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Abstract: Machine learning is now being used for applications ranging from healthcare to network security. However, 

machine learning models can be easily fooled into making mistakes using adversarial machine learning attacks. In this 

article, we focus on the evasion attacks against Network Intrusion Detection System (NIDS) and specifically on 

designing novel adversarial attacks and defenses using adversarial training. We propose white box attacks against 

intrusion detection systems. Under these attacks, the detection accuracy of model suffered significantly. Also, we 

propose a defense mechanism against adversarial attacks using adversarial sample augmented training. The biggest 

advantage of proposed defense is that it doesn’t require any modification to deep neural network architecture or any 

additional hyperparameter tuning. The gain in accuracy using very small adversarial samples for training deep neural 

network was however found to be significant. 

 

Index Terms: Network Intrusion Detection System, Adversarial Machine Learning, Robust Machine Learning, 

Network Security, Deep Neural Network. 

 

 

1.  Introduction 

Increase in sophistication of network hacks have led to use of more sophisticated and intelligent counter attack 

tools. 

One of such tools is a Network Intrusion Detection Systems (NIDS). NIDS monitors all incoming network traffic, 

inspects the packet headers and metadata, and filters out malicious data packets. Traditionally NIDS relied on 

attack signatures to detect the malicious content. However, as the network attacks became more and more sophisticated 

NIDS are now relying on machine learning algorithms to detect zero day attacks. Machine Learning(ML) algorithms 

used by NIDS range from simple Decision Trees, Random Forests to complex Deep Neural Networks (DNN) models. 

However, ML algorithms are not a panacea for all types of attacks and they themselves could be victim of Adversarial 

Example attacks. Adversarial examples are malicious inputs to ML models with an intention of deceiving the ML 

models to misclassify input examples.  

Most of the current research in adversarial machine learning has been focused on computer vision tasks such image 

classification or object detection using Convolutional Neural Network (CNN). Our main contributions through this 

article is to apply adversarial machine learning attacks specifically, adversarial example attacks against NIDS based on 

deep neural networks. Additionally, we propose the defense mechanism against these attacks using adversarial example 

augmented training of neural network.  

Rest of the paper is organized as follows. In section 2 we present current research in the area of applying deep 

learning and adversarial machine learning techniques to the problem of Network Intrusion Detection. Section 3, 

presents proposed methodology for adversarial example attacks. Section 4 details the dataset used for experimental 

evaluation of proposed methodology. Section 5 provides the results and discussion followed by conclusion. 

2.  Related Work 

Network security is fast moving and actively researched area. Network intrusion detection systems are no 

exception. Use of machine learning to increase effectiveness of NIDS has been actively researched and deployed since 

last more than a decade. This section provides high level overview of the different machine learning techniques 
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proposed in research literature as well as looks at the various adversarial attacks on these systems and defenses against 

adversarial attacks. 

For the literature survey, search was done using keywords as, “Network Intrusion Detection System”, “Machine 

Learning for Network Intrusion Detection System”, “Adversarial Machine Learning”, “Defenses against Adversarial 

Machine Learning”. 

2.1.  Machine Learning Based NIDS 

In this section, we outline recent work done creating NIDS system using various Machine Learning(ML) 

approaches ranging from decision trees, Support Vector Machines(SVM), Artificial Neural Networks(ANN) as well as 

ensemble techniques such as Random Forests.  

Sakr et al. [1] proposed using Support Vector Machine (SVM) for the classification of benign and malicious traffic 

based on the feature selection by using population based algorithms such as Genetic Algorithms, Artificial Bee Colony 

(ABC) and Particle Swarm Optimization (PSO) algorithm in combination with Principal Component Analysis (PCA), 

and Correlation Feature Selection (CFS) were used. They relied on NSL-KDD data for evaluating the proposed 

classifier against other methods of feature selection. They found that NIDS classification using ABC outperformed 

other methods of feature selection. In another work, authors used similar approach for selecting most relevant feature 

using Binary-PSO and obtained significant results [2]. 

Barot et al. [3] used Naïve Bayes and Decision Table classification technique for implementing NIDS. For feature 

selection Chisquare, Information Gain based and Correlation based methods used. Instead of binary classification they 

formulated as a problem involving multiple output classes. Correlation based feature selection (CFS) algorithms 

outperformed other methods of feature selection with decision table classifier. 

