Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,751)

Search Parameters:
Keywords = phase separation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4026 KiB  
Article
Dynamic Light Scattering Microrheology of Phase-Separated Poly(vinyl) Alcohol–Phytagel Blends
by Richa Ghosh, Sarah A. Bentil and Jaime J. Juárez
Polymers 2024, 16(20), 2875; https://doi.org/10.3390/polym16202875 - 11 Oct 2024
Viewed by 1224
Abstract
In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery [...] Read more.
In this investigation, we explored the microrheological characteristics of dilute hydrogels composed exclusively of Poly(vinyl) alcohol (PVA), Phytagel (PHY), and a blend of the two in varying concentrations. Each of these polymers has established applications in the biomedical field, such as drug delivery and lens drops. This study involved varying the sample concentrations from 0.15% to 0.3% (w/w) to assess how the concentration influenced the observed rheological response. Two probe sizes were employed to examine the impact of the size and verify the continuity hypothesis. The use of two polymer blends revealed their immiscibility and tendency to undergo phase separation, as supported by the existing literature. Exploring the microrheological structure is essential for a comprehensive understanding of the molecular scale. Dynamic light scattering (DLS) was chosen due to its wide frequency range and widespread availability. The selected dilute concentration range was hypothesized to fall within the transition from an ergodic to a non-ergodic medium. Properly identifying the sample’s nature during an analysis—whether it is ergodic or not—is critical, as highlighted in the literature. The obtained results clearly demonstrate an overlap in the results for the storage (G’) and loss moduli (G″) for the different probe particle sizes, confirming the fulfillment of the continuum hypothesis. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

14 pages, 3426 KiB  
Article
Multiphase Behavior of the Water + 1-Butanol + Deep Eutectic Solvent Systems at 101.3 kPa
by Isadora Pires Gomes, Nicolas Pinheiro dos Santos, Pedro Bernardes Noronha, Ryan Ricardo Bitencourt Duarte, Henrique Pina Cardim, Erivaldo Antônio da Silva, Renivaldo José dos Santos, Leandro Ferreira-Pinto and Pedro Arce
Molecules 2024, 29(20), 4814; https://doi.org/10.3390/molecules29204814 - 11 Oct 2024
Viewed by 1255
Abstract
The growing demand for more sustainable routes and processes in the mixture separation and purification industry has generated a need to search for innovations, with new solvent alternatives being a possible solution. In this context, a new class of green solvents, known as [...] Read more.
The growing demand for more sustainable routes and processes in the mixture separation and purification industry has generated a need to search for innovations, with new solvent alternatives being a possible solution. In this context, a new class of green solvents, known as deep eutectic solvents (DESs), has been gaining prominence in recent years in both academic and industrial spheres. These solvents, when compared to ionic liquids (ILs), are more environmentally friendly, less toxic, low-cost, and easier to synthesize. In addition, they have significantly lower melting points than their precursors, offering a promising option for various applications in this industrial sector. Understanding and studying the thermodynamic behavior of systems composed of these substances in purification and separation processes, such as liquid–liquid extraction and azeotropic distillation, is extremely important. This work aimed to study the phase behavior of liquid–liquid equilibrium (LLE) and vapor–liquid equilibrium (VLE) of water + 1-butanol + DES (choline chloride + glycerol) systems with a molar ratio of 1:2. Experimental LLE data, obtained at 298.15 K and 101.3 kPa, and VLE data, obtained at 101.3 kPa and in the temperature range of 364.05 K–373.85 K, were submitted to the thermodynamic quality/consistency test, proposed by Marcilla et al. and Wisniak, and subsequently modeled using the gamma–gamma approach for the LLE and gamma–phi for the VLE. The non-random two-liquid (NRTL) model was used to calculate the activity coefficient. The results are presented for the VLE in a temperature–composition phase diagram (triangular prism) and triangular phase diagrams showing the binodal curve and tie lines (LLE). The separation and distribution coefficients of LLE were determined to evaluate the extractive potential of the DES. For the VLE, the values of the relative volatility of the system were calculated, considering the entrainer free-basis, to evaluate the presence or absence of azeotropes in the range of collected points. From these data, it was possible to compare DES with ILs as extracting agents, using data from previous studies carried out by the research group. Therefore, the results indicate that the NRTL model is efficient at correlating the fluid behavior of both equilibria. Thus, this study serves as a basis for future studies related to the understanding and design of separation processes. Full article
Show Figures

