
1 

 

Gut microbiota may underlie the predisposition of healthy individuals to 

COVID-19 

Wanglong Gou1,4#, Yuanqing Fu1,4#, Liang Yue3,4#, Geng-dong Chen2#, Xue Cai3,4#, 

Menglei Shuai1,4#, Fengzhe Xu1,4#, Xiao Yi3,4, Hao Chen3,4, Yi Zhu3,4, Mian-li Xiao2, 

Zengliang Jiang1, Zelei Miao1, Congmei Xiao1, Bo Shen5, Xiaomai Wu5, Haihong 

Zhao5, Wenhua Ling2, Jun Wang6, Yu-ming Chen2*, Tiannan Guo3,4*, Ju-Sheng 

Zheng1,4,7* 

 

1Key Laboratory of Growth Regulation and Translation Research of Zhejiang 

Province, School of Life Sciences, Westlake University, Hangzhou 310024, China; 

2Guangdong Provincial Key Laboratory of Food, Nutrition and Health; Department of 

Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, 

China; 

3Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, 

Westlake University, Hangzhou 310024, China; 

4Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, 

Hangzhou 310024, China; 

5Taizhou Hospital, Wenzhou Medical University, 150 Ximen Street, Linhai 317000, 

Zhejiang Province, China; 

6 CAS Key Laboratory for Pathogenic Microbiology and Immunology, Institute of 

Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. 

7Lead Contact 

#These authors contributed equally 

*Correspondence: chenyum@mail.sysu.edu.cn (Y.M.C.); 

guotiannan@westlake.edu.cn (T.G.); zhengjusheng@westlake.edu.cn (J.S.Z.) 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.22.20076091doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.04.22.20076091
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

 

SUMMARY 1 

The COVID-19 pandemic is spreading globally with high disparity in the 2 

susceptibility of the disease severity. Identification of the key underlying factors for 3 

this disparity is highly warranted. Here we describe constructing a proteomic risk 4 

score based on 20 blood proteomic biomarkers which predict the progression to 5 

severe COVID-19. We demonstrate that in our own cohort of 990 individuals without 6 

infection, this proteomic risk score is positively associated with proinflammatory 7 

cytokines mainly among older, but not younger, individuals. We further discovered 8 

that a core set of gut microbiota could accurately predict the above proteomic 9 

biomarkers among 301 individuals using a machine learning model, and that these gut 10 

microbiota features are highly correlated with proinflammatory cytokines in another 11 

set of 366 individuals. Fecal metabolomic analysis suggested potential amino 12 

acid-related pathways linking gut microbiota to inflammation. This study suggests 13 

that gut microbiota may underlie the predisposition of normal individuals to severe 14 

COVID-19. 15 

  16 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 25, 2020. ; https://doi.org/10.1101/2020.04.22.20076091doi: medRxiv preprint 

https://doi.org/10.1101/2020.04.22.20076091
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 17 

With the coronavirus disease 2019 (COVID-19) defined as ‘global pandemic’ and 18 

spreading worldwide at an unprecedented speed, more than two million individuals 19 

have been infected globally since its first detection in December 2019 to mid-April 20 

2020 (WHO, 2020). So far, many research papers have been published to characterize 21 

the clinical features of the COVID-19 patients, revealing that those individuals who 22 

are older, male or having other clinical comorbidities are more likely to develop into 23 

severe COVID-19 cases (Chen et al., 2020; Huang et al., 2020). Yet, little is known 24 

about the potential biological mechanisms or predictors for the susceptibility of the 25 

disease. 26 

 27 

It is known that COVID-19 is caused by severe acute respiratory syndrome 28 

coronavirus 2 (SARS-CoV-2), which enters human cells by binding to angiotensin 29 

converting enzyme 2 (ACE2) as its receptor (Yan et al., 2020). Of note, ACE2 is an 30 

important regulator of intestinal inflammation, and that the expression of ACE2 is 31 

higher in the ileum and colon than in lung (Hashimoto et al., 2012; Zhang et al., 2020). 32 

ACE2 also has a major impact on the composition of gut microbiota, thus affecting 33 

cardiopulmonary diseases (Cole-Jeffrey et al., 2015). Moreover, over 60% of patients 34 

with COVID-19 report evidence of gastrointestinal symptoms, such as diarrhoea, 35 

nausea and vomiting, and that patients with gastrointestinal symptoms had overall 36 

more severe/critical diseases (Jin et al., 2020; Lin et al., 2020; Ng and Tilg, 2020). 37 

