marsh canopy height. The adjusted Lidar-extracted marsh height had an RMSE of 0.12 m. This experiment demonstrates a multi-step operational procedure to deploy drone Lidar for accurate, fine-scale terrain and 3D marsh mapping, which provides essential base layers for projecting wetland inundation in various climate change and SLR scenarios. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

16 pages, 10403 KiB  
Article
Research on Similarity Simulation Experiment of Mine Pressure Appearance in Surface Gully Working Face Based on BOTDA
by Dingding Zhang, Zhiming Huang, Zhe Ma, Jianfeng Yang and Jing Chai
Sensors 2023, 23(22), 9063; https://doi.org/10.3390/s23229063 - 9 Nov 2023
Cited by 6 | Viewed by 1118
Abstract
In order to study the mountain deflection characteristics and the pressure law of the working face after the mining of a shallow coal seam under the valley terrain, a geometric size of 5.0 × 0.2 × 1.33 m is used in the physical [...] Read more.
In order to study the mountain deflection characteristics and the pressure law of the working face after the mining of a shallow coal seam under the valley terrain, a geometric size of 5.0 × 0.2 × 1.33 m is used in the physical similarity model. Brillouin optical time domain analysis (BOTDA) technology is applied to a similar physical model experiment to monitor the internal strain of the overlying rock. In this paper, the strain law of the horizontal optical fiber at different stages of the instability of the mountain structure is analyzed. Combined with the measurement of the strain field on the surface of the model via digital image correlation (DIC) technology, the optical fiber strain characteristics of the precursor of mountain instability are given. The optical fiber characterization method of working face pressure is proposed, and the working face pressures at different mining stages in gully terrain are characterized. Finally, the relationship between the deflection instability of the mountain and the strong ground pressure on the working face is discussed. The sudden increase in the strain peak point of the horizontally distributed optical fiber strain curve can be used to distinguish the strong ground pressure. At the same time, this conclusion is verified by comparing the measured underground ground pressure values. The research results can promote the application of optical fiber sensing technology in the field of mine engineering. Full article
(This article belongs to the Special Issue Recent Advances in Optical Sensor for Mining)
Show Figures

Figure 1

30 pages, 8655 KiB  
Article
Optimizing Drone-Based Surface Models for Prescribed Fire Monitoring
by Christian Mestre-Runge, Marvin Ludwig, Maria Teresa Sebastià, Josefina Plaixats and Agustin Lobo
Fire 2023, 6(11), 419; https://doi.org/10.3390/fire6110419 - 2 Nov 2023
Cited by 1 | Viewed by 2358
Abstract
Prescribed burning and pyric herbivory play pivotal roles in mitigating wildfire risks, underscoring the imperative of consistent biomass monitoring for assessing fuel load reductions. Drone-derived surface models promise uninterrupted biomass surveillance but require complex photogrammetric processing. In a Mediterranean mountain shrubland burning experiment, [...] Read more.
Prescribed burning and pyric herbivory play pivotal roles in mitigating wildfire risks, underscoring the imperative of consistent biomass monitoring for assessing fuel load reductions. Drone-derived surface models promise uninterrupted biomass surveillance but require complex photogrammetric processing. In a Mediterranean mountain shrubland burning experiment, we refined a Structure from Motion (SfM) and Multi-View Stereopsis (MVS) workflow to diminish biases in 3D modeling and RGB drone imagery-based surface reconstructions. Given the multitude of SfM-MVS processing alternatives, stringent quality oversight becomes paramount. We executed the following steps: (i) calculated Root Mean Square Error (RMSE) between Global Navigation Satellite System (GNSS) checkpoints to assess SfM sparse cloud optimization during georeferencing; (ii) evaluated elevation accuracy by comparing the Mean Absolute Error (MAE) of six surface and thirty terrain clouds against GNSS readings and known box dimensions; and (iii) complemented a dense cloud quality assessment with density metrics. Balancing overall accuracy and density, we selected surface and terrain cloud versions for high-resolution (2 cm pixel size) and accurate (DSM, MAE = 57 mm; DTM, MAE = 48 mm) Digital Elevation Model (DEM) generation. These DEMs, along with exceptional height and volume models (height, MAE = 12 mm; volume, MAE = 909.20 cm3) segmented by reference box true surface area, substantially contribute to burn impact assessment and vegetation monitoring in fire management systems. Full article
(This article belongs to the Special Issue Drone Applications Supporting Fire Management)
Show Figures

