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Abstract

The COVID-19 pandemic presented enormous data challenges in the United States.
Policy makers, epidemiological modelers, and health researchers all require up-to-date
data on the pandemic and relevant public behavior, ideally at fine spatial and tem-
poral resolution. The COVIDcast API is our attempt to fill this need: operational
since April 2020, it provides open access to both traditional public health surveillance
signals (cases, deaths, and hospitalizations) and many auxiliary indicators of COVID-
19 activity, such as signals extracted from de-identified medical claims data, massive
online surveys, cell phone mobility data, and internet search trends. These are avail-
able at a fine geographic resolution (mostly at the county level) and are updated daily.
The COVIDcast API also tracks all revisions to historical data, allowing modelers to
account for the frequent revisions and backfill that are common for many public health
data sources. All of the data is available in a common format through the API and
accompanying R and Python software packages. This paper describes the data sources
and signals, and provides examples demonstrating that the auxiliary signals in the
COVIDcast API present information relevant to tracking COVID activity, augmenting
traditional public health reporting and empowering research and decision-making.

Public health decision makers, healthcare providers, epidemiological researchers, em-
ployers, institutions, and the general public benefit from promptly and readily accessible
data regarding COVID-19 activity levels, countermeasures, and pandemic impact. Real-
time indicators of COVID-19 activity levels, such as statistics on cases, deaths, test posi-
tivity, and hospitalizations, enable reports and interactive dashboard applications for situa-
tional awareness [1-3], and are essential for most analyses of the pandemic. These data are
available for locations across the United States from a number of official sources and inde-
pendent aggregators in varied and inconsistent formats. Different data types and sources
vary in timeliness, based on when measured events occur in the progression of the disease,
testing capabilities, the reporting pipeline, and their publication schedules.

Additional, auxiliary data sources can improve on the timeliness, scope, and utility of
the “topline” indicators (cases, test positivity, hospitalizations, deaths) coming from the
public health reporting system. For example, in the context of other infectious diseases:
syndromic surveillance in ambulatory clinics and emergency rooms improves the accuracy
of outbreak detection for emerging pathogens such as HIN1 [4]; and digital surveillance
(based on, e.g., search and social media trends) enables more accurate “nowcasts” and
forecasts of traditional disease surveillance streams such as the CDC’s ILINet [5, 6], as
do publication formats providing access to historical versions of a given data set [7, 8].
Several other examples exist that span a wide variety of data platforms and diseases [9-12].
During the COVID-19 pandemic, digital data streams have permitted faster prediction of
case increases [13, 14], while enabling analyses of the impact of public health policies on
public behavior, the economy, and disease spread [15-18].

The Delphi Group works with partner organizations and public data sets to build a mas-
sive database of indicators tracking COVID-19 activity and other relevant phenomena in
the United States, which has been publicly available and continuously updated since April
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2020. Alongside public data on reported cases and deaths, this database includes sev-
eral unique data streams, including indicators extracted from de-identified medical claims
data, antigen test results from a major testing manufacturer, large-scale public surveys
that measure symptoms and public behavior, and indicators based on particular Google
search queries. (We use the terms “indicator” and “signal” interchangeably.) We make
aggregate signals publicly available, generally at the county level, via the COVIDcast API
[19]. We store and provide access to all previous (historical) versions of the signals, a key
feature that exposes the effects of data revisions. Lastly, we provide R [20] and Python
[21] packages to facilitate interaction with the API, and an online dashboard to visualize
the data [22].

In a companion paper, we analyze the utility provided by a core set of the indicators
in COVID-19 forecasting and hotspot prediction models. In another companion paper, we
elaborate on our research group’s (Delphi’s) large-scale public surveys, run in partnership
with Facebook and available in aggregate form in the COVIDcast API.

1 Methods

1.1 Data Collection

We receive data daily from healthcare partners, technology companies, and from surveys
conducted daily by Delphi in partnership with Facebook. These data sources provide
information not available from standard public health reporting or other common sources,
such as:

Health Insurance Claims Based on de-identified medical insurance claims from Change
Healthcare and other health system partners, we release indicators on the estimated per-
centage of covered outpatient visits and hospitalizations that involved COVID diagnoses
or symptoms.

