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Abstract: Learning-based localization plays a significant role in wireless indoor localization problems over 

deterministic or probabilistic-based methods. Recent works on machine learning-based indoor localization show the 

high accuracy of predicting over traditional localization methods existing. This paper presents a Received Signal 

Strength (RSS) based improved localization method called TreeLoc(Tree-Based Localization). This novel method is 

based on ensemble learning trees. Popular Decision Tree Regressor (DTR), Random Forest Regression (RFR), and 

Extra Tree Regressor have been investigated to develop the novel TreeLoc method. Out of the tested algorithm, the 

TreeLoc algorithm showed better performances in position estimation for indoor environments with RMSE 8.79 for the 

x coordinate and 8.83 for the y coordinate. 

 

Index Terms: Indoor Localization, Machine Learning, Internet of Things, Ensemble Learning, Wireless Sensor 

Networks. 

 

 

1. Introduction 

Location-Based Services (LBS) are considered primary applications in the Internet of Things (IoT) systems. The 

recent advancement of IoT has enabled many of the applications in almost every day to day scenario. However, 

fluctuations and multipath effects, such as Global Positioning Systems (GPS), cannot work effectively in indoor 

environments such as buildings [1]. Therefore, several types of indoor positioning technologies have been proposed. 

For example, elderly care, indoor robot navigation applications, ambient assisted living applications could be 

considered. In all applications above mentions are location-based services. The location-based IoT applications can find 

the real-time location of a moving human, object, or animal. Many localization techniques and algorithms have been 

proposed in the literature to find the real-time location of a sensor node in an IoT system. Most of the existing works for 

indoor localization are based on deterministic algorithms [2-5]. The main drawback of using deterministic or 

probabilistic algorithms is less efficiency, low prediction accuracy, and difficulty implementing on real IoT devices. In 

recent contributions to indoor localization, machine learning-based techniques have been introduced as an alternative 

solution. Many of them are based on supervised learning, and also there are some novel algorithms as well [6-8]. And 

compare deterministic methods and machine learning methods in [9-10]. The main objective of this work is to develop a 

novel algorithm with improved accuracy that can be used for indoor localization applications in IoT. 

Results in [8-12] show the performance of using tree-based supervised algorithms in localization. Further, 

Decision Tree Regression (DTR), Extra Tree Regressor (ETR), and Random Forest Regressor (RFR) have been 

identified as the highly accurate supervised learning algorithms for indoor localization. Therefore, in our work, we 

intend to optimize tree-based algorithm usage further to build a novel algorithm. 

In this work, it has been modified the experimental testbed used in [9]. The testbed consists of three reference 

nodes and one target node. The main limitations of this testbed are the limited number of references nodes and the 

environment is affected by multipath fading. In this work, we proposed a novel ensemble learning-based approach to 

finding the optimal location using a combination of algorithms Decision Tree Regression (DTR), Extra Tree Regressor 

(ETR), and Random Forest Regressor.  

The rest of the paper has been organized as follows. Section II presents the fundamentals of RSS-based 

localization. Section III presents the experimental setup and dataset used in this work. Section IV presents the data pre-

processing techniques applied. Section V presents the development of the novel TreeLoc algorithm, while section VI 
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shows the results. 

2. Received Signal Strength (RSS)-Based Indoor Localization. 

Received Signal Strength (RSS) is considered a type of signal measurement in indoor localization, and RSS-based 

measurements have been widely used in many localization systems [6-8]. The relationship between the Received Signal 

Strength Indicator (RSSI) and the distance is the key to any wireless-based ranging and localization system. RSSI-based 

position systems use three kinds of propagation models of free space model, bidirectional surface reflection, and log-

normal shadowing (LNSM) [9]. As an improved RSSI-based ranging model, we can use the LNSM, which can use for 

practical applications [11]. It can be defined as; 

 

𝑃𝑟𝛼
𝑝𝑡

𝑝𝑎                                                                                        (1) 

 

where; Pr - Received Signal Pt - Transmit Signal Power d – distance 

𝛼 – distance power gradient can be found using a table (specific for the environment). According to [8], Eq. 2 can be 

simplified to get the improved version of LNSM to show the relationship between the RSSI and distance. 

 

𝑅𝑆𝑆𝐼 = −(10𝑛log𝑑 + 𝐴)                                                                        (2) 

 

Where;d – the distance from the mobile/target node to the reference node, n - Signal propagation constant, and A - 

Received Signal strength at 1m distance. 

According to [12-15], trilateration techniques have been used widely to estimate the RSSI-based indoor 

localization. The time of arrival (TOA) [17] and time difference of arrival (TDOA) [14] are primarily time-based 

systems that need define with the transmission time. The angle-based arrival angle (AOA) [15] system needs the highly 

sophisticated directional antenna in beacon nodes to measure angles. Considering the performances of the above range-

based techniques used in the literature, RSSI is outperformed. Moreover, techniques such as AoA and TODA need 

additional hardware to take measurements. 