Taken together, the available evidence suggests a potential role of gut microbiota in 38 

the susceptibility of COVID-19 progression and severity. 39 

 40 

Based on a recent investigation into the blood biomarkers of COVID-19 patients, we 41 

identified a set of proteomic biomarkers which could help predict the progression to 42 

severe COVID-19 among infected patients (Shen et al., 2020). The newly discovered 43 

proteomic biomarkers may help early prediction of severe COVID-19. However, the 44 

question remains as to whether this set of proteomic biomarkers could be used in 45 

healthy (non-infected) individuals to help explain the disease susceptibility. It is also 46 
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unclear whether gut microbiota could regulate these blood proteomic biomarkers 47 

among healthy individuals. 48 

 49 

To address the above unresolved questions, we integrated blood proteomics data from 50 

31 COVID-19 patients and multi-omics data from a Chinese population without 51 

infection living in Guangzhou, involving 2413 participants (Figure 1; Figure S1; 52 

Table S1). Based on the COVID-19 patient data, we constructed a blood proteomic 53 

risk score (PRS) for the prediction of COVID-19 progression to clinically severe 54 

phase. Then, among 990 healthy individuals with the data of proteome and blood 55 

inflammatory biomarkers, we investigated the association of the COVID-19-related 56 

PRS with inflammatory biomarkers as a verification of the PRS with disease 57 

susceptibility in normal non-infected individuals. Next, we identified core gut 58 

microbiota features which predicted the blood proteomic biomarkers of COVID-19 59 

using a machine-learning model. We conducted further fecal metabolomics analysis to 60 

reveal potential biological mechanisms linking gut microbiota to the COVID-19 61 

susceptibility among non-infected individuals. Finally, we demonstrated the 62 

contribution of 40 host and environmental factors to the variance of the above 63 

identified core gut microbiota features.  64 

 65 

Results 66 

Predictive proteomic profile for severe COVID-19 is correlated with 67 

inflammatory factors among healthy individuals 68 

Based on a prior serum proteomic profiling of COVID-19 patients, 22 proteomic 69 

biomarkers contributed to the prediction of progression to severe COVID-19 status 70 

(Shen et al., 2020).Using this cohort, we constructed a blood PRS among the 31 71 

COVID-19 patients (18 non-severe cases and 13 severe cases) based on 20 proteomic 72 

biomarkers (Table S2). We only used 20 of the 22 proteins for our PRS construction 73 

because 2 proteins were unavailable in our large proteomics database among 74 

non-infected participants for the further analysis. Among the COVID-19 patients, 75 

Poisson regression analysis indicated that per 10% increment in the PRS there was 76 
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associated a 57% higher risk of progressing to clinically severe phase (RR, 1.57; 95% 77 

CI, 1.35-1.82; Figure 2A), in support of the PRS as being a valid proxy for the 78 

predictive biomarkers of severe COVID-19.  79 

 80 

To explore the potential implication of the PRS among non-COVID-19 individuals, 81 

we constructed the PRS using the same set of 20 blood proteins among a cohort of 82 

non-infected participants with data of both proteomics and inflammatory markers 83 

(n=990). The blood proteomic data was based on the baseline serum samples of the 84 

cohort (Figure S1). We investigated the correlation between the PRS and blood 85 

inflammatory markers IL-1β, IL-6, TNF-α and hsCRP. The PRS had a significantly 86 

positive correlation with serum concentrations of hsCRP and TNF-α (p<0.001 and 87 

p<0.05, respectively), but not other markers (Figure 2B). As age and sex are very 88 

important factors related to the susceptibility to SARS-CoV-2 infection, we 89 

performed subgroup analysis stratified by age (<58 years vs. ≥58 years, with 58 years 90 

as the median age of this cohort) and sex. Interestingly, we found that higher PRS was 91 

significantly correlated with higher serum concentrations of all the aforementioned 92 

inflammatory markers among older individuals (>58 years, n=493), but not among 93 

younger individuals (≤58 years, n=497) (Figure 2B and 2C). The PRS did not show 94 

any differential association with the inflammatory markers by sex (Figure S2). 95 

