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ABSTRACT

Covid-19 is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). Given the seriousness of the situation, the World Health Organization declared a
global pandemic as the Covid-19 rapidly around the world. Among its applications, chest X-ray
images are frequently used for an early diagnostic/screening of Covid-19 disease, given the frequent
pulmonary impact in the patients, critical issue to prevent further complications caused by this highly
infectious disease.

In this work, we propose complementary fully automatic approaches for the classification of chest
X-ray images under the analysis of 3 different categories: Covid-19, pneumonia and healthy cases.
Given the similarity between the pathological impact in the lungs between Covid-19 and pneumo-
nia, mainly during the initial stages of both lung diseases, we performed an exhaustive study of
differentiation considering different pathological scenarios. To face these classification tasks, we
exploited and adapted to this topic a densely convolutional network architecture, which connects
each layer to every other layer in a feed-forward fashion. To validate the designed approaches, sev-
eral representative experiments were performed using images retrieved from different public chest
X-ray images datasets. Overall, satisfactory results were obtained from the designed experiments,
facilitating the doctors’ work and allowing better an early diagnostic/screening and treatment of this
relevant pandemic pathology.

Keywords Computer-Aided Diagnosis; Pulmonary Disease Detection; Covid-19; Pneumonia; X-ray Imaging; Deep
Learning

1 Introduction

A new coronavirus SARS-CoV-2, which causes the disease commonly known as Covid-19, was first identified in
Wuhan, Hubei province, China at the end of 2019 [1]]. In particular, coronaviruses are a family of viruses known to
contain strains capable of causing severe acute infections that typically affect the lower respiratory tract and manifests
as pneumonia [2], and therefore, being potentially fatal in humans and a wide variety of animals, including birds and
mammals such as camels, cats or bats [3]] [4].

On 11 February 2020, the World Health Organization (WHO) declared the outbreak of Covid-19 as a pandemic,
noting the more than 118,000 cases of coronavirus disease reported in more than 110 countries, resulting in 4,291
deaths worldwide [5] by that extremely early moment, numbers that were deeply worsened posteriorly. In particular,
this disease, among its consequences, also manifests as relevant respiratory disease, being considered a serious public
health problem because it can kill healthy adults, as well as older people with underlying health problems or other
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recognized risk factors, such as heart disease, lung disease, hypertension and diabetes, among others [6]]. Furthermore,
the Covid-19 virus is transmitted quite efficiently, since an infected person is capable of transmitting the virus to 2 or
3 other people, an exponential rate of increase [7].

Over the years, X-ray examination of the chest plays an important clinical role in detecting or monitoring the pro-
gression of different pulmonary diseases, such as emphysema, chronic bronchitis, pulmonary fibrosis, lung cancer or
pneumonia, among others [8] [9]] [10]. Today, given the severity of the coronavirus pandemic, radiologists are asked
to prioritize chest X-rays of patients with suspected Covid-19 infection over any other imaging studies, allowing for
more appropriate use of medical resources during the initial screening process and excluding other potential respira-
tory diseases, a process which is extremely tedious and time-consuming. In this context, the visibility of the Covid-19
infection in the chest X-ray is complicated and requires experience of the clinical expert to analyze and understand
the information and differentiate the cases from other diseases of respiratory origin with similar characteristics such
as pneumonia, as illustrated in Figure[I] For that reason, a fully automatic system for the classification of chest X-ray
images between healthy, pneumonia or specific Covid-19 cases is significantly helpful as it drastically reduces the
workload of the clinical staff. Complementary, it may provides a more precise identification of this highly infectious
disease, reducing the subjectivity of clinicians in the early screening process, and thus also reducing healthcare costs.
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Figure 1: Representative examples of chest X-ray images. 1°? row, chest X-ray images from healthy patients. 2" row,
chest X-ray images from patients with pneumonia. 3" row, chest X-ray images from patients with Covid-19.


https://doi.org/10.1101/2020.05.01.20087254
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.05.01.20087254; this version posted May 6, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images