3.  Experimental Setup and Data Collection 

We used the same testbed in [8] and [9]. This experimental testbed has been set up in an electronic lab with an 8.02 

square meter area spanning an open space surrounded by walls. There are three reference nodes placed at the fixed 

locations and one mobile sensor node. This mobile sensor node considers as our target node to predict the site. The 

mobile sensor node was kept at 32 different locations from time to time and collected corresponding RSSI values 

receiving at references nodes.  

This experimental testbed is consists of few references nodes and a mobile node developed using microcontrollers. 

As per fig. 1, RSSI values at the three reference nodes at a particular position of a mobile node will be transmitted to an 

IoT cloud via a broadband router. The IoT cloud platform is used to integrate the platform with the remote localization 

model over the internet. Further, the cloud platform is a globally distributed MQTT broker which publishes the 

information acquired to a remote server. The collected data transfer between the hardware platform and the remote 

server is accomplished by Wi-Fi and internet technologies, respectively. The ESP8266 has been used to design and 

develop the mobile and reference nodes in the testbed. ESP8266 is a Wi-Fi module popular for Internet of Things 

applications [9]. This module has a wireless Wi-Fi transceiver that operates in the IEEE 802.11 b/g/n standard in an 

unlicensed frequency range of 2400-2484 MHz, supporting the TCP/IP communication protocol stack and Wi-Fi 

security supporting WAP3. 

The system overview of the testbed is shown in figure 3. The RSSI data collected at the mobile sensor node over a 

private Wi-Fi network is published over the internet, a public network. The three-level architecture used in IoT consists 

of the sensory, network, and application layers. The sensory layer is responsible for publishing the received signal level 

to the mobile node. The network layer is the middle layer used as the transporter of the RSSI from mobile to the IoT 

cloud. The network layer links the RSSI with the remote cloud storage—the application layer used to collect the RSSI 

data remotely in CloudMQTT. The eclipse plugin is used to remotely collect the RSSI data in the CloudMQTT database 

for 2D localization [9]. This state-of-art testbed can be implemented for any indoor environment. This architecture 

provides the feasibility to expand the number of reference nodes. Therefore the size of the testbed is scalable. For 

example, this testbed could use an indoor application such as elderly activity monitoring, tracking the location of people 

in a shopping complex, track the location of animals in indoor types farms, etc. Moreover, these sensor nodes are 

designed on unlicensed 802.11g/802.11b. 
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Fig.1. Systems overview of the testbed. 

4.  Data pre-processing  

As RSSI readings are susceptible to noise, data filtering is required. In this experiment, the outliers in the dataset 

were removed using moving average filters. 

Figure 2 shows the raw values of RSSI data collected from three reference nodes for 32 different locations where 

the RSSI values fluctuate within the range -80 to -20. As per Figure 2, The RSSI's randomness can cause a lot of 

volatility in the RSSI result. As a result, smoothing the RSSI obtained in real-time is required to lessen the likelihood of 

localization inaccuracy. The moving average filter can be explained as follows [20]. 

Let us consider the following dataset. 

 

𝑅𝑆𝑆𝐼0 = [𝑅𝑆𝑆𝐼0(1), 𝑅𝑆𝑆𝐼0(2), … 𝑅𝑆𝑆𝐼0(𝑛) ]                                                       (3) 

 

Where RSSI0 corresponds to the n
th

 RSSI observed around the target sensor node, now, take the final ten items in 4 

and average them as follows: 

 

𝑅𝑆𝑆𝐼1 = [𝑅𝑆𝑆𝐼1(1), 𝑅𝑆𝑆𝐼1(2), … 𝑅𝑆𝑆𝐼1(𝑛 − 9) ]                                                   (4) 

 
Where, 

 

𝑅𝑆𝑆𝐼𝑘 = ∑ 𝑅𝑆𝑆𝐼0

𝑘 + 9
(𝑚)

𝑚 = 𝑘

       𝑎𝑛𝑑    𝑘 > 1  

 

When the RSSI sample is less than 10, we take the average of all the samples; hence, there will be no delay in real-

time position estimation. The result after applying the moving average filter is shown in Figure 3. It is observed that a 

considerable number of outliers have been removed from the original signal once filtered. 
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Fig.2. RSSI data without filtering 

 
Fig.3. RSSI data after filtering 

 5. Model Development 

5.1. Decision Tree Regression (DTR) 

Decision Tree Regressor is a structured type classifier with types of nodes. This structure consists of the root nodes 

and the interior nodes. The root node represents the whole sample in the dataset, and it splits the entire dataset into sub-

nodes. The interior nodes representing the features of a dataset, and decision rules are marked on the branches. The leaf 

nodes define the outcomes. There could be a linear, non-linear or complex relationship between labels and the features. 