Figure 1

13 pages, 7025 KiB  
Article
Structural Build-Up and Stability of Hybrid Monoglyceride–Triglyceride Oleogels
by Kato Rondou, Antonia Dewettinck, Koen Dewettinck and Filip Van Bockstaele
Gels 2024, 10(10), 650; https://doi.org/10.3390/gels10100650 - 11 Oct 2024
Viewed by 945
Abstract
Oleogelation is an alternative oil structuring route to formulate (semi-)solid fats with a reduced amount of saturated fats. Monoglycerides have been identified as effective gelators; however, their application potential can be limited due to challenges regarding mechanical strength and long-term stability. Therefore, the [...] Read more.
Oleogelation is an alternative oil structuring route to formulate (semi-)solid fats with a reduced amount of saturated fats. Monoglycerides have been identified as effective gelators; however, their application potential can be limited due to challenges regarding mechanical strength and long-term stability. Therefore, the formulation of hybrid fat blends is a promising way to improve the functionality of oleogels. This research focuses on the interaction between mono- and triglycerides (MAGs and TAGs) in hybrid oleogels. A total gelator concentration of 10% (w/w) with changing MAGs–TAGs ratios (increase by 25% on a molar basis; M0-T100, M25-T75, M50-T50, M75-T25, M100-T0) was used. First, the oleogels were produced without shear to unravel the crystallization behavior (DSC, SAXS, WAXS). Next, the oleogels were crystallized with shear to assess the interactions between MAGs and TAGs on macroscale properties (rigidity, oil binding capacity) during storage of 1 day, 1 week, and 4 weeks. A clear distinction could be made between the MAG crystals and TAG crystals in the blends M50-T50 and M75-T25 based on WAXS, SAXS, and phase contrast microscopy. This indicates that both gelators crystallize separately. During the follow-up study of the dynamically produced samples, a synergistic effect was found for Dy-M50-T50 and Dy-M75-T25; however, it was not maintained upon storage. The initial rigidity of 2.4 × 104 Pa and 2.0 × 104 Pa decreased to 1.5 × 104 Pa and 1.0 × 104 Pa for Dy-M50-T50 and Dy-M75-T25, respectively. Full article
(This article belongs to the Special Issue Recent Progress on Oleogels and Organogels)
Show Figures

Graphical abstract

11 pages, 457 KiB  
Review
A Review of Recent Advances in Chromatographic Quantification Methods for Cyanogenic Glycosides
by Yao Zhao, Shuai Wen, Yan Wang, Wenshuo Zhang, Xiangming Xu and Yi Mou
Molecules 2024, 29(20), 4801; https://doi.org/10.3390/molecules29204801 - 11 Oct 2024
Viewed by 1454
Abstract
Cyanogenic glycosides are naturally occurring compounds found in numerous plant species, which can release toxic hydrogen cyanide upon hydrolysis. The quantification of cyanogenic glycosides is essential for assessing their potential toxicity and health risks associated with their consumption. Liquid chromatographic techniques coupled with [...] Read more.
Cyanogenic glycosides are naturally occurring compounds found in numerous plant species, which can release toxic hydrogen cyanide upon hydrolysis. The quantification of cyanogenic glycosides is essential for assessing their potential toxicity and health risks associated with their consumption. Liquid chromatographic techniques coupled with various detectors have been widely used for the quantification of cyanogenic glycosides. In this review, we discuss recent advances in chromatographic quantification methods for cyanogenic glycosides, including the development of new stationary phases, innovative sample preparation methods, and the use of mass spectrometry. We also highlight the combination of chromatographic separation with mass spectrometric detection for the identification and quantification of specific cyanogenic glycosides and their metabolites in complex sample matrices. Lastly, we discuss the current challenges and future perspectives in the development of reliable reference standards, optimization of sample preparation methods, and establishment of robust quality control procedures. This review aims to provide an overview of recent advances in chromatographic quantification methods for cyanogenic glycosides and their applications in various matrices, including food products, biological fluids, and environmental samples. Full article
(This article belongs to the Special Issue Analytical Chemistry in Asia)
Show Figures