Whether the identified proteomic changes causally induce immune activation or 96 

consequences of the immune response are not clear at present, but the finding 97 

supports the hypothesis that the PRS may act as a biomarker of unbalanced host 98 

immune system, especially among older adults. 99 

 100 

Core microbiota features predict COVID-19 proteomic risk score and host 101 

inflammation 102 

To investigate the potential role of gut microbiota in the susceptibility of healthy 103 

individuals to COVID-19, we next explored the relationship between the gut 104 

microbiota and the above COVID-19-related PRS in a sub-cohort of 301 participants 105 

with measurement of both gut microbiota (16s rRNA) and blood proteomics data 106 
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(Figure S1). Gut microbiota data were collected and measured during a follow-up 107 

visit of the cohort participants, with a cross-sectional subset of the individuals (n=132) 108 

having blood proteomic data at the same time point as the stool collection and another 109 

independent prospective subset of the individuals (n=169) having proteomic data at a 110 

next follow-up visit ~3 years later than the stool collection.  111 

 112 

Among the cross-sectional subset, using a machine learning-based method: 113 

LightGBM and a very conservative and strict tenfold cross-validation strategy, we 114 

identified 20 top predictive operational taxonomic units (OTUs), and this subset of 115 

core OTUs explained an average 21.5% of the PRS variation (mean out-of-sample 116 

R2=0.215 across ten cross-validations). The list of these core OTUs along with their 117 

taxonomic classification is provided in Table S3. These OTUs were mainly assigned 118 

to Bacteroides genus, Streptococcus genus, Lactobacillus genus, Ruminococcaceae 119 

family, Lachnospiraceae family and Clostridiales order.  120 

 121 

To test the verification of the core OTUs, the Pearson correlation analysis showed the 122 

coefficient between the core OTUs-predicted PRS and actual PRS reached 0.59 123 

(p<0.001), substantially outperforming the predictive capacity of other demographic 124 

characteristics and laboratory tests including age, BMI, sex, blood pressure and blood 125 

lipids (Pearson’s r =0.154, p=0.087) (Figure 3A). Additionally, we used co-inertia 126 

analysis (CIA) to further test co-variance between the 20 identified core OTUs and 20 127 

predictive proteomic biomarkers of severe COVID-19, outputting a RV coefficient 128 

(ranged from 0 to 1) to quantify the closeness. The results indicated a close 129 

association of these OTUs with the proteomic biomarkers (RV=0.12, p<0.05) (Figure 130 

S3A). When replicating this analysis stratified by age, significant association was 131 

observed only among older participants (age≥58, n=66; RV=0.22, p<0.05) (Figure 132 

S3B and S3C).  133 

 134 

Importantly, the above results from cross-sectional analyses were successfully 135 

replicated in the independent prospective subset of 169 individuals, which showed a 136 
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Pearson’s r of 0.18 between the core OTUs-predicted PRS versus actual PRS (p<0.05), 137 

also outperforming the predictive capacity of the above demographic characteristics 138 

and laboratory tests (Pearson’s r =0.08, p=0.31) (Figure 3A). These findings support 139 

that change in the gut microbiota may precede the change in the blood proteomic 140 

biomarkers, inferring a potential causal relationship.  141 

 142 

To further verify the reliability of these core OTUs, in another larger independent 143 

sub-cohort of 366 participants (Figure S1), we examined the cross-sectional 144 

relationship between the core OTUs and 10 host inflammatory cytokines including 145 

IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α and IFN-γ, and found 11 146 

microbial OTUs were significantly associated with the inflammatory cytokines 147 

(Figure 3B). Specifically, Bacteroides genus, Streptococcus genus and Clostridiales 148 

order were negatively correlated with most of the tested inflammatory cytokines, 149 

whereas Ruminococcus genus, Blautia genus and Lactobacillus genus showed 150 

positive associations.  151 

 152 

Fecal metabolome may be the key to link the PRS-related core microbial features 153 

and host inflammation 154 

We hypothesized that the influences of the core microbial features on the PRS and 155 

host inflammation were driven by some specific microbial metabolites. So we 156 

assessed the relationship between the core gut microbiota and fecal metabolome 157 

among 987 participants, whose fecal metabolomics and 16s rRNA microbiome data 158 

were collected and measured at the same time point during the follow-up visit of the 159 

participants (Figure S1). After correction for the multiple testing (FDR<0.05), a total 160 

of 183 fecal metabolites had significant correlations with at least one selected 161 

microbial OTU. Notably, 45 fecal metabolites, mainly within the categories of amino 162 

acids, fatty acids and bile acids, showed significant associations with more than half 163 

of the selected microbial OTUs (Figure 4A), these metabolites might play a key role 164 

in mediating the effect of the core gut microbiota on host metabolism and 165 

inflammation.  166 
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Based on these key metabolites, we performed metabolic pathway analysis to 167 

elucidate possible biological mechanisms. The results showed that these 45 fecal 168 

metabolites were mainly enriched in three pathways, namely aminoacyl-tRNA 169 

biosynthesis pathway, arginine biosynthesis pathway, and valine, leucine and 170 

isoleucine biosynthesis pathway (Figure 4B). There were 15 fecal metabolites 171 

involved in the aminoacyl-tRNA biosynthesis pathway, which is responsible for 172 

adding amino acid to nascent peptide chains and is a target for inhibiting cytokine 173 

stimulated inflammation (Figure 4C). Additionally, 4 metabolites were associated 174 

with arginine biosynthesis pathway and 3 metabolites were enriched in valine, leucine 175 

and isoleucine (known as branch-chain amino acids, BCAAs) biosynthesis pathway 176 