Given the relevance of this topic, several approaches were recently proposed using chest X-ray images for the classi-
fication of Covid-19. As reference, Sun et al. proposed an approach based on deep transfer learning using chest
X-ray images for the detection of patients infected with coronavirus pneumonia. In the work of Hassanien ez al. [12]],
the authors proposed a methodology for the automatic X-ray Covid-19 lung classification using a multi-level threshold
based on Otsu algorithm and support vector machine for the prediction task. Apostolopoulos et al.  [13] proposed
a study on the possible extraction of representative biomarkers of Covid-19 from X-ray images using deep learning
strategies. Wang et al. proposed a deep convolutional neural network, called COVID-Net, design tailored for
the detection of Covid-19 cases from chest radiography images. In the work of Hammoudi et al. [13], the authors
proposed a deep learning strategy to automatically detect if a chest X-ray image is healthy, pneumonia (bacterial or
viral), assuming that a patient infected by the Covid-19, tested during an epidemic period, has a high probability of
being a true positive when the result of the classification is a virus.

Despite the satisfactory results obtained by these works, most of them only partially address this recent and relevant
problem of global interest, limiting their practical utility for usage and interpretation for support in clinical decision
scenarios such as emergency triage for example.

Therefore, in order to offer a more comprehensive methodology we propose in this work complementary fully auto-
matic approaches for the classification of Covid-19, pneumonia and healthy chest X-ray radiographs. To achieve this,
we adapted to this issue a densely convolutional network architecture, which generally connects each layer to every
other layer in a feed-forward fashion. In this way, the proposed approaches allow to make predictions using com-
plete chest X-ray images of arbitrary sizes, which is very relevant considering the great variability of X-ray devices
currently available in health centers. To validate our proposal, exhaustive representative experiments were performed
using images compiled from different public image datasets.
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Figure 2: Representative scheme of the proposed methodology.

The manuscript is organized as follows: Section 2]describes the materials and methods that were used in this research
work. Section [3| presents the results and validation of the proposed approaches. Section [ includes the discussion of
the experimental results. Finally, Section [3] presents the conclusions about the proposed systems as well as possible
future lines of work in this enormeous topic of interest.
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2 Materials and Methods

A schematic representation of the proposed paradigm of the different approaches can be seen in Figure[2] The proposed
systems receive, as input, a chest X-ray radiography. During the acquisition procedure, the patient is exposed to a
small dose of ionizing radiation to produce images of the interior of the chest. The technician will usually be behind
a protected wall or in an adjacent room to activate the X-ray machine. The proposed system then uses advanced
artificial intelligence techniques to classify chest X-ray images into 3 different clinical categories: healthy, pneumonia
or Covid-19. As a result, the system provides useful clinical information for the initial screening process and for
subsequent clinical analyses.

2.1 Computational approaches for pathological X-ray image classification

Given the similarity between the pathological impact in the lungs between Covid-19 and common types of pneu-
monia, mainly during the initial stages of both lung diseases, we performed an exhaustive analysis of differentiation
considering different pathological scenarios. In this line, we proposed 4 different and independent computational ap-
proaches for the classification of Covid-19, pneumonia and healthy chest X-ray radiographs. Each of these approaches
is explained in more detail below:

2.1.1 1%t approach. Healthy vs Pneumonia, tested with Covid-19

Using as reference a consolidated public image dataset for the identification of pneumonia subjects with a considerable
amount of image samples [16], we firstly used, as baseline, a trained model for the differentiation of healthy and
pneumonia chest X-ray images taking advantage of this large amount of available information. Subsequently, we
tested the potential of this approach to classify chest X-ray radiographs of patients diagnosed with Covid-19 and
measure their similarity with both situations. In this way, we can analyze the percentage of chest X-ray images of
patients with Covid-19 that may be classified as pneumonia, giver their relation in the pathological pulmonary impact.

2.1.2 2" approach, Healthy vs Pneumonia/Covid-19

Given the pathological similarity between pneumonia and covid-19 subjects, subsequently we designed an screening
process that analyzes the degree of separability between healthy and pathological chest X-ray radiographs, consider-
ing these both pathological scenarios. In this sense, we include the chest X-ray images of patients diagnosed with
pneumonia or Covid-19 under the same class in a training of the model to predict 2 different categories: pathological
and healthy cases.

2.1.3 3"¢ approach, Healthy/Pneumonia vs Covid-19

Additionally, we adapted and trained a model to specifically identify Covid-19 subjects, measuring the capability of
differentiation not only from healthy subjects, but also from those pathological cases with a significant similarity, as
patients suffering from pneumonia. With this in mind, our system was designed to identify two different classes,
including healthy and patients with pneumonia in the same category.