Figure 1

17 pages, 7822 KiB  
Article
A New Winter Wheat Crop Segmentation Method Based on a New Fast-UNet Model and Multi-Temporal Sentinel-2 Images
by Mohamad M. Awad
Agronomy 2024, 14(10), 2337; https://doi.org/10.3390/agronomy14102337 - 10 Oct 2024
Cited by 2 | Viewed by 1057
Abstract
Mapping and monitoring crops are the most complex and difficult tasks for experts processing and analyzing remote sensing (RS) images. Classifying crops using RS images is the most expensive task, and it requires intensive labor, especially in the sample collection phase. Fieldwork requires [...] Read more.
Mapping and monitoring crops are the most complex and difficult tasks for experts processing and analyzing remote sensing (RS) images. Classifying crops using RS images is the most expensive task, and it requires intensive labor, especially in the sample collection phase. Fieldwork requires periodic visits to collect data about the crop’s physiochemical characteristics and separating them using the known conventional machine learning algorithms and remote sensing images. As the problem becomes more complex because of the diversity of crop types and the increase in area size, sample collection becomes more complex and unreliable. To avoid these problems, a new segmentation model was created that does not require sample collection or high-resolution images and can successfully distinguish wheat from other crops. Moreover, UNet is a well-known Convolutional Neural Network (CNN), and the semantic method was adjusted to become more powerful, faster, and use fewer resources. The new model was named Fast-UNet and was used to improve the segmentation of wheat crops. Fast-UNet was compared to UNet and Google’s newly developed semantic segmentation model, DeepLabV3+. The new model was faster than the compared models, and it had the highest average accuracy compared to UNet and DeepLabV3+, with values of 93.45, 93.05, and 92.56 respectively. Finally, new datasets of time series NDVI images and ground truth data were created. These datasets, and the newly developed model, were made available publicly on the Web. Full article
Show Figures

Figure 1

18 pages, 2991 KiB  
Article
Aqueous Extracts of Rhus trilobata Inhibit the Lipopolysaccharide-Induced Inflammatory Response In Vitro and In Vivo
by Alejandra Jazmín Rodríguez-Castillo, Susana Aideé González-Chávez, Ismael Portillo-Pantoja, Eunice Cruz-Hermosillo, César Pacheco-Tena, David Chávez-Flores, Ma. Carmen E. Delgado-Gardea, Rocío Infante-Ramírez, José Juan Ordaz-Ortiz and Blanca Sánchez-Ramírez
Plants 2024, 13(20), 2840; https://doi.org/10.3390/plants13202840 - 10 Oct 2024
Viewed by 1482
Abstract
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of [...] Read more.
Chronic noncommunicable diseases (NCDs) are responsible for approximately 74% of deaths globally. Medicinal plants have traditionally been used to treat NCDs, including diabetes, cancer, and rheumatic diseases, and are a source of anti-inflammatory compounds. This study aimed to evaluate the anti-inflammatory effects of Rhus trilobata (Rt) extracts and fractions in lipopolysaccharide (LPS)-induced inflammation models in vitro and in vivo. The aqueous extract (RtAE) and five fractions (F2 to F6) were obtained via C18 solid-phase separation and tested in murine LPS-induced J774.1 macrophages. Key inflammatory markers, such as IL-1β, IL-6, TNF-α, and COX-2 gene expression were measured using RT-qPCR, and PGE2 production was assessed via HPLC-DAD. The in vivo effects were tested in an LPS-induced paw edema model in Wistar rats. Results showed that RtAE at 15 μg/mL significantly decreased IL-1β and IL-6 gene expression in vitro. Fraction F6 further reduced IL-1β, TNF-α, and IL-6 gene expression, COX-2 expression, and PGE2 production. In vivo, F6 significantly reduced LPS-induced paw edema, inflammatory infiltration, and IL-1β and COX-2 protein expression. Chemical characterization of F6 by UPLC/MS-QTOF revealed at least eight compounds with anti-inflammatory activity. These findings support the anti-inflammatory potential of RtAE and F6, reinforcing the medicinal use of Rt. Full article
Show Figures