Figure 1

12 pages, 1344 KiB  
Brief Report
Remote Sensing with UAVs for Flood Modeling: A Validation with Actual Flood Records
by Robert Clasing, Enrique Muñoz, José Luis Arumí and Víctor Parra
Water 2023, 15(21), 3813; https://doi.org/10.3390/w15213813 - 31 Oct 2023
Cited by 5 | Viewed by 2173
Abstract
The use of unmanned aerial vehicles (UAVs) is steadily increasing due to their capacity to capture terrain elevation data with remarkable precision and cost-effectiveness. Nonetheless, their application for estimating water surface elevations and submerged terrain, such as channel bathymetry, remains constrained. Consequently, the [...] Read more.
The use of unmanned aerial vehicles (UAVs) is steadily increasing due to their capacity to capture terrain elevation data with remarkable precision and cost-effectiveness. Nonetheless, their application for estimating water surface elevations and submerged terrain, such as channel bathymetry, remains constrained. Consequently, the development of a digital terrain model that relies on UAV data during low-water periods assumes a more extensive dry channel surface area, thus alleviating the information gap regarding submerged terrain. The objective of this brief report is to validate a hydraulic model for flood calculation. To this end, a 1D steady-state hydrological model of the Ñuble River based on a UAV survey in the low-water period of 2016 was constructed in HEC-RAS v.5.0.3 and compared to water surface elevation observations of the flood on 24 June 2023. The model tends to overestimate the flood, but the errors are considered tolerable for flood calculation (on average, a 10.6% depth error was obtained for a 30-year return period flood); therefore, the hydraulic model derived from remote sensing seems to be an effective alternative for the construction of hydraulic models for flood studies. Full article
(This article belongs to the Special Issue Global Flood Hazard: Applications in Flood Modelling and Mapping)
Show Figures

Figure 1

27 pages, 11397 KiB  
Article
The SAVEMEDCOASTS-2 webGIS: The Online Platform for Relative Sea Level Rise and Storm Surge Scenarios up to 2100 for the Mediterranean Coasts
by Antonio Falciano, Marco Anzidei, Michele Greco, Maria Lucia Trivigno, Antonio Vecchio, Charalampos Georgiadis, Petros Patias, Michele Crosetto, Josè Navarro, Enrico Serpelloni, Cristiano Tolomei, Giovanni Martino, Giuseppe Mancino, Francesco Arbia, Christian Bignami and Fawzi Doumaz
J. Mar. Sci. Eng. 2023, 11(11), 2071; https://doi.org/10.3390/jmse11112071 - 30 Oct 2023
Cited by 4 | Viewed by 3000
Abstract
Here we show the SAVEMEDCOASTS-2 web-based geographic information system (webGIS) that supports land planners and decision makers in considering the ongoing impacts of Relative Sea Level Rise (RSLR) when formulating and prioritizing climate-resilient adaptive pathways for the Mediterranean coasts. The webGIS was developed [...] Read more.
Here we show the SAVEMEDCOASTS-2 web-based geographic information system (webGIS) that supports land planners and decision makers in considering the ongoing impacts of Relative Sea Level Rise (RSLR) when formulating and prioritizing climate-resilient adaptive pathways for the Mediterranean coasts. The webGIS was developed within the framework of the SAVEMEDCOASTS and SAVEMEDCOASTS-2 projects, funded by the European Union, which respond to the need to protect people and assets from natural disasters along the Mediterranean coasts that are vulnerable to the combined effects of Sea Level Rise (SLR) and Vertical Land Movements (VLM). The geospatial data include available or new high-resolution Digital Terrain Models (DTM), bathymetric data, rates of VLM, and multi-temporal coastal flooding scenarios for 2030, 2050, and 2100 with respect to 2021, as a consequence of RSLR. The scenarios are derived from the 5th Assessment Report (AR5) provided by the Intergovernmental Panel on Climate Change (IPCC) and encompass different Representative Concentration Pathways (RCP2.6 and RCP8.5) for climate projections. The webGIS reports RSLR scenarios that incorporate the temporary contribution of both the highest astronomical tides (HAT) and storm surges (SS), which intensify risks to the coastal infrastructure, local community, and environment. Full article
(This article belongs to the Special Issue Sea Level Rise and Related Hazards Assessment)
Show Figures