Anomaly detection techniques has been popular in NIDS. Karuppanchetty et al. [4] used anomaly detection using 

artificially augmented dataset for training purpose.  

For NSL KDD dataset Panda et al. [5] conducted various experiments on using classic machine learning 

algorithms. Algorithms applied include decision trees (J48), Naive Bayes and their variants as well as ensemble ML 

techniques such as Naive Bayes with Ada boost. With ensemble method, Discriminative Multinomial Naive Bayes + 

N2B got detection accuracy of 96.5%. 

Considering the high dimensionality of the data much of the research work also has gone into selecting most 

appropriate features for training the ML model. Wang et al. used Support Vector Machines (SVM) models and for 

feature selection used Efficient Correlation Based Feature Selection (ECOFS) method [6]. In this method, each feature's 

contribution to the target class computed using Information Gain. They have found the performance of the SVM based 

IDS to have better performance compared to features selected using conventional Pearson Correlation Coefficient (PCC) 

based models. Mukeri et al. [7] used Principal Component Analysis (PCA) for feature reduction for NSL KDD data 

followed by SVM classifier that showed an accuracy of 85% on training data and 83% on PCA processed data. 

Tao et al. [8] proposed FWP-SVM-genetic algorithm (GA) (feature selection, weight, and parameter optimization 

of support vector machine based on the genetic algorithm). In this work, Tao et al. have used Genetic Algorithm (GA) 

for feature selection using novel fitness function that includes classification accuracy, number of features and the 

number of support vectors to choose the features for training SVM based classifier. They found reduction in error rate 

and improved classification time. 

Vijayanand et al. [9] devised Whale Optimization Algorithm (WOA) for feature selection. Using this algorithm, 

for CICIDS2017 dataset features were reduced from 77 to 35 and for ADFA-LD dataset it was reduced from 44 to 25. 

They obtained accuracy of 95.91% on test data on CICIDS2017 and 94.44% on ADFA-LD. 

Tama et al. [10] introduced hybrid feature selection method by making use of three bio-inspired algorithms viz. 

Particle Swarm Optimization (PSO), Ant Colony (AC) algorithm, and genetic algorithms. For NSL KDD dataset 37 out 

of 42 features and for UNSW-NB15 19 features out of 42 features were selected using this hybrid approach. A two-

level classifier ensemble based on rotation forest and bagging, is proposed. They obtained accuracy of 85.85 % on NSL 

KDD dataset and 95.28% on UNSW-NB15 dataset. 

Since most of the real-world network traffic has very less to no malicious network traffic. This gives rise to an 

imbalanced dataset. Yulianto et al. [11] used Synthetic Minority Oversampling Technique (SMOTE) to address this 

issue. They have used Principal Component Analysis (PCA), and Ensemble Feature Selection (EFS) to feature selection 

and AdaBoost classifier for CICIDS 2017 dataset and obtained F1 Score of 81.83%. 

More recently deep neural network based methods have been leveraged for NIDS. Since deep learning is 

representational learning it doesn’t require feature selection. This is the biggest advantage of using deep learning 

approach over other traditional statistical machine learning approaches. Yin et al. [12] developed an NIDS based on 

Recurrent Neural Networks (RNN) and tested it on the NSL KDD dataset. Unlike feed forward NN, RNN remembers 

prior information and applies it to the current input data. 

Convolution Neural Networks (CNN) are the specialized NN that have seen great success in the area of computer 

vision. Vinayakumar et al. [13] modeled the TCP/IP packets as time event sequences and used more complex CNN 

variants such as CNN-recurrent neural network (CNN- RNN), CNN-long short-term memory (CNN- LSTM) and CNN-
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gated recurrent unit (GRU). They showed that it also outperforms traditional machine learning approaches on NSL 

KDD dataset. Similar approach was taken by (P. Sun et al. 2020) and yielded accuracy of 98.67% on CICIDS2017. 

Yuan et al. [14] proposed a system for detection of DDoS attacks. In this method, they have used Bag of Words for 

text fields. In order to consider the temporal aspect of the network traffic flow they argue that RNN is better 

architectural choice for detecting attacks. They used Bidirectional RNN with both LSTM and GRU. The dataset used 

was ISCX2012. They reported reduced error rate compared to other deep learning or machine learning methods. For the 

class of NIDS that depends on signature based malware detection Sohi et al. [15] proposed RNN to generate new 

examples for testing and improving NIDS. 