Figure 1

19 pages, 3746 KiB  
Article
Spatiotemporal Evolution of Land Use Structure and Function in Rapid Urbanization: The Case of the Beijing–Tianjin–Hebei Region
by Xiaoyang Li and Zhaohua Lu
Land 2024, 13(10), 1651; https://doi.org/10.3390/land13101651 - 10 Oct 2024
Cited by 1 | Viewed by 990
Abstract
The rapid increase in urbanization is accompanied by the evolution of land use structure and function. Since its reform and opening up, China has entered a stage of rapid urbanization, which has brought about higher requirements in terms of rational allocation within land [...] Read more.
The rapid increase in urbanization is accompanied by the evolution of land use structure and function. Since its reform and opening up, China has entered a stage of rapid urbanization, which has brought about higher requirements in terms of rational allocation within land use structure and the optimization of land use function. However, most existing studies have evaluated the structure and function of land use separately, resulting in a decoupling of the two, and have not accurately depicted the spatiotemporal characteristics of the evolution of land use. Here, based on statistical data and remote sensing image data, we constructed a dual evaluation index system for land use structure and function which uses the characteristics of land use structure to evaluate the property of land use function directly. We used the entropy weight method to characterize the spatiotemporal evolution of urbanization and land use structure and applied a land use function deviation degree model to discuss the evolution path for land use function. Our results showed that the dominant dimension of urbanization changed from eco-environmental urbanization to economic urbanization in the rapid economic development stage. In terms of quantity within land use structure, urban-agricultural-ecological spaces have developed in a synergistic direction. Regarding the quality of land use structure, its development level exhibited an upward trend in Beijing and Hebei, while Tianjin demonstrated a U-shaped development trajectory. With urbanization development, the dominant function of regional land use has evolved to a higher level of synergy in the Beijing–Tianjin–Hebei region. These results offer inspiration for formulating regional dynamic land use policy and phased planning of urbanization development in rapidly urbanizing regions. Full article
Show Figures

Figure 1

13 pages, 1327 KiB  
Article
Development of a UHPLC-MS/MS Method for the Determination of Moxidectin in Rat Plasma and Its Application in Pharmacokinetics
by Hongjuan Zhang, Zhen Yang, Baocheng Hao, Di Wu, Dan Shao, Yu Liu, Wanxia Pu, Shouli Yi, Ruofeng Shang and Shengyi Wang
Molecules 2024, 29(20), 4786; https://doi.org/10.3390/molecules29204786 - 10 Oct 2024
Viewed by 888
Abstract
The aim of the present study was to establish a simple and reliable ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method and apply it for the determination of pharmacokinetics of moxidectin-loaded microspheres (MOX-MS) in rats. Plasma samples were processed using a simplified liquid–liquid [...] Read more.
The aim of the present study was to establish a simple and reliable ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method and apply it for the determination of pharmacokinetics of moxidectin-loaded microspheres (MOX-MS) in rats. Plasma samples were processed using a simplified liquid–liquid extraction method and were separated using an Agilent Zorbax Eclipse Plus C18 column (50 mm × 2.1 mm, 1.8 μm) with a mobile phase consisting of a 10 mM ammonium formate solution with 0.1% formic acid (A) and acetonitrile (B) at a flow rate of 0.4 mL/min for 5 min. Avermectin B1a was used as an internal standard (IS). The sample was injected at a volume of 10 μL with a column temperature of 35 °C and detected in a positive ion mode. A good linear response across the concentration range of 1.00–200 ng/mL (r2 > 0.99) and a lower limit of quantification (LLOQ) of 1.00 ng/mL were achieved. The extraction recovery of moxidectin exceeded 94.1%, the matrix effect was between 91.2% and 96.2%, the accuracy ranged from 100.1 to 103.6%, and the relative standard deviation (RSD) did not exceed 15% for the intra- and inter-day accuracy and precision. The pharmacokinetic results showed that MOX-MS significantly decreased Cmax, prolonged T1/2, and improved bioavailability. The developed method significantly reduced the assay volume, shortened detection time, simplified sample processing methods and saved assay costs, which may contribute to the development of the new antiparasitic drug. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