(Figure 4C).  177 

 178 

Host and environmental factors modulate the PRS-related core microbial OTUs 179 

As demographic, socioeconomic, dietary and lifestyle factors may all be closely 180 

related to the gut microbiota, we explored the variance contribution of these host and 181 

environmental factors for the identified core OTU composition. A total of 40 items 182 

belonging to two categories (i.e., demographic/clinical factors and dietary/nutritional 183 

factors) were tested (Figure 5), which together explained 3.6% of the variation in 184 

interindividual distance of the core OTU composition (Bray-Curtis distance). In the 185 

demographic/clinical factors which explained 2.4% of the variation, we observed 186 

associations of 9 items (i.e., sex, education, physical activity, diastolic blood pressure, 187 

blood glucose, blood lipids and medicine use for type 2 diabetes) with inter-individual 188 

distances in the core OTU composition (PERMANOVA, p<0.05; Figure 5). While in 189 

the dietary/nutritional category (1.1% variance was explained), only dairy 190 

consumption significantly contributed to the variance of the core OTU composition. 191 

 192 

Discussion 193 

Our findings suggest that, among healthy non-infected individuals, gut microbial 194 

features are highly predictive of the blood proteomic biomarkers of severe COVID-19 195 

disease. The disruption of the corresponding gut microbiome features may potentially 196 
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predispose healthy individuals to abnormal inflammatory status, which may further 197 

account for the COVID-19 susceptibility and severity. The fecal metabolomics 198 

analysis reveals that amino acid-related pathway may provide the key link between 199 

the identified core gut microbiota, inflammation and COVID-19 susceptibility. 200 

Furthermore, modifications on host and environmental factors are likely to influence 201 

the above core gut microbiota compositions. 202 

 203 

Accumulating evidence suggests that “cytokine storm”, an excessive production of 204 

inflammatory cytokines, may be an important mechanism leading to the severity and 205 

death of COVID-19 patients (Huang et al., 2020; Yang et al., 2020). Therefore, 206 

anticytokine therapy for the suppression of the hyperinflammatory status of the 207 

patients is a recommended strategy to treat severe COVID-19 patients (Mehta et al., 208 

2020; Monteleone et al., 2020). Among the 20 proteomic predictors of severe 209 

COVID-19, several most upregulated proteins are activated acute phase proteins, 210 

including serum amyloid A-1 (SAA1), SAA2, SAA4, alpha-1-antichymotrypsin 211 

(SERPINA3), complement 6 (C6) and complement factor B (CFB) (Shen et al., 2020). 212 

These proteins may be activated together with proinflammatory cytokines such as 213 

IL-6 and TNF-α following the invasion of the SARS-CoV-2. Therefore, this set of 214 

proteomic biomarkers may serve as an important biomarker or therapeutic target for 215 

treating SARS-CoV-2 infection. Beyond the previous data from the COVID-19 216 

patients, our current study based on data from healthy non-infected participants 217 

consistently supports that the proteomic biomarkers (integrated into a score) are 218 

positively associated with proinflammatory cytokines, especially among those with an 219 

older age. These results imply that the proteomic changes my precede the progression 220 

of COVID-19 to severe phase. Moreover, our finding of more significant associations 221 

between PRS and proinflammatory cytokines among older people agree with the 222 

observation during COVID-19 outbreak that older individuals are more susceptible to 223 

the virus, leading to severity of the disease, due to the induced hyperinflammation or 224 

“cytokine storm” (Chen et al., 2020; Zhou et al., 2020). 225 
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In the present study, the core gut microbial features (20 OTUs), with a satisfied 226 

performance, outperform demographic characteristics and laboratory tests in 227 

predicting the blood proteomic biomarkers, which highlights a potential role of gut 228 

microbiota in regulating the susceptibility of COVID-19 among normal individuals. 229 

In fact, maintaining gut homeostasis has been suggested as a treatment option in the 230 

“Diagnosis and Treatment Plan of Corona Virus Disease 2019 (Tentative Sixth 231 

Edition)” issued by National Health Commission of China, as to keep the equilibrium 232 

for intestinal microecology and prevent secondary bacterial infection (National Health 233 