To address the issue of high dimensionality Liu et al. [16] proposed the use of Sparse Auto Encoder for 

compressing the traffic flows and classification using Random Forest. They also further added the compressed flows to 

a database for later reconstruction of original traffic or for debugging purpose through a feedback mechanism. This 

system was tested using CICIDS2017 and was found to have better detection accuracy. Similar feature compression 

technique was employed Yue et al. [17] using CNN. 

Similar to feature selection for traditional ML approaches, DNN has the need for hyperparameter tuning for better 

generalization to unseen data. Hyperparameters are related to neural network architecture such as number of layers, 

number of neurons in each layer, activation function and learning rate. This field is also referred to as Neural 

Architecture Search (NAS). Extensive survey on this topic was done by Elesken et al. [18]. In the context of NIDS, 

Gaikwad et al.   [19] applied various optimization techniques such as Bayesian Optimization, Hyperband, Random 

Search and Grid Search methods to design an optimal neural architecture for DNN based NIDS. They reported highest 

test accuracy of 83% on NSL KDD dataset using Bayesian Optimization. 

Gurung et al. [20] used sparse autoencoder for feature selection followed by logistic regression for classification. 

This approach helped in avoiding entire feature selection step in the development of intelligent NIDS. 

2.2.  Adversarial Attack On Machine Learning Based NIDS 

Adversarial machine learning attacks are intended to fool ML models. Based on whether or not attacker has an 

access to training data, adversarial attacks can be classified as poisoning or evasion attacks. 

In case of poisoning attacks, attacker modifies the training data such that the model is trained on the incorrect data 

and such trained model ends up misclassifying input data. In case of evasion attacks, attacker modifies or perturbs 

malicious input such that already trained model ends up misclassifying the input.  

In case of evasion attacks, attacker tries to modify or perturb the malicious input data examples that needs to be 

evaded or needs to be classified as normal traffic in such a way that the classifier classifies it as normal traffic. However, 

the perturbations should be done in such a way that ML model still considers it as valid input example. For example, in 

case of network traffic simply modifying the protocol type from TCP to UDP without changing the corresponding fields 

in the packet would be useless since such packets would be rendered as invalid and might get rejected at the firewall or 

proxy stage itself and attack will not be successful. Perturbations to input traffic needs to consider constrained 

perturbations while the attributes or features that can perturbed without any bounds or constraints are called as 

Unconstrained. Various methods can be employed to generate such adversarial examples. Following sections provide 

overview of the most prominent adversarial attacks against DNN models. 

Alhajjar et al. [21] used evolutionary computational algorithms viz. Particle Swarm Optimization (PSO) and 

Genetic Algorithm (GA) as well as Generative Adversarial Network (GAN) on NSL KDD and UNSW-NB15 dataset 

[22]. GAN is a generative deep learning technique where generative NN generates fake samples while another 

discriminator NN tries to classify between real and fake samples They found that these perturbation techniques were 

successful in evading most of the ML based NIDS. Especially, decision trees and SVM based classifier suffered evasion 

rates greater than 90%. Hence, authors recommend not relying on SVM and DT based NIDS in production deployments. 

They found the highest evasion rate with GANs.  

Rigaki and Garica [23] used GAN to generate malicious traffic that mimics normal traffic and goes undetected by 

Intrusion Prevention System (IPS). They specifically used RNN GAN to generate fake Facebook chat traffic that looks 

like a normal chat traffic to an IPS and delivered the malware to the infected hosts. GANs learned to generate Facebook 

chat traffic only using 217 traffic flows. This is then used to modify the malware parameters namely timing, duration 

and request size. Using this parameters malware generated adversarial examples that were then replayed at the target. 

Also, there is a feedback mechanism build into the attack mechanism that ensures that in case the traffic was detected 

and blocked by IPS than GAN is retrained in short interval with new examples that were detected and new adversarial 

examples are generated. The malware command and control system is deployed in Amazon Web Services (AWS) cloud 

and infected client machine in university lab along with GAN. 