2.1.4 4 approach, Healthy vs Pneumonia vs Covid-19

Finally, we designed another approach to simultaneously determine the degree of separability between the 3 categories
of chest X-ray images considered in this work. To this end, we trained a model with a set of chest X-ray radiographs
of the 3 different classes: healthy subjects, patients diagnosed with pneumonia, patients diagnosed with Covid-19.

2.2 Network Architecture

The use of deep learning architectures has been rapidly increasing in the field of medical imaging, including computer-
aided diagnosis system and medical image analysis for more accurate screening, diagnosis, prognosis and treatment
of many relevant diseases [17]] [18]. These architectures have proven to be superior in both accuracy and predictive
efficiency compared to classical machine learning techniques [19]. In this work, we use a densely convolutional
network architecture inspired by DenseNet proposed by Huang ez al. [20], given its simplicity and potential, providing
adequate results for many similar classification tasks in pulmonary diseases [21] [22] [23]. In our case, this dense
network architecture was initialized with weights from a model pretrained on ImageNet, connecting each layer to
every other layer in a feed-forward fashion within each dense block. On the one hand, we benefit from the pre-trained
model weights making the learning process much more efficient, in other words, the model converges fast because his
weights are already stabilized initially. On the other hand, it significantly reduces the amount of labeled data required
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for model training. For each layer, feature maps from all preceding layers are processed as separate inputs, while
their own feature maps are transferred as inputs to all subsequent layers. In this study, we employed a modification
of the original structure of the DenseNet-161 architecture, as illustrated in Figure E} In particular, we have adapted
the classification layer of the architecture used to support the output according to the specific requirements of each
proposed approach, which is to categorize chest X-ray images into 2 or 3 different clinical classes considering healthy,
pneumonia and Covid-19.
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Figure 3: An illustration of the DenseNet architecture that was adapted for the different and independent computational
approaches of this work.

2.3 Training

Regarding the training stage of the different approaches, considering the limited amount of covid-19 subjects, we
decided that the employed chest X-ray radiographs dataset was randomly divided into 3 smaller datasets, specifically
with 60% of the cases for training, 20% for validation and the remaining 20% for testing. Additionally, the classifica-
tion step was performed with 5 repetitions, being calculated the mean cross-entropy loss [24] and the mean accuracy
to illustrate the general performance and stability of the proposed approaches. The DenseNet-161 architecture was
trained using Stochastic Gradient Descent (SGD) with a constant learning rate of 0.01, a mini-batch size of 4 and
a first-order momentum of 0.9. In particular, SGD is a simple but highly efficient approach for the discriminative
learning of classifiers under convex loss functions [25]].

2.4 Data Augmentation

Data augmentation is a widely used strategy that enables practitioners to significantly increase the diversity of data
available for training models, reducing the overfitting and making the models more robust [26] [27]. This is especially
significant in our case, given the limited amount of positive Covid-19 cases that were used in the different approaches.
To this end, we applied different configurations of affine transformations to increase the training data and improve the
performance of the neural network architecture that was used to classify chest X-rays images. In particular, we auto-
matically generate additional training samples through a combination of scaling with horizontal flipping operations,
considering the common variety of possible resolutions as well as the simmetry of the human body.

2.5 Dataset

The training and evaluation of the deep convolutional models were performed with chest X-ray radiographs that were
taken from 3 different chest X-ray public datasets of reference: the Chest X-ray (Pneumonia) dataset [[16], the (Covid-
19) Image Data Collection dataset [28] and the (Covid-19) SIRM dataset [29].

The Chest X-ray (Pneumonia) dataset of the Radiological Society of North America (RSNA)[L6] is composed by of
5,863 chest X-ray radiographs. This public dataset was labeled into 2 main categories: healthy patients and patients
with different types of pneumonia (viral and bacterial) presenting, therefore, a high level of heterogeneity.

Currently, public chest X-ray datasets of patients diagnosed with Covid-19 are very limited. Despite this important
restriction, we have built a dataset composed of 207 radiographs, 155 were taken from (Covid-19) Image Data Col-
lection dataset [28] and 52 were taken from the (Covid-19) SIRM dataset of the Italian Society of Medical Radiology
[29].