The number of trees could significantly affect the prediction results. In our model, we have used 40 trees. [17-19]. 
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5.2. Extra Tree Regressor (ETR) 

Extremely Randomize Tree Regression (Extra Trees Regression) is a machine learning approach that combines the 

output predictions of multiple decision trees into a single forecast. It uses a meta estimator that fits several randomized 

decision trees on various subsamples of the dataset. During the model training, we used ten estimators. Further, it 

employs a more straightforward approach to create the decision trees used as ensemble members. It can often produce 

as good as or better performance than the random forest algorithm. It's also simple to use, as it just has a few key 

hyperparameters and logical heuristics for tuning them. The Extra Trees approach uses the training dataset to generate a 

massive number of unpruned decision trees. In the case of regression, predictions are made by averaging the forecast of 

the decision trees [17-19]. 

5.3.Random Forest Regressor (RFR) 

Random Forest Regressor consisting many decision trees, and its consider an ensemble-type machine learning 

algorithm. A subset of data will be used to train each tree in a random forest. The predictions of each decision tree will 

be averaged to have the final prediction. Therefor this algorithm is generally powerful than the decision tree algorithm. 

Few advantages of this algorithm include handling missing values, efficiently handling non-liner paraments, robust 

outliers of the dataset, and being less impacted by the noises. In our model, we used 100 forests during the simulations 

[17-19]. 

5.4. TreeLoc Algorithm 

This technique ha a approach on boosting-ensemble method. An ensemble method is a technique that combines the 

predictions from multiple machine learning algorithms together to make more accurate predictions than any individual 

model. Few works existing on applying ensemble learning to indoor localization problems [20-23]. In general boosting, 

it uses a weighted averaging principle to calculate the final prediction [20]. The working of TreeLoc algorithms is 

shown in figure 6. The full dataset is split into an equal three positions (33.33% each) and fed to the ETR, DTR, and 

RFR algorithms. The prediction of x and y coordinates from each algorithm is fed into the TreeLoc algorithm. Where 

TreeLoc will calculate the optimal coordinates again by performing the multiple linear regression. Where coordinates of 

x and y are generated, each algorithm will use as an independent variable and actual coordinates as the dependent 

variable to generate the final coordinates. The Eq. x and Eq.x show how final coordinates are calculated. 

 

 

X𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑎 + 𝑊1 × 𝑥𝐸𝑇𝑅 + 𝑊2 × 𝑥𝐷𝑇𝑅 + 𝑊3 × 𝑥𝑅𝐹𝑅                                       (5) 

 

y𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = 𝑏 + 𝑊1 × 𝑦𝐸𝑇𝑅 + 𝑊2 × 𝑦𝐷𝑇𝑅 + 𝑊3 × 𝑦𝑅𝐹𝑅                                       (6) 

 

W1, W2, and W3 are the corresponding weighted values for ETR, RFR, and DTR, respectively. 

 

 

Fig.4. TreeLog algorithm 
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6. Model Training and Evaluation  

Initially, ETR, RFR, and DTR algorithms were computed to observe the performance in location predictions. One 

thousand seven hundred seventy-six of RSSI data was received from three references nodes used to train the algorithms. 

The proposed model in section 5 is developed on Jupiter Notebook in python3 environment. And it shows Root Mean 

Squared (RMSE) and R
2
 values as per table 1. 

Table 1. Comparison of RMSE and R2   of algorithms 

Algorithm  RMSE R2 

x coordinate y coordinate x coordinate y coordinate 

ETR 8.94 9.48 0.9923 0.9184 

RFR 29.14 29.09 0.8822 0.9046 

DTR 29.33 28.52 0.8952 0.0834 

TreeLoc 8.79 8.83 0.9249 0.9244 

 

When considering the prediction results of the above three algorithms, all the algorithms are performed very well 

in terms of accuracy. All the algorithm shows the error which is less than 30cm. However, when observing the 

prediction results of all x and y coordinates in individual algorithms mentioned above, each algorithm gives the best 

prediction in an ad hoc way. Therefore, TreeLoc is introduced to optimize this by taking a weighted average and re-

computing the coordinates by performing a multiple linear regression. As per this experiment, obtained models for final 

x and y are presented in Eq. 7 and 8. 

 

X𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = −0.9494 + 0.8036 × 𝑥𝐸𝑇𝑅 + 0.5476 × 𝑥𝐷𝑇𝑅 + 0.5212 × 𝑥𝑅𝐹𝑅                     (7) 

 

y𝑓𝑖𝑛𝑎𝑙𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 = −0.8348 + 0.8922 × 𝑦𝐸𝑇𝑅 + 0.5937 × 𝑦𝐷𝑇𝑅 + 0.5292 × 𝑦𝑅𝐹𝑅                     (8) 

7. Conclusions  

In this paper, we propose a novel ensemble-learning-based technique for the indoor localization problem. Popular 

tree-based algorithms, namely Decision Tree Regression (DTR), Extra Tree Regressor (ETR), and Random Forest 

Regressor (RFR), are used to build a novel TreeLoc algorithm. Though ETR is outperformed during individual 

simulations, RFR and DTR also give the best predictions for some samples in an ad-hoc way when observing the 

prediction results. In the TreeLoc algorithm, we introduced a weighted average mechanism to optimize a location. 

Simulation results show that the TreeLoc algorithm could provide an 8.79m error for x coordinates and an 8.83m error 

for y coordinates.  
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