WGAN (Wasserstein GAN) is a variant of GAN [24]. Unlike GAN that uses gradient of loss function, WGAN 

uses Wasserstein distance to calculate the loss. This prevents the mode collapse and stability issue observed with GAN. 

WGAN was used by Lin et al. [25] to generate completely new adversarial samples from malicious samples. They 

found that detection for NSL KDD data was reduced below 1% for ML models based on Naive Bayes, MLP, DT, RF 

and KNN. 
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2.3.  Research Objectives 

As evident from literature survey most of the research on adversarial machine learning is focused on computer 

vision tasks which is the clear gap in the current work. Hence, we formulate following research objectives: 

 

 What is the impact on the performance of various white box adversarial machine learning attacks from 

computer vision domain on deep learning models used in NIDS?  

o Can these attacks be carried out preserving network traffic validity? 

 Adversarial example augmented training is found to be an effective defense mechanism against adversarial 

attacks in computer vision domain. Therefore, we pose a question, is adversarial training effective against 

adversarial example attacks in network security specifically, for deep learning based network traffic classifiers?  

3.  Proposed Methodology 

This section describes various white box adversarial example attacks used against deep learning based classifiers. 

While most of these attacks were proposed in the domain of computer vision tasks we adapt them in order to be 

effective against classifiers used in NIDS.   

3.1.  Fast Gradient Sign Method (FGSM) 

FGSM attack for image classifiers was proposed by Goodfellow et. al. [26]. These attacks use the gradient of 

neural network. In this technique, the sign of the perturbations in the direction gradient of loss function is computed to 

generate the adversarial examples, 

 

𝜂 = 𝜖(𝛥_𝑥 𝐽(𝜃, 𝑥, 𝑦))                                                                          (1) 

 

In above formula, ε is denotes the amount of perturbations needed, θ is the parameter of the model, x is input and y 

is the label and J denotes the loss function. This technique, tries to minimize the amount of perturbations needed to fool 

the model. On ImageNet it produced an error rate of 99.9%, its demonstration is shown in Fig 1. 

 

 

Fig.1. Fast Gradient Sign method (FGSM): Adversarial example generated by FSGM using ImageNet was able to fool GoogLeNet [4] 

As shown in Fig. 1, while the perturbations to the image are imperceptible to a human eye GoogLeNet 

misclassifies panda as gibbon with high confidence. 

3.2 Jacobian based Saliency Map Attack (JSMA) 

JSMA was proposed by Papernot et al. [27] as a way to generate adversarial examples using saliency values. These 

values denote how much the classification error will be introduced by modifying the input features. Saliency values are 

sorted in descending order and feature with highest saliency value is modified to check if it causes desired class change 

in model output. If not, then next feature is chosen for perturbing. 

Rigaki [23] used both FSGM and JSMA attacks and found that Random Forest was most robust to these kinds of 

attacks on NSL KDD dataset [28]. However, in this work, this attack is tested against deep neural network based NIDS. 

3.3.  Carlini & Wagner Attack 

Carlini & Wagner [29] proposed attack using the output of logit layer i.e. the layer before the final softmax layer. 

They essentially formulated generation of adversarial examples as an optimization problem as, 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒||𝛿||
𝑝

+ 𝑐 ∗ 𝑓(𝑥 + 𝛿)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 + 𝛿 ∈ [0,1]𝑛                                          (2) 

 

In (2), δ is the small perturbation to the original input example x and p is the norm of original and perturbed 

example. L2 norm i.e. Euclidean distance which is the preferred norm. The function f is label returned by the logit layer 

for the adversarial example. x + δ has the box constraint such that overall perturbation is bounded between 0 and 1. 

Using change of variable technique this box constrain is expressed as following and optimization is done for the 

variable w,  

 

𝛿𝑖 =
1

2
(𝑡𝑎𝑛ℎ(𝑤𝑖) + 1) − 𝑥𝑖                                                                      (3) 

 

According to authors, this change of variables has a smoothing effect and reduces the problem of getting stuck in 

local optima and the value of 𝑐 chosen to be small. Also, function 𝑓 is reformulated to make the resulting image have 

minimum and imperceptible changes. Overall, L2 attack is formulated as,  

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ||
1

2
(𝑡𝑎𝑛ℎ(𝑤) + 1) − 𝑥||

2

2

+ 𝑐 ∗ 𝑓(
1

2
(𝑡𝑎𝑛ℎ(𝑤) + 1)                                        (4) 

𝑤𝑖𝑡ℎ 𝑓(𝑥′) = 𝑚𝑎𝑥 (𝑚𝑎𝑥{𝑍(𝑥′)𝑖: 𝑖 ≠ 𝑡} − 𝑍(𝑥′)𝑡 − 𝑘                   

 

Carlini & Wagner attack is still considered to be one of the most reliable way of determining robustness of a neural 

network. 