Internet-Based Surveys Conducted in partnership with Facebook, Delphi’s COVID-19
Trends and Impact Survey receives an average of 50,000 responses daily, and has received
over 20 million responses since April 2020 [23, 24]. From the surveys, we construct indica-

tors on symptoms, social distancing, vaccination, and other attitudes and behaviors related
to COVID.

COVID Antigen Tests Based on data from Quidel, a manufacturer of COVID antigen
tests in the United States, we calculate and release (Quidel-specific) test volumes and
positivity rates.

Search Trends Based on Google’s COVID-19 Search Trends data set [25], we provide
indicators reflecting COVID-related search activity.
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Mobility Data SafeGraph, a company that collects geospatial data from smartphone
apps, calculates COVID-related mobility signals [26, 27] and makes them available to re-
searchers under a data use agreement; we aggregate (some of) these signals to the county
level and make them publicly available.

We also scrape data accessible from other public sources, such as cases and deaths data
aggregated from public reporting by JHU CSSE [1] and by USAFacts [3], so that we can
track revisions and updates to this data (see Section 1.3).

Altogether, we collect 110 signals from 12 distinct sources, aggregate and process them,
and provide them in a common format for public access. This unifies both unique (not
available anywhere else) and standard COVID data streams into a single common format,
enabling efficient comparison and modeling. A summary of the data sources and signals in
the API is in Table 1, and detailed documentation is available at https://cmu-delphi.g
ithub.io/delphi-epidata/api/covidcast_signals.html.
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1.2 Signal Processing

Because each data source reports data in different formats, we must convert each source to
a common format. In this format, each record represents an observation of one quantity at
one time point in one location. Locations are coded consistently using standard identifiers
such as FIPS codes; the sample size and standard error for each observation is also reported
when applicable. FEach signal is reported at the finest geographic resolution its source
supports (such as county or state) and also aggregated to metropolitan statistical areas,
Health and Human Services regions, and hospital referral regions. National averages are
also provided. Crucially, each record is tagged with an issue date referring to when the value
was first issued, as described below. This allows tracking of revisions made to individual
observations, as each revision is tagged with its own issue date.

When appropriate, additional post-processing (often nontrivial) is applied to the data.
For example, data on visits to doctors’ offices is subject to strong day-of-week effects, and
so regression is used to adjust for these effects. Other indicators are available in raw
versions and versions smoothed with a 7-day trailing average. All processing is done using
open-source code written primarily in Python and R, and available publicly at https:
//github.com/cmu-delphi/covidcast-indicators/.

1.3 Revision Tracking

Many data sources that are useful for epidemic tracking are subject to revision after their
initial publication. For example, aggregated medical claims data may be initially published
after several days, but additional claims and corrections may take days to weeks to be
discovered, processed, and aggregated. Medical testing data are also often subject to
backlogs and reporting delays, and estimates for any particular date are revised over time
as errors are found or additional data becomes available. This revision process is generally
referred to as backfill.

For this reason, the COVIDcast API annotates every observation with two dates: the
time value, the date the underlying events (such as tests or doctor’s visits) occurred, and the
issue date when Delphi aggregated and reported the data for that time value. Importantly,
there can be multiple observations for a single time value with different issue dates, for
example if data is revised or claims records arrive late. Delphi tracks revisions to all
data sources we ingest, including external data sources (such as sources tracking cases and
deaths). Many external sources do not keep a public or conveniently accessible record of
revisions of their data.

For many purposes it is sufficient to use the most recently issued observation at a given
time value, and the COVIDcast API returns the most recent issue as its default. However,
for some applications it is crucial to know what was known as of a specific date. For
example, an epidemic forecasting model will be called upon to make its forecasts based
on preliminary data about recent trends, so when it is trained using historical data, it
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should be trained using the initial versions of that data, not updates that would have been
received later. Moreover, these revision records allow models to be modified to account for
noise and bias in early data versions, or to exclude data that is too new to be considered
stable, and to “rewind” time and simulate how these revised models would have performed
using only the versions of data available as of those times.