19 pages, 2979 KiB  
Article
Quantitative Analysis of Ferrate(VI) and Its Degradation Products in Electrochemically Produced Potassium Ferrate for Waste Water Treatment
by Zoltán Homonnay, Sándor Stichleutner, Ernő Kuzmann, Miklós Kuti, Győző G. Láng, Kende Attila Béres, László Trif, Dániel J. Nagy, Gyula Záray and József Lendvai
Appl. Sci. 2024, 14(19), 9144; https://doi.org/10.3390/app14199144 - 9 Oct 2024
Viewed by 1010
Abstract
Potassium ferrate(VI) (K2FeO4) as a particularly strong oxidant represents an effective and environmentally friendly waste water treatment material. When produced by anodic oxidation in highly alkaline aqueous solution, the K2FeO4 product is separated and sealed in [...] Read more.
Potassium ferrate(VI) (K2FeO4) as a particularly strong oxidant represents an effective and environmentally friendly waste water treatment material. When produced by anodic oxidation in highly alkaline aqueous solution, the K2FeO4 product is separated and sealed in inert plastic bags with the retention of some liquid phase with high pH. This method proved to be excellent for long-term storage at moderately low temperature (5 °C) for industrial applications. It is still imperative to check the ferrate(VI) content of the product whenever it is to be used. Fe-57 Mössbauer spectroscopy is an excellent tool for checking the ratio of ferrate(VI) to the degradation product iron(III) in a sample. For this purpose, normally the spectral areas of the corresponding subspectra are considered; however, this approximation neglects the possible differences in the corresponding Mössbauer–Lamb factors. In this work, we have successfully determined the Mössbauer–Lamb factors for the ferrate(VI) and for the most common iron(III) degradation products observed. We have found superparamagnetic behavior and low-temperature phase transformation for another iron(III) degradation product that made the determination of the Mössbauer–Lamb factors impossible in that case. The identities of a total of three different iron(III) degradation products have been confirmed. Full article
Show Figures

Figure 1

16 pages, 3414 KiB  
Article
Green and Sensitive Analysis of the Antihistaminic Drug Pheniramine Maleate and Its Main Toxic Impurity Using UPLC and TLC Methods, Blueness Assessment, and Greenness Assessments
by Nessreen S. Abdelhamid, Huda Salem AlSalem, Faisal K. Algethami, Eglal A. Abdelaleem, Alaa M. Mahmoud, Dalal A. Abou El Ella and Mohammed Gamal
Chemosensors 2024, 12(10), 206; https://doi.org/10.3390/chemosensors12100206 - 9 Oct 2024
Viewed by 1027
Abstract
For the first time, two direct and eco-friendly chromatographic approaches were adapted for the simultaneous estimation of pheniramine maleate (PAM) and its major toxic impurity, 2-benzyl pyridine (BNZ). Method A used reversed-phase ultra-performance liquid chromatography; separation was achieved within 4 min using a [...] Read more.
For the first time, two direct and eco-friendly chromatographic approaches were adapted for the simultaneous estimation of pheniramine maleate (PAM) and its major toxic impurity, 2-benzyl pyridine (BNZ). Method A used reversed-phase ultra-performance liquid chromatography; separation was achieved within 4 min using a C18 column with a developing system of methanol/water (60:40 v/v) with a 0.1 mL/min flow rate. Photodiode array detection was adjusted at 215 nm. The method was linear in the ranges of 5.0–70.0 and 0.05–10.0 µg/mL for PAM and BNZ, correspondingly. Method B used thin-layer chromatography; separation was applied on silica gel TLC F254 using ethanol/ethyl acetate/liquid ammonia (8:2:0.1, in volumes) at room temperature, at 265 nm. Linearity was assured at concentration ranges 0.5–8.0 and 0.1–3.0 µg/band for the two components, respectively. Generally, the new UPLC and TLC methods outperform the old ones in terms of quickness, greenness, and sensitivity. Concisely, the greenness features were partially achieved using the Green Analytical Procedure Index (GAPI) and the Analytical Greenness (AGREE) pictograms. In contrast, the usefulness of the novel approaches was assured via the Blue Applicability Grade Index (BAGI) tool. Full article
(This article belongs to the Special Issue Green Analytical Chemistry: Current Trends and Future Developments)
Show Figures