While there are many more methods to generate adversarial examples, it has been found that the examples that 

successfully attacked one ML model are most likely successful in fooling other ML models as well [9].  This is referred 

as transferability of adversarial examples. 

3.4. Adversarial Training as a Defense against Adversarial Attacks 

Goodfellow et al. [26] proposed the use adversarial examples to enhance the robustness of the ML models. They 

used adversarial examples generated using FGSM for training the models and obtained better performance for MNIST 

dataset. Similar approach was taken by Yin et al. [12] to enhance the performance of the intrusion detection classifier on 

NSL KDD dataset. In this method, a multiclass classifier is trained on both real training examples as well as adversarial 

fake examples generated by GAN. Authors call this enhanced framework as ID-GAN. Along with five original classes, 

the classifier is trained to classify the sixth class as fake example or not. They have found improved detection rate for 

such classifier. In order to enable this framework, authors also derive new loss function that takes into account 

modification to standard GAN architecture. Authors reported improved classification accuracy and F1 score.  

Transferability blocking approach of training ML models using adversarial examples was suggested for image data 

by Hosseinin et al. [30]. Authors specifically address the issue of transferability of adversarial examples wherein 

adversarial examples that fool one classifier is able to fool other ML model irrespective of the architecture or training of 

the other model. In this approach, classifier is trained on normal and adversarial example with NULL label assigned to 

adversarial examples. The output of the classifier output shows the confidence of the model in that sample being an 

adversarial example. They have obtained zero error rate for adversarial attacks based on FGSM for MNIST digit data 

and significant improvement for GTSRB dataset.  

For generating the adversarial examples Fast Gradient Sign Method (FGSM), Jacobian based Siliency Map Attack 

(JSMA), and Carlini and Wagner attack was used. For adversarial defense, adversarial training using all of these attack 

examples was used. Overall procedure for the adversarial training is illustrated in Algorithm 1. Also, while generating 

the adversarial examples care was taken so as not to make the examples into an invalid network traffic flow. To achieve 

these columns such as protocol_type, service and flag were not changed.  

The optimization function for this algorithm is the value of probability that, the given example is malicious as 

returned by the trained neural network. The goal of the optimization is to reduce the probability of malicious example 

being classified correctly. 
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Algorithm 1. Adversarial Example Generation 

 

4. Dataset 

Most of the past and even some recent research work is based on testing effectiveness of machine learning 

algorithms on NSL KDD dataset [28]. It is refined version of dataset derived from KDD Cup 1999 dataset. This dataset 

has separate training and test dataset. There are network traffic flows of total 5 attack flows and normal traffic flow.  

NSL KDD dataset has following different attacks: 

 

1. Denial of Service(DoS): Includes attacks such as SynFlood and UDP Storm.   

2. Probe: Includes attacks such as Nmap, Portsweep intended to gather information  from target machine.   

3. R2L: Includes attacks such as Xsnoop, Spy with an aim to gain remote administrative level access of the target 

machine.   

4. U2R: Includes attacks such as Buffer overflow, Rootkit for privilege escalation attacks.   

 

For this research, the problem was translated into a binary classification problem with all above four attack types 

classified in single attack class and rest as normal traffic with final distribution as shown in Table 1. 

This dataset has total of 41 features such as Duration, Protocol Type, Src Byte, Destination Byte, etc. Table 2 

shows all the features available in this dataset. More detailed analysis of the NSL KDD dataset is provided by Dhanabal 

et al. [31].  