Research on data revisions in the context of influenza-like illness has shown that backfill
can significantly alter forecast performance [7, 29], and that careful training on preliminary
data can reduce this influence [8]. Recent research has shown similar results for COVID-
19 forecasts [30]. We also examine this in our companion paper on forecasting, where
we observe that training and validating models on finalized data yields overly optimistic
estimates of true test-time performance.

1.4 Public API

The data described above is publicly available through the Delphi COVIDcast API [19].
By making HT'TP requests specifying the data source, signal, geographic level, and time
period desired, users can receive data in JSON or CSV form. For added convenience, we
have written covidcast R [20] and Python [21] packages with functions to request data,
format it as a data frame, plot and map it, and combine it with data from other sources.
The R and Python package software is public and open-source, at https://github.com
/cmu-delphi/covidcast/. The API server software is itself also public and open-source,
at https://github.com/cmu-delphi/delphi-epidata/. Lastly, most data sources are
provided under the Creative Commons Attribution license, and a small number have addi-
tional restrictions imposed by the data source; see https://cmu-delphi.github.io/del
phi-epidata/api/covidcast_licensing.html.

1.5 Interactive Visualization

Since April 2020, Delphi has been maintaining and continually improving various online
visualization tools for the COVIDcast indicators [22]. These tools fetch data directly from
the API, and allow for exploration of both temporal (e.g., time series graphs) and spatial
(e.g., choropleth maps) trends in the signals, as well as many other aspects, such as corre-
lations, anomalies, and backfill. There is also a dedicated dashboard for exploring results
from the COVID-19 Trends and Impact Survey. The visualizations have been continually
improved as new sources of data arrive, and in response to interviews with users and health
experts, usage analytics from the site, and user surveys. Key design goals for visualiza-
tions displaying COVIDcast data have included representing uncertainty and missing data,
making features consistent and discoverable despite a wide variety of signal types, and
smoothly switching between different geographic aggregations and time scales.
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1.6 COVID Forecasting

Since July 2020, Delphi has been regularly submitting short-term forecasts of COVID-19
case and death incidence, at the state and county levels, to the COVID-19 Forecast Hub
[31], with “CMU-TimeSeries” as the team-model name. The process of building, training,
and deploying our forecasting models leverages much of the infrastructure described in this
paper (such as the COVIDcast API’s as of feature), and some of our forecasting systems
rely on auxiliary indicators (such as survey-based and claims-based COVID-like illness
signals, which are described below).

2 Results

The indicators that are available in the COVIDcast API have been used in dashboards
produced by COVID Act Now [32], COVID Exit Strategy [33], and others; to inform the
Delphi, DeepCOVID [34], and the Institute for Health Metrics and Evaluation (IHME) [35]
COVID forecasting models; in various federal and state government reports and analyses;
and in a range of news stories. Aside from operational use in decision-making and forecast-
ing, they have also facilitated numerous analyses studying the impacts of COVID-19 on the
public, the effectiveness of policy interventions, and factors that influenced the spread of
the pandemic [17, 18, 36-38]. The API currently serves hundreds of thousands of requests
to thousands of users every day.

In what follows, we present examples of the usefulness of some of the novel signals
available in the API. These examples demonstrate that such indicators are meaningfully
related to COVID activity, that they provide alternate views on pandemic activity that
are not subject to the same reporting glitches and delays as traditional public health
surveillance streams, and that they provide information about public behavior and at-
titudes that are not available from any other source. Code to reproduce all examples
(which uses the covidcast R package and fetches data from the API) can be found at
https://github.com/cmu-delphi/covidcast-pnas/tree/main/indicators/code/.