Graphical abstract

26 pages, 881 KiB  
Article
Lattice Boltzmann Model for Rarefied Gaseous Mixture Flows in Three-Dimensional Porous Media Including Knudsen Diffusion
by Michel Ho, Jean-Michel Tucny, Sami Ammar, Sébastien Leclaire, Marcelo Reggio and Jean-Yves Trépanier
Fluids 2024, 9(10), 237; https://doi.org/10.3390/fluids9100237 - 9 Oct 2024
Viewed by 3520
Abstract
Numerical modeling of gas flows in rarefied regimes is crucial in understanding fluid behavior in microscale applications. Rarefied regimes are characterized by a decrease in molecular collisions, and they lead to unusual phenomena such as gas phase separation, which is not acknowledged in [...] Read more.
Numerical modeling of gas flows in rarefied regimes is crucial in understanding fluid behavior in microscale applications. Rarefied regimes are characterized by a decrease in molecular collisions, and they lead to unusual phenomena such as gas phase separation, which is not acknowledged in hydrodynamic equations. In this work, numerical investigation of miscible gaseous mixtures in the rarefied regime is performed using a modified lattice Boltzmann model. Slip boundary conditions are adapted to arbitrary geometries. A ray-tracing algorithm-based wall function is implemented to model the non-equilibrium effects in the transition flow regime. The molecular free flow defined by the Knudsen diffusion coefficient is integrated through an effective and asymmetrical binary diffusion coefficient. The numerical model is validated with mass flow measurements through microchannels of different cross-section shapes from the near-continuum to the transition regimes, and gas phase separation is studied within a staggered arrangement of spheres. The influence of porosity and mixture composition on the gas separation effect are analyzed. Numerical results highlight the increase in the degree of gas phase separation with the rarefaction rate and the molecular mass ratio. The various simulations also indicate that geometrical features in porous media have a greater impact on gaseous mixtures’ effective permeability at highly rarefied regimes. Finally, a permeability enhancement factor based on the lightest species of the gaseous mixture is derived. Full article
(This article belongs to the Special Issue Rarefied Gas Flows: From Micro-Nano Scale to Hypersonic Regime)
Show Figures

Figure 1

9 pages, 592 KiB  
Study Protocol
Effects of Sucralose Supplementation on Glycemic Response, Appetite, and Gut Microbiota in Subjects with Overweight or Obesity: A Randomized Crossover Study Protocol
by Zeniff Reyes-López, Viridiana Olvera-Hernández, Meztli Ramos-García, José D. Méndez, Crystell G. Guzmán-Priego, Miriam C. Martínez-López, Carlos García-Vázquez, Carina S. Alvarez-Villagomez, Isela E. Juárez-Rojop, Juan C. Díaz-Zagoya and Jorge L. Ble-Castillo
Methods Protoc. 2024, 7(5), 80; https://doi.org/10.3390/mps7050080 - 7 Oct 2024
Viewed by 1927
Abstract
Sucralose stands as the most common non-nutritive sweetener; however, its metabolic effects have sparked significant controversy over the years. We aim to examine the effects of sucralose daily intake on glycemia, subjective appetite, and gut microbiota (GM) changes in subjects with overweight or [...] Read more.
Sucralose stands as the most common non-nutritive sweetener; however, its metabolic effects have sparked significant controversy over the years. We aim to examine the effects of sucralose daily intake on glycemia, subjective appetite, and gut microbiota (GM) changes in subjects with overweight or obesity. In this randomized, crossover, and controlled trial, 23 participants with a body mass index between 25 kg/m2 and 39.9 kg/m2 will be assigned to one of two interventions to receive either sucralose (2 mg/kg/day equivalent to 40% of the acceptable daily intake) or glucose (control) for 4 weeks, each phase separated by a 4-week washout period. The glycemic response will be determined during a meal tolerance test, subjective appetite will be evaluated using a visual analog scale, and GM changes will be analyzed by next-generation sequencing of the bacterial rRNA 16S gene from fecal samples. All measures will be performed before and after intervention periods. We hypothesize that sucralose supplementation induces changes in glycemic response, subjective appetite, and gut microbiota in overweight and obese participants. This protocol was approved by the Ethics Committee of the UJAT (No. 0721) and was registered in the Australian New Zealand Clinical Trials Registry (ACTRN12621001531808). Full article
(This article belongs to the Section Public Health Research)
Show Figures