2.6 Evaluation

In order to test its suitability, the designed paradigm of the different approaches was validated using different statistical
metrics commonly used in the literature to measure the performance of computational proposals in similar medical
imaging tasks. Accordingly, Precision, Recall, F1-score and Accuracy were calculated for the quantitative validation
of the classification results. In particular the first three metrics are calculated for each one of the considered classes in
the different experiments are they are more meaningful in that way.
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Mathematically, these statistical metrics are formulated as indicated in Equations [T] [2] 3] and ] respectively. These
performance measures use as reference the True Negatives (TN), False Negatives (FN), True Positives (TP) and False
Positives (FP):

Precision = TPj;ripFP (1)
Recall = TPT+7PFN (2)

F1L = score = 2~TPZ.§]€+FN )
Accuracy = 75— ’fzi J+r ?JX TFN @

3 Experimental Results

To evaluate the suitability of the different proposed approaches in the pathological classification related to Covid-19 in
chest X-ray images, we conducted different complementary experiments, taking as reference the available datasets. In
particular, for each experiment, we performed 5 independent repetitions, each time with a different random selection
of the samples splits, specifically with 60% of the cases for training, 20% for validation and the remaining 20% for
testing. Additionally, the training stage was stopped after 200 epochs given the lack of significant further improvement
in both accuracy and cross-entropy loss results.

3.1 1% experiment: Healthy vs Pneumonia, tested with Covid-19

Given the availability of a public image dataset of reference with a significant number of healthy and pneumonia chest
X-ray images [[16], we trained a model to obtain a consolidated approach to distinguish between healthy patients and
different pathological cases of pneumonia.

In this line, we designed an experiment with a total of 5,856 X-ray images, being 1,583 from healthy patients and 4,273
from patients with pneumonia. Figure d]shows the performance that was obtained using the deep learning architecture
after, as previously indicated, 5 independent repetitions in the training and validation stages.

The method achieved satisfactory results, reaching a best average accuracy of 0.9971 £ 0.0026 for training in epoch
194 and the best average accuracy for validation of 0.9624 + 0.0067 in epoch 68, as we can see in Figure [4a)).
Furthermore, in Figure {b) we can observe that the model converged quite fast in the training and validation steps in
terms of the loss cross-entropy function.

In Table[I] we can see the precision, recall and F1-score results obtained at the test stage, providing an accuracy of 0.97.
All the results obtained show the robustness of the proposed system in the classification of the different pathological
cases of pneumonia and healthy patients.

Table 1: Precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia cases.

| Cases [ Precision | Recall | Fl-score |
Healthy 0.95 0.93 0.94
Pneumonia 0.98 0.98 0.98

In addition to measure the capability of the adapted architecture to this pathological analysis, another relevant goal of
this experimentation was to conduct a comprehensive analysis about the potential similarity of the Covid-19 subjects
with pneumonia scenarios, that is, the percentage of chest X-ray images of patients with Covid-19 that are classified
as pneumonia with the previously trained network.

Thus, we extended the experiments of this case using an additional blind test dataset. In particular, this dataset
consisted of the used 207 X-ray images of patients diagnosed with Covid-19. As we can see in Table 2] the proposed
system achieves satisfactory results in terms of precision, recall and F1-score, considering Covid-19 cases correctly
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Figure 4: Results of the first experiment after 5 independent repetitions. (a) Mean =+ standard deviation training
accuracy. (b) Mean =+ standard deviation training loss. In both cases, a logarithmic scale has been set to correctly
display the values for a better understanding of the results.

classified as pneumonia in opposition to healthy cases. In this scenario, the system achieves an accuracy of 0.83,
demonstrating that the system is capable of correctly screening X-ray images of Covid-19 patients in the pathological
pneumonia category.

Table 2: Precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
from Covid-19 patients between Healthy vs Pneumonia cases.

| Cases [ Precision | Recall | Fl-score |
Healthy — — —
Pneumonia 1.00 0.83 0.90

3.2 279 experiment: Healthy vs Pneumonia/Covid-19

Under the results of the analysis of the first approach, we designed another scenario with a screening context including
Covid-19 cases by separating the pathological pneumonia and Covid-19 subjects with respect to healthy images

With this in mind, in this case, the designed experiment included a total of 1242 X-ray images, being 828 from healthy
patients whereas 207+207 from Covid-19 and pneumonia patients, respectively. In this case, we randomly selected
the 828 healthy images and the 207 pneumonia images from the total amount of the used image dataset [16]]. Having
the limiting factor of 207 Covid-19 images, we balanced the amount of the other cases to obtain a proportion of % and

% between the negative and positive classes.