2.1 Tracking Trends

Many of the indicators in the COVIDcast API are intended to track COVID activity. Five
indicators in particular have the closest connections to confirmed cases:

e Change Healthcare COVID-like illness (CHNG-CLI): The percentage of outpatient
visits that are primarily about COVID-related symptoms, based on de-identified
Change Healthcare claims data.

e Change Healthcare COVID (CHNG-COVID): The percentage of outpatient visits
with confirmed COVID-19, based on the same claims data.
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Figure 1: National trends, from April 2020 to April 2021, of four signals in the COVIDcast
API. The auxiliary signals, based on medical claims data and massive surveys, track changes
in officially reported cases quite well. (They have all been placed on the same scale as
reported cases per 100,000 people.)

e COVID-19 Trends and Impact Survey CLI (CTIS-CLI): The estimated percentage of
the population with COVID-like illness based on Delphi’s surveys of Facebook users.

e COVID-19 Trends and Impact Survey CLI in the community (CTIS-CLI-in-community):
The estimated percentage of the population who know someone in their local com-
munity who is sick, based on the same surveys.

e Quidel test positivity rate (Quidel-TPR): The percentage of positive results among
Quidel COVID antigen tests.

Figure 1 compares the first three of these signals to COVID cases in the United States
(from JHU CSSE, smoothed with a 7-day trailing average) over a year of the pandemic
(April 15, 2020 to April 15, 2021), illustrating how they track national trends quite well.
Importantly, this same relationship persists across multiple resolutions of the data, down to
smaller geographic regions such as states and counties, as shown in the supplement. This
will also be illustrated in a more detailed correlation analysis in the next subsection.

Besides tracking contemporaneous COVID activity, these and other indicators can be
used to improve forecasts of future COVID case trends, as investigated in a companion
paper.

2.2 Correlation Analyses

To quantify the ability of the signals described above to track trends in COVID cases, we
use the Spearman (rank) correlation and analyze two key correlation patterns, between
each signal and confirmed COVID case rates (cases per 100,000 people):
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1. Geo-wise correlations (i.e., on a specific date, do values of the signal correlate with
case rates across locations?): Formally, let X; and Y; be vectors of values of a signal
and case rates, over all locations, on date t. The geo-wise correlation at time ¢ is
defined as cor(Xy, Y;) (where here and throughout cor(+,-) denotes Spearman correla-
tion). This examines whether a signal has the capability to help spot locations with
high case rates at any given time.

2. Time-wise correlations (i.e., at a specific location, do values of the signal correlate
with case rates across time?): Let X, and Y be vectors of values of a signal and case
rates, over all times, at location £. The time-wise correlation at location £ is defined
as cor(Xy,Yy). This examines whether changes in a signal over time correspond to
changes in reported cases at the same location.

Figure 2 shows the geo-wise correlations achieved by the five signals and COVID case
rates (from JHU CSSE, smoothed using a 7-day trailing average), from April 15, 2020 to
April 15, 2021. This calculation is performed over all counties with at least 500 cumulative
cases by the end of this period, and at which all indicators are available (956 counties
in total). The large positive correlations suggest that these signals could be useful in
hotspot detection (identifying counties that have relatively high COVID activity, at a
given time). Somewhat surprisingly, the survey-based CLI-in-community signal shows the
strongest correlations for much of the time period. This clearly demonstrates the value of
a large-scale survey such as CTIS for tracking symptoms and case trends, especially when
other data is unavailable.

Figure 3 summarizes time-wise correlations from these five signals over the same time
period, and for the same set of counties. For each signal, we display the set of correlations
that it achieves in histogram form (more precisely, using a kernel density estimate). All
signals produce positive correlations in the majority of counties considered (with very little
mass in each estimated density being to the left of zero). The largest correlations, in bulk,
are achieved by the CHNG-COVID signal; the CTIS-CLI-in-community signal is a close
second, and the CHNG-CLI signal is third. There are two noteworthy points:

e This is different from what is observed in Figure 2, where the CTIS-CLI-in-community
signal achieves clearly the highest correlations for most of the time period. However,
it is worth emphasizing that time-wise and geo-wise correlations are truly measuring
different properties of a signal; and the claims signals (CHNG-COVID and CHNG-
CLI) seem more appropriate for temporal—rather than spatial-—comparisons. We
revisit this point in the discussion.

e It is still quite impressive (and surprising) that the CTIS-CLI-in-community signal,
based on people reporting on the symptoms of others around them, can achieve nearly
as strong time-wise correlations to confirmed cases as can a signal that is based on
picking up the occurrence of a confirmed case passing through the outpatient system.

