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 2

What is already known on this topic 21 

� Many infectious diseases present an environmental pattern in their incidence.  22 

� Environmental factors, such as climate and weather condition, could drive the space and time 23 

correlations of infectious diseases, including influenza. 24 

� Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through 25 

aerosols, large droplets, or direct contact with secretions (or fomites) as influenza virus can. 26 

� Little is known about environmental pattern in COVID-19 incidence. 27 

What this study adds 28 

� The significant association between COVID-19 daily incidence and temperature was 29 

confirmed, using 3 methods, based on the data on COVID-19 and weather from 31 30 

provincial-level regions in mainland China. 31 

� Environmental factors were considered on the basis of SEIR model, and a modified 32 

susceptible-exposed-infectious-recovered (M-SEIR) model was developed. 33 

� Simulations of the COVID-19 outbreak in Wuhan presented similar effects of temperature on 34 

incidence as the incidence decrease with the increase of temperature.  35 
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ABSTRACT 36 

OBJECTIVE 37 

To investigate the impact of temperature and absolute humidity on the coronavirus disease 2019 38 

(COVID-19) outbreak.  39 

DESIGN 40 

Ecological study.  41 

SETTING 42 

31 provincial-level regions in mainland China.  43 

MAIN OUTCOME MEASURES 44 

Data on COVID-19 incidence and climate between Jan 20 and Feb 29, 2020. 45 

RESULTS 46 

The number of new confirm COVID-19 cases in mainland China peaked on Feb 1, 2020. COVID-19 47 

daily incidence were lowest at -10 ℃ and highest at 10 ℃,while the maximum incidence was 48 

observed at the absolute humidity of approximately 7 g/m3. COVID-19 incidence changed with 49 

temperature as daily incidence decreased when the temperature rose. No significant association 50 

between COVID-19 incidence and absolute humidity was observed in distributed lag nonlinear models. 51 

Additionally, A modified susceptible-exposed-infectious-recovered (M-SEIR) model confirmed that 52 

transmission rate decreased with the increase of temperature, leading to further decrease of infection 53 

rate and outbreak scale. 54 
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CONCLUSION 55 

Temperature is an environmental driver of the COVID-19 outbreak in China. Lower and higher 56 

temperatures might be positive to decrease the COVID-19 incidence. M-SEIR models help to better 57 

evaluate environmental and social impacts on COVID-19. 58 

 59 

Keywords: COVID-19, Temperature, Humidity, Dynamic transmission model.  60 

  61 
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INTRODUCTION 62 

In December 2019, an outbreak of novel coronavirus pneumonia occurred in Wuhan, Hubei Province, 63 

China, and then were declared as an international public health emergency by the World Health 64 

Organization (WHO) on January 30 2020. The disease was officially named as coronavirus disease 65 

2019 (COVID-19) and the newly emerged virus was named as SARS-CoV-2 in February 2020.1 66 

Previous studies on early cases showed that the disease severity of COVID-19 with a 2.3% 67 

case-fatality rate,2 is much lower than Middle East Respiratory Syndrome (MERS) and Severe Acute 68 

Respiratory Syndrome (SARS).3 However, as Li et al. reported,4 the number of COVID-19 cases 69 

doubled every 7.4 days between December 2019 and January 2020, indicating COVID-19 might be 70 

more infectious than SARS and MERS. In March 2020, the outbreak of COVID-19 was declared as a 71 

global pandemic for the coronavirus rapidly expanded throughout China and to 116 other countries and 72 

territories worldwide. 73 

Many infectious diseases present an environmental pattern in their incidence. A few studies on 74 

environmental issues, such as climate and weather condition, indicated that environmental factor could 75 

drive the space and time correlations of infectious diseases.5-7 Based on analysis on climate predicators, 76 