Figure [5] shows the performance that was obtained from the training and validation stages using the proposed dataset
through 5 independent repetitions. As we can see in Figure 5fa), the best mean accuracy that was produced is 0.9989
4 0.0011 for training in epoch 121 and the best average accuracy for validation of 0.9887 + 0.0044 in epoch 167.
In addition, the proposed approach achieved its stability in the loss cross-entropy function both for training and for
validation after epoch 100, as we can see in Figure[5|b)).

Results in Table [3] show the performance measurements obtained in the test stage, in terms of precision, recall and
Fl1-score for each class. As we can see, satisfactory results were provided as a global accuracy of 0.98 for both
categories. Thus, the results obtained show that this screening approach is capable of successfully separating the
considered pathological cases from the healthy ones.
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Figure 5: Results of the second experiment after 5 independent repetitions. (a) Mean + standard deviation training
accuracy. (b) Mean + standard deviation training loss. In both cases, a logarithmic scale has been set to correctly
display the values for a better understanding of the results.

Table 3: Precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia/Covid-19 cases.

| Cases | Precision | Recall | Fl-score |
Healthy 0.99 0.99 0.99
Pneumonia/Covid-19 0.98 0.98 0.98

3.3 3¢ experiment: Healthy/Pneumonia vs Covid-19

The third scenario was designed to evaluate the performance of the proposed approach to specifically distinguish
between cases of patients with Covid-19 from other similar cases such as pneumonia or also from healthy patients.
Thus, we measure the potential separability between those potentially similar pathological cases of Covid-19 from
pneumonia.

To do so, we used a total of 621 X-ray images, being 207 from Covid-19, 207 from patients with pneumonia and
207 from healthy patients. Once again, those subjects from pneumonia and healthy patients were randomly selected to
obtain a proportion of % and % between negative and positive classes, respectively. Figure|6|shows the performance that
was obtained from the DenseNet-161 architecture after 5 independent repetitions in both the training and validation
steps. In particular, as we can observe in Figure [6(a), our model reaches high stability after 75 epochs, with a better
average accuracy of 0.9973 + 0.0031 for training in epoch 153 and a better average accuracy for validation of 0.9741
+ 0.0067 in epoch 111. Complementary, in Figure[6(b) we can observe a similar behavior with the cross-entropy loss
function,

In Table 4] we present the quantitative performance of the proposed system in the test dataset, in terms of precision,
recall and F1-score. Our method shows a good performance for both categories, providing a global accuracy of 0.98
demonstrating the robustness of the proposed system to distinguish between cases of patients with Covid-19 from
other cases such as pneumonia or health. This result is specially significant considering the separation of similar
pathological scenarios as pneumonia and Covid-19.

3.4 4'" experiment: Healthy vs Pneumonia vs Covid-19

In this last scenario, considering the satisfactory results of the other considered approaches, we also trained another
model to directly analyze the performance of the proposed system to separate the chest X-ray radiographs into 3
different categories: healthy, pneumonia and Covid-19. To do so, we designed a complete experiment using a total of
621 X-ray radiographs, being 207 from Covid-19, 207 from patients with pneumonia and 207 from healthy patients.
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Figure 6: Results of the third experiment after 5 independent repetitions. (a) Mean + standard deviation training
accuracy. (b) Mean + standard deviation training loss. In both cases, a logarithmic scale has been set to correctly
display the values for a better understanding of the results.

Table 4: Precision, recall and Fl1-score obtained at the test stage for the classification of chest X-ray images between
Healthy/Pneumonia vs Covid-19 cases.

| Cases | Precision | Recall | Fl-score |
Healthy/Pneumonia 0.96 1.00 0.98
Covid-19 1.00 0.93 0.97

In this case, again, we randomly selected the healthy and pneumonia images to balance the amount of available images
for the 3 considered classes. Figure[7]shows the performance of the proposed system using training and validation sets
after 5 independent repetitions. As we can see in Figure[7[a), the best mean accuracy that was produced is 0.9967 +
0.0029 for the training stage in epoch 166 and the best average accuracy for validation of 0.9725 + 0.0185 in epoch
189. In the same line, the proposed system achieved its stability in the loss cross-entropy function both for training
and for validation after epoch 100, as we can see in Figure[7(b).