10


https://doi.org/10.1101/2021.07.12.21259660

medRxiv preprint doi: https://doi.org/10.1101/2021.07.12.21259660; this version posted July 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

0.8
-

0.6 1 /' \
5 N
K
® 0.4 W}\fv
o
O \

" M

0.0

Jun 2020 Sep 2020 Dec 2020 Mar 2021
Date
CHNG-CLI — CTIS-CLI Quidel-TPR
—— CHNG-COVID — CTIS-CLI-in—community

Figure 2: Geo-wise correlations with case rates, from April 15, 2020 to April 15, 2021,
calculated over all counties for which all signals were available and which had at least 500
cumulative cases by the end of this period.

2.3 Helping Robustness

Public health reporting of COVID tests, cases, deaths, and hospitalizations is subject to
a number of possible delays and problems. For example, COVID testing data is reported
inconsistently by different states using different definitions and inclusion criteria, and dif-
ferences in reporting processes mean state data often does not match data reported to
the federal government [39]. Case and death data is frequently backlogged and corrected,
resulting in artificial spikes and drops [40, 41].

As an example, looking back at Figure 1, we can see clear dips in the confirmed COVID
case curve that occur around the Thanksgiving and New Year’s holidays. This is artificial,
and due to the fact that public health departments usually close over holiday periods, which
delays case and death reporting (for this reason, the artificial dips persist at the state- and
county-level as well). The CLI signal from the survey, on the other hand, displays no such
dips. The claims signals actually display holiday effects going in the other direction: they
exhibit spikes around Thanksgiving and New Year’s. This is because they measure the
fraction of all outpatient visits with a certain condition, and the denominator here (total
outpatient visits) drops disproportionately during holiday periods, as people are likely less
willing to go to the doctor for more routine issues. Fortunately, in principle, the holiday
effects in claims signals should be correctable: they are mainly due to overall changes in
medical seeking behavior during holiday, periods, and we can estimate such effects using
historical claims data.

As a further example, Figure 4 displays data from Bexar County, Texas (which contains
San Antonio) during July 2020. On July 16, 2020, San Antonio reported 4,810 backlogged
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Figure 3: Time-wise correlations with case rates, from April 15, 2020 to April 15, 2021,
calculated over all counties for which all signals were available and which had at least 500
cumulative cases by the end of this period.

cases after reporting problems prevented them from being reported over the past two
weeks [42], resulting in a clearly visible spike in the left-hand panel of the figure (case data
from JHU CSSE, smoothed using a 7-day trailing average). Meanwhile, Delphi’s COVID
Trends and Impact Survey averaged around 350 responses per day in Bexar County over
the same time period, and was able to estimate the fraction of the population who know
someone in their local community with COVID-Like Illness (CLI). As we can see in the
right-hand panel of the figure, this signal was not affected by Bexar County’s reporting
problems and, as shown in the last subsection, it is (in general) highly correlated with case
rates, providing an alternate stream of data about COVID activity unaffected by backlogs.
Similar reporting problems have occurred in many jurisdictions across the United States,
making it valuable to cross-check against external sources not part of the same reporting
systems.

2.4 Revisions Matter

The revision tracking feature in the API assists in model-building and evaluation. Fig-
ure 5 illustrates how one COVIDcast medical claims signal evolved as it was revised across
multiple issue dates, in four different states, between June 1 and August 1, 2020. In each
plot, the rightmost ends of the lines correspond to estimates for the last day that data
are available for each issue date, which are generally the most tentative estimates, and
appear to be significantly biased upward in Arizona in June 2020, and significantly biased
downward in New York throughout June and July 2020.