Figure 1

12 pages, 1991 KiB  
Article
The HPLC–PDA Method for Simultaneous Determination of Regalosides from Bulbs of Lilium lancifolium Thunb. and Their Antioxidant Effects
by Chang-Seob Seo, No Soo Kim and Kwang-Hoon Song
Plants 2024, 13(19), 2793; https://doi.org/10.3390/plants13192793 - 5 Oct 2024
Cited by 1 | Viewed by 832
Abstract
Lilium lancifolium Thunb. is a herbal medicine that is widely used to treat inflammation and lung diseases. In this study, a simultaneous quantitative method was developed for the quality control of BLL using high-performance liquid chromatography coupled with a photodiode array detector (HPLC–PDA), [...] Read more.
Lilium lancifolium Thunb. is a herbal medicine that is widely used to treat inflammation and lung diseases. In this study, a simultaneous quantitative method was developed for the quality control of BLL using high-performance liquid chromatography coupled with a photodiode array detector (HPLC–PDA), and their antioxidant effects were evaluated. Eight regalosides (i.e., regaloside A, B, C, E, F, H, I, and K) were selected as marker substances and separated on a Gemini C18 reversed-phase analytical column by gradient elution with distilled water–acetonitrile mobile phase containing 0.1% (v/v) formic acid. The method was validated with respect to linearity, sensitivities (limit of detection (LOD) and limit of quantitation (LOQ)), accuracy, and precision. The antioxidant effects of the extract and each component were evaluated using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay and 2-2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay. The coefficients of determination values used as indicators of linearity for all components were ≥0.9999. LOD and LOQ concentrations were 0.10–0.66 μg/mL and 0.29–2.01 μg/mL, respectively. The recovery was 95.39–103.925% (relative standard deviation; RSD ≤ 2.55%), and precision RSD was <2.78%. The HPLC–PDA method was applied to real samples, and all components were detected at 1.12–29.76 mg/freeze-dried g. The evaluation of antioxidant effects showed that regalosides C, E, and K exhibited significant antioxidant effects. Our knowledge will be appropriately utilized in raw material management and conducting clinical and non-clinical studies on L. lancifolium or herbal medicine prescriptions containing L. lancifolium. Full article
Show Figures

Figure 1

25 pages, 3928 KiB  
Review
Overview of Theory, Simulation, and Experiment of the Water Exit Problem
by Hualin Zheng, Hongfu Qiang, Yujie Zhu and Chi Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1764; https://doi.org/10.3390/jmse12101764 - 5 Oct 2024
Cited by 1 | Viewed by 991
Abstract
The water exit problem, which is ubiquitous in ocean engineering, is a significant research topics in the interaction between navigators and water. The study of the water exit problem can help to improve the structural design of marine ships and underwater weapons, allowing [...] Read more.
The water exit problem, which is ubiquitous in ocean engineering, is a significant research topics in the interaction between navigators and water. The study of the water exit problem can help to improve the structural design of marine ships and underwater weapons, allowing for better strength and movement status. However, the water exit problem involves complex processes such as three-phase gas–liquid–solid coupling, cavitation, water separation, liquid surface deformation, and fragmentation, making it challenging to study. Following work carried out by many researchers on this issue, we summarize recent developments from three aspects: theoretical research, numerical simulation, and experimental results. In theoretical research, the improved von Karman model and linearized water exit model are introduced. Several classical experimental devices, data acquisition means, and cavitation approaches are introduced in the context of experimental development. Three numerical simulation methods, namely, the BEM (Boundary Element Method), VOF (Volume of Fluid), and FVM (Finite Volume Method) with LES (Large Eddy Simulation) are presented, and the respective limitations and shortcomings of these three aspects are analyzed. Finally, an outlook on future research improvements and developments of the water exit problem is provided. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 3767 KiB  
Article
A Survey on Enterprise Resource Planning and Building Information Modeling Integration: A Construction 4.0 Perspective
by Anagha Anirudh Galagali, Sayali Sandbhor and Kirti Ruikar
Buildings 2024, 14(10), 3165; https://doi.org/10.3390/buildings14103165 - 4 Oct 2024
Viewed by 1607
Abstract
Managing the fragmented nature of information generated on construction sites and firms is the need of the hour. Building Information Modeling (BIM) and Enterprise Resource Planning (ERP) are the most prevalent information systems (ISs) used in the construction industry, with varied capabilities but [...] Read more.
Managing the fragmented nature of information generated on construction sites and firms is the need of the hour. Building Information Modeling (BIM) and Enterprise Resource Planning (ERP) are the most prevalent information systems (ISs) used in the construction industry, with varied capabilities but also with significant overlap. It is essential to analyze the current state of Common Data Environments (CDEs) that support both BIM and ERP as separate systems, as well as those that facilitate their integration. This analysis will ultimately help establish a practical framework for implementing this integration, enabling smoother information flow and enhanced utilization in construction projects. This paper presents a bibliometric analysis and provides a global perspective on research developments in the field of construction ERP and its integrations with BIM. It consolidates publication data from various databases (e.g., Scopus and Web of Science) as per geographical spread, authors, and number of publications as per the keyword search. It observes key research themes in each phase of the analysis. This paper concludes that although the existing literature has established the benefits of BIM and ERP integration, research is still in its nascent stage and identifies research gaps that can be taken up for further research. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

Back to TopTop