James D et al. found that humidity and temperature are optimal indicators in predicting influenza 77 

epidemics in tropical regions.8 Temperate regions of the Northern and Southern Hemispheres are 78 

characterized by highly synchronized annual influenza circulations during their winter months 79 

respectively.5 7 8 In the United States, an epidemiological study indicated that lower specific humidity 80 

is related to the occurrence of pandemic influenza, which is consistent with earlier finding in laboratory 81 

experiments.9 Absolute humidity, the actual mass of water vapor, is identified as a main cause of 82 
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seasonal influenza epidemics.10 The influenza presents significant seasonal fluctuation in temperate 83 

monsoon climate regions as the absolute humidity varies greatly in summer and winter, which could 84 

help the multiplication of virus. 85 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can be transmitted through 86 

aerosols, large droplets, or direct contact with secretions (or fomites) as influenza virus can.11 However, 87 

the environmental pattern remains to be elucidated in COVID-19 incidence. Based on dynamical 88 

equations, susceptible-exposed-infectious-recovered (SEIR) modeling has been developed and used to 89 

estimate key epidemic parameter to better characterize mechanism for the epidemic dynamics.12-14 90 

Therefore, we explored the association between daily incidence and climate conditions using locally 91 

weighted regression and smoothing scatterplot (LOESS) and distributed lag nonlinear models (DLNMs) 92 

based on the data on COVID-19 and weather from 31 provincial-level regions in mainland China, 93 

between Jan 20 and Feb 29, 2020. Furthermore, we took account of environmental factors on the basis 94 

of SEIR model, and developed a modified susceptible-exposed-infectious-recovered (M-SEIR) model 95 

to characterize the climate impacts on epidemic dynamics. 96 

 97 

METHODS 98 

Study data 99 

Data on COVID-19, including the number of new confirmed and probable cases were obtained from 100 

the China National Health Commission (CNHC) using the CoV2019 package15 101 

(http://www.nhc.gov.cn/). COVID-19 data were collected among all of the 31 provincial-level regions 102 

in mainland China and Wuhan city, between Jan 20 and Feb 29, 2020.COVID-19 emerged in Wuhan 103 
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city at the end of 2019 and rapidly spread across mainland China. Thus, population dynamic factors, 104 

including birth rate and death rate, were not considered here. Finally, daily incidences among the 31 105 

provincial-level regions and Wuhan city were calculated by dividing the number of new confirmed 106 

cases by the population size at the end of 2018 respectively, and was reported per 100,000 population.  107 

Daily temperatures (T) and relative humidity (RH) of 344 cities of the corresponding period were 108 

collected from the meteorological authority in mainland China. Means of temperatures and absolute 109 

humidity were further calculated for every provincial-level region. The Clausius-Clapeyron relation 110 

equation was used to calculate absolute humidity (AH) as following:  111 

T

RHe
AH

T

T

+
×××=

+

15.273

1674.2112.6 5.243

67.17

 112 

Data on climate conditions and population were retrieved from official reports previously released 113 

in mainland China. Therefore, the ethical review was not required. 114 

Statistical analysis 115 

Trends of climate factors and daily COVID-19 incidence indicators, including the incidence and the 116 

common logarithm of numbers of newly confirmed cases (lgN), were analyzed with locally weighted 117 

regression and smoothing scatterplot (LOESS) in 31 provincial-level regions in mainland China from 118 

Jan 20 to Feb 29, 2020.  119 

Developed on the definition of a cross-basis, DLNMs were used to infer the 120 

exposure-lag-response associations between climate factors and daily confirmed cases of COVID-19. 121 

DLNMs were constructed for mainland China outside of Hubei Province, Hubei Province outside of 122 

Wuhan city, and Wuhan city respectively. To induce the redundant analysis, temperature and absolute 123 
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humidity of mainland China were represented by data on the capital, Beijing. Additionally, temperature 124 

and absolute humidity means of the sites in Hubei Province outside of Wuhan, were calculated as a 125 

representative of Hubei Province data. 126 

To better understand the potential environmental driver of COVID-19, we took account of 127 

environmental factors on the basis of SEIR model and constructed the M-SEIR model to simulate the 128 