Claims-based signals typically undergo heavy backfill as additional claims are processed
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Figure 4: Reported cases per day in Bexar County, Texas during the summer of 2020.
On July 16, 4,810 backlogged cases were reported, though they actually occurred over the
preceding two weeks (this shows up as a prolonged spike in the left panel due to the 7-day
trailing averaging applied to the case counts). Daily CTIS estimates of CLI-in-community
showed more stable underlying trends.

and errors are corrected; the median relative error between initial reports and final values
is over 20% for such data, and only after roughly 35 days do estimates typically match
finalized values within 5%. However, the systematic nature of this backfill, as illustrated
in Figure 5, suggests that statistical models could be fit (potentially separately for each
location) to estimate the final values from preliminary reports. On the other hand, official
public health reporting of COVID cases and deaths can be subject to revision as death
certificates are audited and backlogs cleared, resulting in thousands of cases and deaths
being added or removed. This process is much more difficult to predict, and thus claims
data and other sources may be a useful stand-in while public health reports are aggregated
and corrected.

To reiterate a previous point, when training and validating forecast models (on histor-
ical data), users will want to use data that was known as of the forecast date, not revised
versions that only became available much later. The COVIDcast API makes all historical
versions available and easily accessible for this purpose; and this feature plays a promi-
nent role in our own analysis of forecasting and hotspot prediction models appearing in a
companion paper.

2.5 New Perspectives

Auxiliary signals (outside of the standard public health reporting streams) can serve as
indicators of COVID activity, but they can also illustrate the effect of mitigating actions
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Figure 5: Estimated percentage of doctor’s visits due to COVID-like illness displayed across
multiple issue dates, with later issue dates adding additional data and revising past data
from prior issue dates.

(such as shelter-in-place orders) and can guide resource allocation for fighting the pandemic.
For example, medical claims data reflects healthcare-seeking behavior; measures of mobil-
ity reflect adherence to public health recommendations; and measures of COVID vaccine
acceptance can guide outreach efforts.

As an illustration, Figure 6 maps the sharp increase in rates of people staying at home
between March 1 and April 15, 2020. Using SafeGraph data on the fraction of mobile
devices included in SafeGraph’s panel that did not leave the immediate area of their home,
it illustrates the sharp drop in travel and work outside the home that occurred in the early
stages of the pandemic. It also shows that this drop was much more pronounced in some
states than others, enabling analysis of policy impacts and disease spread. Similar maps
can be quickly constructed for any signal in the COVIDcast API.

3 Discussion

The COVIDcast API provides open access to real-time and geographically-detailed indica-
tors of COVID activity in the United States, which supports and enhances standard public
health reporting streams in several ways.

First, several signals in the API closely track COVID activity (over both time and
space); yet they are derived from different data streams (such as surveys, medical insur-
ance claims, and medical devices), and are thus not subject to the same sources of error
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Figure 6: Percentage point increase in SafeGraph estimates of the percentage of people
staying completely at home, based on aggregated mobile device data, between March 1,
2020 and April 15, 2020.

as public health reporting streams. This can be important both for robustness and situ-
ational awareness, allowing decision-makers to diagnose potential anomalies in standard
surveillance streams, and for modeling tasks such as forecasting and nowcasting. Our
companion paper on forecasting discusses this in more detail.

Second, the API features many other signals that are relevant to understanding aspects
of the pandemic and its effects on the United States population that are not found in
traditional public health streams, such as data on mobility patterns, internet search trends,
mask wearing, and vaccine hesitancy, to name just a few. (The latter two signals are derived
from the COVID-19 Trends and Impact Survey; our companion paper on this survey gives
a more detailed view of its features and capabilities.) These signals have already supported
pandemic research and policy-making.

Third, the underlying database tracks all revisions made to the data, allowing us to
query the API to learn “what was known when,” which is critical for understanding the
behavior (and potential pitfalls) of real-time surveillance signals. Such revision data is
rarely available in standardized format from other sources.

Finally, we emphasize that unifying many relevant signals into a single common format,
with comprehensive revision tracking, is an important goal in and of itself. The ability to
combine public health reporting data, syndromic surveillance data, and digital measures
of mobility and behaviors goes beyond providing traditional situational awareness. Con-
venient and real-time access to this data enables continuous telemetry summarizing how
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things are, how they are expected to change, which areas need additional resources to be
allocated in response, and how effective public communication is.