In Table 4] we can see the precision, recall and Fl-score results obtained at the test stage, providing an accuracy
of 0.99. As we can see, the trained model is capable to predict with accuracy of 0.99 all the mentioned categories.
Generally, the obtained results in all the cases are satisfactory, demonstrating the robustness of the proposed system in
the classification of the 3 categories of chest X-ray images considered in this work.

Table 5: Precision, recall and F1-score results obtained at the test stage for the classification of chest X-ray images
between Healthy vs Pneumonia vs Covid-19 cases.

| Cases [ Precision [ Recall | Fl-score |

[ Healthy | 098 [ 100 | 099 |
Pneumonia 1.00 1.00 1.00
Covid-19 1.00 0.98 0.99

4 Discussion

In this work, we analyzed different and complementary fully automatic approaches for the classification of healthy,
pneumonia and Covid-19 chest X-ray radiographs. All the experimental results demonstrate that the proposed system
is capable of successfully distinguishing healthy patients from different pathological cases of pneumonia and Covid-
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Figure 7: Results of the fourth experiment after 5 independent repetitions. (a) Mean + standard deviation training
accuracy. (b) Mean =+ standard deviation training loss. In both cases, a logarithmic scale has been set to correctly
display the values for a better understanding of the results.

19. This pathological differentiation is understandable given the abnormality of the pathological scenarios with respect
to normal patients and also the pathological impact in the lungs of both pneumonia and Covid-19 diseases. But also,
it is significant the accurate capability of differentiation also of Covid-19 patients from other with pneumonia, which
were correctly separated in the proposed third and forth approaches, also corroborated by the experiments with the first
approach. In addition, the proposed system allows to make accurate predictions using chest X-ray images of arbitrary
sizes, which is very relevant considering the great variability of X-ray devices currently available in the healthcare
centers.

Despite the attained satisfactory performance, the proposed system obtain an acceptably small number of misclassified
cases. In particular, some misclassification is caused by the poor contrast of the X-ray images used in this work. Other
times, in some cases, there is a great similarity between Covid-19 and pneumonia, mainly during the initial stages of
both diseases. In figure[8] we can see representative examples illustrating the significant variability of the possible
scenarios that are represented in this research work.

As no exhaustive classification method for X-ray Covid-19 images has been published to date, we cannot make any
comparison with other state-of-the-art approaches. Instead, we use different public datasets for the evaluation of our
proposed system, validating their accuracy in comparison with manual annotations from different clinical experts.

5 Conclusions

Coronaviruses are a large family of viruses that can cause disease in both animals and humans. In particular, the
new coronavirus SARS-CoV-2, also know Covid-19, was firstly detected in December 2019 in Wuhan City, Hubei
Province, China. Given its drastic spread, the WHO declared a global pandemic as the Covid-19 rapidly spreads
across the world. In this context, chest X-ray images are widely used for early screening by clinical experts, allowing
for more appropriate use of other medical resources during initial screening.

In this work, we proposed complementary fully automatic approaches for the classification of Covid-19, pneumonia
and healthy chest X-ray radiographs. To achieve this, we adapted a densely convolutional network architecture, which
connects each layer to every other layer in a feed-forward fashion. We evaluated the robustness and accuracy of
the different classification approaches, obtaining satisfactory results for all the experiments that were proposed using
different public image datasets of reference. Despite the complex and challenging scenario, the proposed approaches
has proven to be robust and reliable, facilitating a more complete and precise analysis of the pathological lung regions
and, consequently, the production of more adjusted treatments of this highly infectious disease.
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Figure 8: Representative examples of lung regions. 1 row, lung healthy regions. 2"? row, lung regions affected by
the pneumonia disease. 3" row, lung regions affected by the Covid-19 disease.

As future work, we plan to expand the proposed methodology with the incorporation of other relevant lung diseases,
such as chronic bronchitis, emphysema, or lung cancer. Additionally, further analysis with larger and maybe more
comprehensive chest X-ray datasets should be done in order to reinforce the conclusions of this work.
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