COVID-19 outbreak dynamic in Wuhan after travel restriction was put into force. Further sensitivity 129 

analysis was performed for quantitative risk assessment to evaluate the relationships between 130 

environmental parameter and COVID-19 incidence. 131 

The equations of M-SEIR model were given in the following: 132 
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where S(t), E(t), I(t), and R(t) were the number of susceptible, exposed, infectious, and removed 133 

individuals at time t; 
σ
1  and γ

1
 were the mean latent and infectious period; βt was a time dependent 134 

rate of infectious contact; β1,β2 andβ3 were constant coefficients. 135 

The simulations of COVID-19 dynamic and sensitivity analysis were conducted by using the 136 

system dynamic section in AnyLogic software (version 8.5.2). The specific depict of parameter values 137 
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in modified model and basic model details were included in Supplementary Table 1.  138 

 139 

RESULTS 140 

80,981 cases of COVID-19 (cases of decrease in accounting not removed) was confirmed in 31 141 

provincial-level regions in mainland China, between Jan 20 and Feb 29, 2020. Out of 80,981 cases, 142 

68,034 (84.01%) were diagnosed in Hubei Province. Daily number of new confirmed cases and daily 143 

incidence in mainland China were presented in Figure 1 and Supplementary Table 1. Daily number of 144 

cases peaked on Feb 12 and then it decreased, due to the adjustment in the diagnostic criteria of Hubei 145 

Province. And the number of cases and the incidence in China (outside of Hubei Province) have begun 146 

to decline early in Feb.  147 

From Jan 20 to Feb 29, 2020, temperature and absolute humidity varied in 31 provincial-level 148 

regions in mainland China (Figure 2). The highest temperature (26 ℃) and absolute humidity (19.45 149 

g/m3) were observed in Hainan Province and the lowest temperature (-22 ℃) and absolute humidity 150 

(0.54 g/m3) were observed in Jilin Province, which resulted from the geographical location. COVID-19 151 

daily incidence indicators (daily incidence and lgN) increased as the absolute humidity rose and 152 

declined slightly when absolute humidity reached approximately 7 g/m3 (Figure 3). Analysis for Hubei 153 

Province (outside of Wuhan) and Wuhan showed highly similar results (Supplementary Figure 1 and 154 

Supplementary Figure 2). Differences lay in the fact that cases clinically diagnosed without nucleic 155 

acid testing had been counted as confirmed cases in Hubei Province since Feb 12, which might increase 156 

potential bias in the model.  157 

Associations between temperature and COVID-19 relative risk (RR) in mainland China (outside 158 
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of Hubei Province), Hubei Province (outside of Wuhan) and Wuhan were presented as 159 

three-dimensional plots in Figure 4, compared with a reference value of 0 ºC. The plots showed 160 

significant effect on COVID-19 incidence of temperature. In mainland China (outside of Hubei 161 

Province), the highest RR (1.71, 95% CI: 1.28-2.27) was observed at a cold temperature (-6 ºC), 162 

suggesting the COVID-19 incidence were most likely to increase at -6 ºC. The RR of 0.59 (95% CI: 163 

0.44-0.78) at 6 ºC rose to 1.06 (95% CI: 0.96-1.18) when temperature dropped to -6 ºC. However, no 164 

statistical significance was found in lag-specific relative risk at lag 2 to lag 4, suggesting no delayed 165 

effect at any temperature. For example, the relative risk maintained at lag 2-4, as lag-specific RR was 166 

1.14 (95% CI: 0.90-1.44) at lag 2 and 1.03 (95% CI: 0.86-1.33) at lag 4 when temperature was -6 ºC. In 167 

Hubei Province (outside of Wuhan), RR was significantly higher at 8°C (RR 1.22, 95% CI: 1.07-1.38) 168 

and 10 °C (RR 1.92, 95% CI: 1.21-3.03) in lag 0. Conversely, lag-specific RR ranged from lag 0 to lag 169 

7 at 8-10 °C, suggesting positive delayed effect on decreasing COVID-19 incidence during the 170 

condition. In Wuhan city, the highest RR 1.04 (95% CI: 0.92-1.17) without significance was observed 171 

at approximately 9 ºC. However, the incidence was more likely to decrease with immediate and 172 

delayed effect at a lower or higher temperature than 9 ºC. For example, RR was in a range of 0.64 (95% 173 

CI: 0.46-0.87) to 0.88 (95% CI: 0.73-0.99) at lag 0 to 5 days when the temperature was 4 ºC and 174 

similar results were observed when the temperature was 16 ºC. 175 

Overall pictures of the effect of absolute humidity on incidence in mainland China (outside of 176 