There are a number of open questions, and challenges that remain. Several signals are
subject to biases, such as survey sampling and nonresponse biases, geographic differences
in market share for medical claims data, or biases in the population represented in app-
based mobility data. Claims data tends also to be subject to biases during major national
holidays and other events that change health-seeking behavior. Characterizing these biases
will be important for future research and operational systems that use these signals. Several
data sources are also subject to extensive revision and backfill, which must be studied and
modeled to enable effective real-time use of these sources in forecasting and nowcasting
systems. The breadth and unique features of the COVIDcast API will help facilitate
this and other related work, which will be vital to advancing pandemic modeling and
preparedness.
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Figure 7: The epidemiological “severity pyramid” represents the progression of cases from
the public, through infection, through increasingly severe stages of disease. The annotations
here represent the data sources collected by Delphi’s COVIDcast Epidata API.
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Figure 8: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
states across the United States. Cases are reported cases per 100,000 population. Other
signals are scaled to have the same global maximum across all counties and times, so they
can be presented in the same range. (part 12%f 4)
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Figure 9: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
states across the United States. (part 2 of 4)
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Figure 10: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
states across the United States. (part 3 of 4)
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Figure 11: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
states across the United States. (part 4 of 4)
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Figure 12: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
the 50 most populous counties in the United States. Cases are reported cases per 100,000
population. Other signals are scaled to have the same global maximum across all counties
and times, so they can be presented in the 82a7me range. (part 1 of 4)
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Figure 13: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
the 50 most populous counties in the United States. (part 2 of 4)
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Figure 14: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
the 50 most populous counties in the United States. (part 3 of 4)

29



https://doi.org/10.1101/2021.07.12.21259660

medRxiv preprint doi: https://doi.org/10.1101/2021.07.12.21259660; this version posted July 16, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
All rights reserved. No reuse allowed without permission.

Tarrant County, TX Travis County, TX Wake County, NC
2004
B 100 A M
3 __@&WNA
O
L oA
T T T T
% Q Q N Y
= Wayne County, Ml Westchester County, NY ,19’1/ 'L& q/g’lf q/’l/
> Q ) S
3 S RS
c 200'
2
wn
100 1
o-
T T T T T T T T
Q Q Q Q Q Q
R S g P S & U
(\‘L Q'L O’L (\'L Q‘L O‘L &'1/
A c® K @’b » c® o @Qf
Date
— Cases —— CHNG-CLI — CHNG-COVID — CTIS-CLI-in—community

Figure 15: Trends of cases, CHNG-CLI, CHNG-COVID, and CTIS-CLI-in-community for
the 50 most populous counties in the United States. (part 4 of 4)
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Figure 16: National trends, from April 2020 to April 2021, of HHS-reported confirmed
COVID-19 hospital admissions, plus another hospitalization signal in the COVIDcast API.
Here, the HHS data has been limited to values from 2020-08-01 onward due to changes in
reporting behavior, and processed into a 7-day trailing average rate per 100,000 resident
population using Census Bureau estimates for 2019. HSP-Hosp is the percentage of new
hospital admissions with COVID-associated diagnoses, based on claims data from health
system partners, smoothed in time and adjusted for systematic day-of-week effects (HSP-
Hosp is available from an earlier date when working at finer geographical resolutions).
HSP-Hosp has been scaled to have the same maximum value as the HHS data.
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Figure 17: Geo-wise correlations with hospitalization rates derived from HHS data, from
April 15, 2020 to April 15, 2021, calculated for all times with sufficient available data within
this period, over all state-like jurisdictions for which each signal was reported on at least
50 days during this period, limited to state-day combinations for which both signals are

available.
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Figure 18: Time-wise correlations with hospitalization rates derived from HHS data, from
April 15, 2020 to April 15, 2021, calculated over all state-like jurisdictions for which each
signal was reported on at least 50 days during this period, limited to state-day combinations
for which both signals are available.
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