Table 1. NSL KDD Binary Class distribution 

File Normal Flows Attack Flows 

KDD Train+ 67433 (53.45%) 
58630 (46.54%) 

 

KDD Test+ 
9710 (43.07%) 

 
12833 (56.92%) 

 

Table 2. Features in NSL KDD dataset 

No. Feature Name Feature Description 

1 Duration Connection duration in seconds 

2 Protocol_type Type of the protocol used, e.g. TCP and UDP 

3 Service Network service on the destination, e.g. HTTP or telnet 

4 Flag Normal or error flag status of the connection 

5 Src_bytes Number of data bytes from source to destination 

6 Dst_bytes Number of data bytes from destination to source 

7 Land 1 if the connection is from/ to the same host/port; 0 otherwise 

8 Wrong_fragment Number of ―wrong‖ fragments 

9 Urgent Number of urgent packets 

10 Hot Number of ―hot‖ indicators in the content such as: entering a system directory 

11 Num_failed_logins Number of failed login attempts 

12 Logged_in 1 if successfully logged in; 0 otherwise 

Algorithm 1 Adversarial Example Generation  

Input:training_examples, neural_network, adv_method  

Output:adv_training_examples adv_training_examples = empty(training_examples)  

for example in training_example  

adv_example = empty()  

if example == malicious  

        adv_example = get_adv_example(example, adv_method) 

        adv_example[’protocol_type’] = example[’protocol_type’] 

        adv_example[’service_type’] = example[’service_type’] 

        adv_example[’flag’] = example[’flag’] 

        append_example(adv_training_examples, adv_example) 

else  

append_example(adv_training_example, example)  

return adv_training_examples  
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13 Num_compromised Number of ―compromised conditions 

14 Root_shell 1 if the root shell is obtained; 0 otherwise 

15 Su_attempted 1 if ―su root‖ command attempted; 0 otherwise 

16 Num_root Number of ―root‖ accesses 

17 Num_file_creations Number of file creation operations 

18 Num_shells Number of logins of normal users 

19 Num_access_files Number of operations on access control files 

20 Num_outband_cmds Number of outbound commands in FTP session 

21 İs_hot_login 1 if the login belongs to the ―hot‖ list i.e., root or admin; 0 otherwise 

22 Is_guest_login 1 if the login is a ―guest‖ login; 0 otherwise 

23 Count Number of connections to the same destination host in the past 2 seconds 

24 Srv_count Sum of connections to the same service in the past 2 seconds 

25 Serror_rate 
% of connections that have ―SYN errors among the connections aggregated in 

count (23) 

26 Srv_serror_rate 
% of connections that have ―SYN errors among the connections aggregated in 

srv_count (24) 

27 Rerror_rate 
% of connections that have ―REJ errors among the connections aggregated in 

count (23) 

28 Srv_rerror_rate 
% of connections that have ―REJ errors among the connections aggregated in 

srv_count (24) 

29 Same_srv_rate % of connections to the same service 

30 Diff_srv_rate % of connections to different services 

31 Srv_diff_host_rate % of connections to different hosts 

32 Dst_host_count Sum of connections to the same destination IP address 

 
33 

Dst_host_srv_count Sum of connections to the same destination port number 

34 Dst_host_same_srv_rate 
% of connections that were to the same service, among the connections 

aggregated in dst_host_count 

35 Dst_host_diff_srv_rate 
% of connections that were to different services, among the connections 

aggregated in dst_host_count 

 
36 

Dst_host_same_src_port_r

ate 

% of connections that were to the same source port, among the connections 
aggregated in dst_host_srv_count 

 

37 
Dst_host_srv_diff_host_rat

e 
% of connections that were to different destination machines, among the 

connections aggregated in dst_host_srv_count 

38 

 
Dst_host_serror_rate 

% of connections that have activated the flag s0, s1, s2 or s3, among the 

connections aggregated in dst_host_count 

39 Dst_host_srv_serror_rate 
% of connections that have activated the flag s0, s1, s2 or s3, among the 

connections aggregated in dst_host_srv_count 

40 
Dst_host_rerror_rate 

 

% of connections that have activated the flag REJ, among the connections 

aggregated in dst_host_count 

41 Dst_host_srv_rerror_rate 
% of connections that have activated the flag REJ, among the connections 

aggregated in dst_host_srv_count 

42 
Class label 

 
Connection behaviour label 

 

The NIDS itself is based on DNN. Hyperparameters tuning was done using various optimization methods to arrive 

at optimal neural network architecture [19].  