Figure 1

19 pages, 31842 KiB  
Article
Evaluating SAR Radiometric Terrain Correction Products: Analysis-Ready Data for Users
by Africa I. Flores-Anderson, Helen Blue Parache, Vanesa Martin-Arias, Stephanie A. Jiménez, Kelsey Herndon, Stefanie Mehlich, Franz J. Meyer, Shobhit Agarwal, Simon Ilyushchenko, Manoj Agarwal, Andrea Nicolau, Amanda Markert, David Saah and Emil Cherrington
Remote Sens. 2023, 15(21), 5110; https://doi.org/10.3390/rs15215110 - 25 Oct 2023
Cited by 9 | Viewed by 6228
Abstract
Operational applications for Synthetic Aperture Radar (SAR) are under development around the world, driven by the free-and-open access of SAR C-band observations that Sentinel-1 of Copernicus has provided since 2014. Radiometric Terrain Correction (RTC) data are key entry-level products for multiple applications ranging [...] Read more.
Operational applications for Synthetic Aperture Radar (SAR) are under development around the world, driven by the free-and-open access of SAR C-band observations that Sentinel-1 of Copernicus has provided since 2014. Radiometric Terrain Correction (RTC) data are key entry-level products for multiple applications ranging from ecosystem to hazard monitoring. Various open-source software packages exist to create RTC products from Single Look Complex (SLC) or Ground Range Detected (GRD) level SAR data, including the Interferometric SAR Computing Environment (ISCE), and the Sentinel-1 Toolbox from the European Space Agency (SNAP 8). Despite the growing availability of RTC software solutions, little work has been performed to identify differences between RTC products generated using different software packages. This work evaluates several Sentinel-1 RTC products and two other Sentinel-1 Analysis Ready Data (ARD) to address the following questions: (1) Which software provides the most accurate RTC product? and (2) how appropriate for analysis are other non-RTC products that are readily available? The RTCs are produced with GAMMA, ISCE-2, and SNAP 8. The other two ARD products evaluated consisted of an angular-based radiometric slope correction produced in Google Earth Engine (GEE) following Vollrath et al., and the Sentinel-1 GRD product. Products are evaluated across 10 sites in a single image approach for (1) radiometric calibration, (2) geometric corrections, and for (3) geolocation quality. In addition, time-series stacks over two sites representing varied terrain and ecosystems are evaluated. The GAMMA-derived RTC product implemented by the Alaska Satellite Facility (ASF) is used as a reference for some of the time-series metrics. The results provide direct guidance and recommendations about the quality of the RTC and ARD products obtained from open source methods. The results indicate that it is not recommended to use the GRD product with no radiometric or geometric corrections for any applications given low performance in multiple metrics. The radiometric calibration and geometric corrections have overall good performance for all open-source solutions, only the non-RTC products (Vollrath et al. and GRD) portray some significant variances in steep terrain. The geolocation assessment indicated that the GRD product has the most significant displacement errors, followed by SNAP 8 with Digital Elevation Model (DEM) matching, and ISCE-2. RTCs created without DEM-matching performed better for both GAMMA and SNAP 8. The time-series results indicate that SNAP 8 products align more closely to GAMMA products than other open-source software in terms of radiometric and geometric quality. This understanding of software performance for SAR image processing is key to designing the affordable and scalable solutions needed for the operational application of SAR Sentinel-1 data. Full article
(This article belongs to the Special Issue Advances in Synthetic Aperture Radar Data Processing and Application)
Show Figures