Hubei Province), Hubei Province (outside of Wuhan) and Wuhan were presented in Figure 4, showing 177 

3-D graphs of COVID-19 relative risk (RR) along absolute humidity and lags compared with a 178 

reference value of 7.5 g/m3. The plots showed inconsistent effect of absolute humidity on COVID-19 179 

incidence. In mainland China, immediate effect on COVID-19 incidence was strongest at absolute 180 
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humidity of 4 g/m3 (RR: 1.13, 95%CI:1.02-1.27), indicating COVID-19 incidence was more likely to 181 

increase during the condition. When absolute humidity rose to 5 g/m3, values of lag-specific RR were 182 

in range of 0.60 (95% CI: 0.36-0.99) to 0.62 (95% CI: 0.41-0.93) at lag 3 to lag 5 (Supplementary 183 

Figure 3), indicating a strong delayed effect on COVID-19 incidence at absolute humidity of 5 g/m3. In 184 

Hubei Province, immediate effect on reducing COVID-19 incidence was observed when absolute 185 

humidity ranged from 4.5 g/m3 (RR 0.40, 95% CI: 0.19-0.84) to 5.5g/m3 (RR 0.65, 95% CI: 0.44-0.96) 186 

(Supplementary Figure 4). However, no significant difference was observed in absolute humidity in 187 

Wuhan city (Supplementary Figure 5).  188 

Considering the environmental impacts, we constructed the M-SEIR model to simulate the 189 

dynamic of COVID-19 by using the system dynamic section in AnyLogic software. SEIR dynamic 190 

transmission model compartmentalized the population into four states including susceptible, exposed, 191 

infected, and recovered, and further analyzed the relationships and interconnection using stock and set 192 

parameters, flows and table function (Figure 5A; Supplemental video 1). We set the initial values of 193 

the parameter and incorporated the temperature index in Wuhan city from Jan 20 and Feb 29, 2020, 194 

into the modified SEIR model. Supplemental table 3 presented the comparison of modified SEIR 195 

model in our study and classic SEIR models in similar studies. The four curves were stratified by types 196 

of state, and showed a similar pattern: the population size increased early in epidemic and then 197 

decreased as the period ends (e.g., due to recovery). As the M-SEIR model predicted, the number of 198 

infections would peak around Mar 5, reaching the inflection point, and the COVID-19 outbreak in 199 

Wuhan would be expected to end by late April (Figure 5B; Supplemental video 1). Furthermore, a 200 

sensitivity analysis on the transmission rate adjusted by temperature indicated high stability of our 201 

M-SEIR model (Figure 5C; Supplemental video 2). We set the transmission rate from 0 to 1 with a 202 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2020. ; https://doi.org/10.1101/2020.03.22.20038919doi: medRxiv preprint 

https://doi.org/10.1101/2020.03.22.20038919
http://creativecommons.org/licenses/by-nc-nd/4.0/


 12

step of to 0.1, and conducted the simulations to reduce the bias involving in the model, parameters, and 203 

functional relationships. Finally, we found that the transmission rate decreased with the increase of 204 

temperature, leading to the decrease of infection rate and outbreak size. 205 

 206 

DISCUSSION 207 

We inferred that the number of new confirm COVID-19 cases in mainland China peaked on Feb 1, 208 

2020. COVID-19 daily incidence were lowest at -10 ℃ and highest at 10 ℃,while the maximum 209 

incidence was observed at the absolute humidity of approximately 7 g/m3. We found significant 210 

association between temperature and COVID-19 daily incidence due to the immediate and delayed 211 

effect observed using DLNMs. As predicted in M-SEIR model, the COVID-19 outbreak would peak 212 

around March 5, 2020 and end in late April in Wuhan. Additionally, we found that transmission rate 213 

decreased with the increase of temperature, leading to further decrease of infection rate and outbreak 214 

size. Therefore, temperature drive the space and time correlations of COVID-19, and it can be used as 215 

an optimal predicator.  216 

In this study, we inferred the significant association between temperature and COVID-19 daily 217 

incidence using LOESS, DLNMs and M-SEIR model, suggesting that temperature plays an important 218 

role in the outbreak of COVID-19 and can be used in predicting the potential spread of COVID-19. 219 