5. Experimental Results 

NIDS classifier was built using DNN using Keras package on Google Colab environments. GPU instances from 

this environment were used for all the experiments. Also, tuning of the hyperparameters was done to obtain the most 

effective DNN. Data was pre-processed using Standard Scaling method as shown in following equation,  

 

𝑥𝑖 =
𝑥𝑖−𝜇

𝜎
                                                                                      (5) 

 

Here, 𝑥𝑖  is a training example, 𝜇 is mean of the 𝑥 column and 𝜎 is the standard deviation. For categorical columns 

such as Protocol type, Service and Flag, Categorical En- coding was used that basically assigns numeric codes to the 

categorical values, for example, tcp as 1, udp as 2, etc. Class labels were assigned values as 0 for normal traffic flow 

and 1 for an intrusion attack 

5.1.  Performance Against Adversarial Attacks 

After training the DNN on clean training data, it was subjected to adversarial attacks. The performance of this 

DNN based model on unseen test data for various adversarial attacks is shown in Table 3. 
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Table 3. Performance of ANN on test data based NIDS against various adversarial example attacks 

Attack Accuracy Drop in Accuracy AUC Score Drop in AUC Score 

Clean (No Attack) 85.945 (baseline) 0.881 (baseline) 

FGSM 71.892 14.054 0.877 0.005 

JSMA 77.297 8.649 0.954 -0.072 

Carlini & Wagner L2 82.162 4.324 0.018 0.863 

 

As shown in Table 3, adversarial example attacks using FGSM, JSMA and Carlini & Wagner L2 attack causes 

considerable drop in accuracy of the DNN classifier. Also, similar effect was seen on the AUC score as expected. This 

is further visualized in Fig. 2. FGSM attacks had the most drops in the accuracy and is also fastest among these attacks 

types.  

 

 
Fig.2. Drop in Accuracy and AUC score as a result of various adversarial example attacks 

5.2.  Adversarial Training  

In order to create a NIDS which is robust to adversarial examples, combination of original clean training examples 

and small number of adversarial examples are used to train the DNN. The adversarial examples used for training are 

very small in number i.e. only 85 malicious examples that are adversarially generated using various attack types. DNN 

is trained using the adversarial examples and then it is evaluated against clean test dataset as well adversarial examples. 

As a result of the adversarial training, DNN accuracy improves as shown in Table 4. Most gain in accuracy is obtained 

by training with Carlini and Wagner L2 adversarial examples. Fig. 3 shows gain in accuracy after training DNN using 

various adversarial examples.  

Table 4. Performance of ANN on test data based NIDS against various adversarial example attacks 

Attack 

Gain in accuracy 

Post FGSM Adv. 
Training 

Gain in accuracy Post 

FGSM Adv. Training 

Gain in accuracy Post FGSM 

Adv. Training 

Clean (No Attack) 1.081 2.162 2.162 

FGSM 12.973 4.865 15.135 

JSMA 12.973 13.514 14.595 

Carlini & Wagner L2 5.405 3.243 6.486 

 

 

Fig.3. Comparison of accuracy gains after adversarial training.
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This gain in accuracy is close the accuracy reported by other more complex method involving Generative 

Adversarial Network (GAN) which the proposed method achieves by addition of only 85 training samples to original 

training set. 

Above results show the simplicity and effectiveness of the adversarial training.  

6. Conclusion 

Network intrusion detection system is an integral part of defense against ever increasing cyber threats. Deep 

Neural Network based NIDS is a critical component for combating zero day attacks that can’t be detected with 

traditional signature based methods. However, as DL models are used in these systems they also become potential 

victim to adversarial machine learning attacks. The objective of these attacks is to fool Deep Learning based classifiers 

and make them commit mistakes. Currently most of the adversarial ML attacks and defenses are focused on image 

based models. In this work, we evaluated DL based NIDS with various state of the art ML attacks such as FGSM, 

JSMA, and Carlini & Wagner attacks.  

Secondly, we trained the neural network based NIDS on very small number of adversarial examples generated 

using these algorithms. We found that, the neural networks trained on the adversarial examples are more robust to 

adversarial attacks and are difficult to compromise. Also, adversarial training examples generated using one type of 

algorithm provide effective robustness against other attacks as well. Specifically, we found that the training data 

augmented with adversarial examples generated using Carlini and Wagner L2 attack are most effective in making NIDS 

more robust against adversarial evasion attacks. 
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