Graphical abstract

17 pages, 3389 KiB  
Article
Similarity and Change Detection of Relief in a Proglacial River Valley (Scott River, SW Svalbard)
by Leszek Gawrysiak and Waldemar Kociuba
Remote Sens. 2023, 15(20), 5066; https://doi.org/10.3390/rs15205066 - 22 Oct 2023
Cited by 1 | Viewed by 1277
Abstract
This study focuses on contemporary geomorphic changes in the proglacial valley floor of the Scott River catchment (northwest of Wedel Jarlsberg Land, southwestern Spitsbergen). The similarity and variability of landforms along the entire 3.3 km length of the unglaciated valley floor was assessed [...] Read more.
This study focuses on contemporary geomorphic changes in the proglacial valley floor of the Scott River catchment (northwest of Wedel Jarlsberg Land, southwestern Spitsbergen). The similarity and variability of landforms along the entire 3.3 km length of the unglaciated valley floor was assessed using precision terrestrial laser scanning (TLS) measurements made in July/August 2010–2013. Digital terrain models (DTMs) were generated from the high-resolution TLS survey data, followed by a geomorphon map, which was then used for a similarity and changes of morphology analysis performed with GeoPAT2 software. The study revealed a large spatial variation of contemporary processes shaping the valley floor and changes in its morphology. Their spatial distribution relates to the geologically determined split of the valley floor into three morphological zones separated by gorges. The upper gorge cuts the terminal moraine rampart, which limits the uppermost section of the valley floor, which is up to 700 m wide and is occupied by the outwash plain. The study showed that this is the area characterised by the greatest dynamics of contemporary geomorphic processes and relief changes. The similarity index value here is characterised by a large spatial variation that in some places reaches values close to 0. In the middle section stretching between the upper gorge (cutting the terminal moraine) and the lower gorge (cutting the elevated marine terraces), a much smaller variability of processes and landforms is observed, and the found changes of the valley floor relief mainly include the area of braided channel activity. Similarity index values in this zone do not fall below 0.65. The lowest section, the mouth of the alluvial fan, on the other hand, is characterised by considerable spatial differentiation. The southern part of the fan is stable, while the northern part is intensively re-shaped and has a similarity index that locally falls below 0.5. The most dynamic changes are found within the active channel system along the entire length of the unglaciated section of the Scott River. The peripheral areas, located in the outer zones of the valley floor, show great stability. Full article
(This article belongs to the Special Issue Recent Advances in GIS Techniques for Remote Sensing)
Show Figures

Figure 1

15 pages, 3471 KiB  
Article
Estimation of Landslide and Mudslide Susceptibility with Multi-Modal Remote Sensing Data and Semantics: The Case of Yunnan Mountain Area
by Fan Yang, Xiaozhi Men, Yangsheng Liu, Huigeng Mao, Yingnan Wang, Li Wang, Xiran Zhou, Chong Niu and Xiao Xie
Land 2023, 12(10), 1949; https://doi.org/10.3390/land12101949 - 20 Oct 2023
Cited by 6 | Viewed by 1753
Abstract
Landslide and mudslide susceptibility predictions play a crucial role in environmental monitoring, ecological protection, settlement planning, etc. Currently, multi-modal remote sensing data have been used for precise landslide and mudslide disaster prediction with spatial details, spectral information, or terrain attributes. However, features regarding [...] Read more.
Landslide and mudslide susceptibility predictions play a crucial role in environmental monitoring, ecological protection, settlement planning, etc. Currently, multi-modal remote sensing data have been used for precise landslide and mudslide disaster prediction with spatial details, spectral information, or terrain attributes. However, features regarding landslide and mudslide susceptibility are often hidden in multi-modal remote sensing images, beyond the features extracted and learnt by deep learning approaches. This paper reports our efforts to conduct landslide and mudslide susceptibility prediction with multi-modal remote sensing data involving digital elevation models, optical remote sensing, and an SAR dataset. Moreover, based on the results generated by multi-modal remote sensing data, we further conducted landslide and mudslide susceptibility prediction with semantic knowledge. Through the comparisons with the ground truth datasets created by field investigation, experimental results have proved that remote sensing data can only enhance deep learning techniques to detect the landslide and mudslide, rather than the landslide and mudslide susceptibility. Knowledge regarding the potential clues about landslide and mudslide, which would be critical for estimating landslide and mudslide susceptibility, have not been comprehensively investigated yet. Full article
(This article belongs to the Special Issue Digital Mapping for Ecological Land)
Show Figures

Figure 1

Back to TopTop