Lower and higher temperatures may be positive to decrease the COVID-19 incidence, which help to 220 

shed new light on the environmental drivers of COVID-19 in China. Our results are in line with the 221 

findings in SARS. Based on data on SARS and climate in 4 cities, Tan et al. found that temperature is a 222 

powerful indicator for SARS-CoV transmission, in which the risk of increased daily incidence differed 223 
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between the effects of high and low temperatures.16 Additionally, Lowen’s laboratory work evidenced 224 

that temperature affect the virus spread of aerosol using a guinea pig model.17 However, the 225 

temperature DLNM in Hubei Province, showed different patterns from those in mainland China and 226 

Wuhan city, as COVID-19 relative risk rose at a moderate temperature.  227 

In our analysis, we failed to observe a significant relationship between absolute humidity and 228 

COVID-19 incidence based on the data of mainland China. However, absolute humidity has been 229 

reported as a strong correlation with influenza epidemic, due to the seasonal pattern that influences the 230 

multiplications and spread of influenza.9 18 19 In another study on MERS, caused a lethality of more 231 

than 35%, confirmed that the activity of MERS-CoV in droplet or aerosol, decreases significantly as 232 

absolute humidity increases though the mechanism is not yet clear.20 The difference between our study 233 

and previous finding may result from the fact that absolute humidity remained stable in a region during 234 

a very limited period. Additionally, rapid and strong actions taken by the government could biased our 235 

study. Despite of the negative consequence in our study, further studies on absolute humidity are 236 

required to perform. 237 

Combination of infectious disease dynamics model and environmental patterns is required to 238 

better explain the relationship between environmental factors and infection.21 Dynamic transmission 239 

model was usually performed to predict the genesis and development trend of infectious diseases as 240 

well as to evaluate the effect of intervention but few dynamic transmission models included 241 

environmental factors for the increasing uncertainty. However, to reveal the dynamic of an infectious 242 

disease, it would be much better to take account of environmental impact on the basis of dynamic 243 

transmission model.22 23 244 
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Environmental factors, characterized by lag effects and threshold effects, can target at two objects, 245 

host and virus, during infectious disease outbreak. On one hand, human activity patterns and immunity 246 

can be influenced by environmental factors. But the effect caused by environmental condition was 247 

limited during the COVID-19 outbreak, due to the absence of extreme weather and specific immunity 248 

for a newly emerging virus. On the other hand, environmental impacts on the SARS-CoV-2 are more 249 

significant than the host population because the transmission and virulence of the virus varies in 250 

different conditions. Finally, environmental impacts on transmission of virus should be characterized in 251 

the dynamic model, because infectiousness estimated in the traditional dynamic model is actually a 252 

confounding effect with environmental effect. It is necessary to take account of environmental issues 253 

on the basis of dynamic transmission model so that the impacts could be isolated and qualified. A 254 

dynamic model is not only compatible with the infectious disease transmission mode for virus itself, 255 

but also can be well coupled with surveillance data on environmental issues.24 Consequently, we 256 

constructed a M-SEIR model to correct the potential deviation of temperature to simulate the dynamic 257 

epidemic of COVID-19. The M-SEIR model predicted that the outbreak would reach its peak reach an 258 

inflection point around March 5, 2020, which is consistent with the actual situation based on data 259 

released by the NHC.25-29 And it is expected that the COVID-19 outbreak in Wuhan would end in late 260 

April. In addition, we conducted a sensitivity analysis on the temperature-adjusted transmission rate. 261 

Finally, we found transmission rate decreased with the increase of temperature, leading to further 262 

decrease of infection rate and epidemic size. 263 

Our analysis is subject to limitations. First, the COVID-19 dynamics are determined by multiple 264 

factors, including virus, climate, socio-economic development, population mobility, population 265 

immunity, and urbanization. However, not all those factors were considered in this study. Second, the 266 
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parameters of M-SEIR models were optimized, based on the previous analysis which might be biased 267 

by the lack of official data and the adjustment of diagnostic criteria in the outbreak. Third, it’s an 268 

ecological analysis in very short period so that we cannot avoid the bias caused by other ecological 269 

factors changed over time.  270 

 271 

Conclusions and public health implications 272 

Temperature is an environmental driver of the COVID-19 outbreak in China. Lower and higher 273 

temperatures might be positive to decrease the COVID-19 incidence. As predicted in M-SEIR model, 274 

the COVID-19 outbreak would peak around March 5, 2020 and end in late April in Wuhan. 275 

Modified-SEIR models help to better evaluate and identify national and international prevention and 276 

intervention targeted COVID-19. The COVID-19 outbreak would not last for a long period of time 277 

with the increase of temperature, but the scale of the outbreak would be influenced by the measures 278 

taken among countries. 279 
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Figure Legends 381 

Figure 1 Daily number of new confirmed cases of COVID-19 in mainland China between Jan 20 and 382 

Feb 29, 2020. 383 

Figure 2 Between Jan 20 and Feb 29, 2020, temperature values (left columns) and absolute humidity 384 

values (right columns) in 31 provincial-level regions in mainland China. 385 

Figure 3 COVID-19 daily incidence indicators (daily incidence and lgN) and the expected values 386 

based on the temperature and absolute humidity in mainland China (outside of Hubei Province) from 387 

Jan 20 to Feb 29, respectively. The black line represents the expected value of a daily incidence and 388 

lgN based upon a LOESS regression for all days of available estimates. LOESS, locally weighted 389 

regression and smoothing scatterplots.  390 

Figure 4 3-D plot of RR of COVID-19 along climate factors (temperature and absolute humidity) and 391 

lags in mainland China (outside of Hubei Province), Hubei Province (outside of Wuhan), and Wuhan 392 

city.  393 

Figure 5 COVID-19 dynamic trends and sensitivity analysis using M-SEIR model in Wuhan. (A) 394 

The over-all structure of M-SEIR model constructed by using the system dynamic section in AnyLogic 395 

software. (B) The snapshot represents the different population proportion of susceptible, exposed, 396 

infected, and recovered states under the specific time-point and forecasts the trend of the COVID-19 397 

outbreak in Wuhan city. (C) Sensitivity analysis under different temperature scenarios in Wuhan city. 398 

As the temperature-corrected transmission index rises, the peak of the curve increased under different 399 

times gradually. M-SEIR model, modified susceptible-exposed-infectious-recovered model; TI, the 400 

temperature-corrected transmission index (i.e. The transmission rate for susceptible to exposed, tβ ).  401 
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Figures

Figure 1 Daily number of new confirmed cases of COVID-19 in mainland China between Jan 20 and

Feb 29, 2020.
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Figure 2 Between Jan 20 and Feb 29, 2020, temperature values (left columns) and absolute humidity

values (right columns) in 31 provincial-level regions in mainland China.
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Figure 3 COVID-19 daily incidence indicators (daily incidence and lgN) and the expected values

based on the temperature and absolute humidity in mainland China (outside of Hubei Province) from

Jan 20 to Feb 29, respectively. The black line represents the expected value of a daily incidence and

lgN based upon a LOESS regression for all days of available estimates. LOESS, locally weighted

regression and smoothing scatterplots.
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Figure 4 3-D plot of RR of COVID-19 along climate factors (temperature and absolute humidity) and

lags in mainland China (outside of Hubei Province), Hubei Province (outside of Wuhan), and Wuhan

city.
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Figure 5 COVID-19 dynamic trends and sensitivity analysis using M-SEIR model in Wuhan. (A)

The over-all structure of M-SEIR model constructed by using the system dynamic section in AnyLogic

software. (B) The snapshot represents the different population proportion of susceptible, exposed,
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infected, and recovered states under the specific time-point and forecasts the trend of the COVID-19

outbreak in Wuhan city. (C) Sensitivity analysis under different temperature scenarios in Wuhan city.

As the temperature-corrected transmission index rises, the peak of the curve increased under different

times gradually. M-SEIR model, modified susceptible-exposed-infectious-recovered model; TI, the

temperature-corrected transmission index (i.e. The transmission rate for susceptible to exposed, t ).
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