Commission (NHC) of the PRC, 2020). Growing evidence has shown that microbiota 234 

plays a fundamental role on the induction, training and function of the host immune 235 

system, and the composition of the gut microbiota and its activity are involved in 236 

production of inflammatory cytokines (Belkaid and Hand, 2014; Cani and Jordan, 237 

2018). Prior studies reported that Lactobacillus genus was positively associated with 238 

IL-6 and IFN-γ, while Blautia genus was positively associated with IL-10 (Jiang et al., 239 

2012; Pohjavuori et al., 2004; Yoshida et al., 2001); these relationships were 240 

replicated in our study. Besides, we found the PRS-related OTUs belonging to 241 

Bacteroides genus and Streptococcus genus were negatively associated with most 242 

proinflammatory factors. These results further support the reliability of the selected 243 

core OTUs. 244 

 245 

Fecal metabolomics analyses for the identified core gut microbial OTUs suggest that 246 

these OTUs may be closely associated with amino acid metabolism, especially 247 

aminoacyl-tRNA biosynthesis pathway, arginine biosynthesis pathway, and valine, 248 

leucine and isoleucine biosynthesis pathway. As metabolic stress pathways and 249 

nutrient availability instruct immunity, amino acid levels in the tissue 250 

microenvironment are central to the maintenance of immune homeostasis (Murray, 251 

2016). Amino acid insufficiency will cause depletion of available aminoacylated 252 

tRNA, which is essential for the host to sense amino acid limitation and immune 253 

response (Brown et al., 2016, 2010; Harding et al., 2003). A recent study on several 254 

mammalian cell models reported that when aminoacyl-tRNA synthetase was inhibited, 255 
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the cytokine stimulated proinflammatory response would be substantially suppressed, 256 

and a single amino acid depletion, such as arginine or histidine, could also suppress 257 

the cytokine induced immune response (Kim et al., 2020). Thus the identified 258 

pathways regulating in aminoacyl-tRNA biosynthesis and arginine biosynthesis may 259 

be both involved in the inflammatory response. Additionally, arginine and BCAAs 260 

(i.e., valine, leucine and isoleucine), were also reported regulating innate and adaptive 261 

immune responses and enhancing intestinal development (Zhang et al., 2017). 262 

Collectively, these key roles that amino acids play in the immunoregulation may help 263 

explain how the PRS-related core OTUs modulate host inflammation via amino acid 264 

metabolism. Furthermore, given the high expression of ACE2 in the ileum and colon, 265 

and the role of ACE2 as a key regulator of dietary amino acid homeostasis and innate 266 

immunity (Hashimoto et al., 2012; Zhang et al., 2020), ACE2 may be another key 267 

mediator between gut microbiota and host inflammation. However, whether and how 268 

ACE2 may mediate the association between gut microbiota and COVID-19 severity 269 

warrants further mechanistic study. 270 

 271 

We observed that several host demographic and clinical factors had a strong effect on 272 

the identified core OTU composition, among which drug use and metabolic 273 

phenotypes had been widely reported correlating with gut microbiome composition 274 

(Cabreiro et al., 2013; Gilbert et al., 2018; Vich Vila et al., 2020). Although these 275 

observations were quite crude, it gave us an overview of the potential influence of 276 

host and environmental factors on the PRS-related gut microbiota matrix. Those 277 

known factors contributed to the COVID-19 susceptibility also contributed to the 278 

variance of the gut microbiota, including age, sex, and indicators of clinical 279 

comorbidities (blood pressure, glucose triglycerides, high-density and low-density 280 

lipoprotein cholesterol, and diabetes medication). 281 

 282 

In summary, our study provides novel insight that gut microbiota may underlie the 283 

susceptibility of the healthy individuals to the COVID-19. In the global crisis of 284 

COVID-19, a wide disparity in the susceptibility of the disease or disease progression 285 
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has been observed. Our results provide important evidence and suggestions about the 286 

potential biological mechanism behind the diverse susceptibility among different 287 

groups of people. The discovered core gut microbial features and related metabolites 288 

may serve as a potential preventive/treatment target for intervention especially among 289 

those who are susceptible to the SARS-CoV-2 infection. They could also serve as 290 

potential therapeutic targets for drug development. 291 
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Figure Legends 316 

Figure 1. Study design and analysis pipeline. Study overview. 1) constructing a 317 

novel COVID-19 blood proteomic risk score (PRS) among 31 COVID-19 patients (18 318 

non-severe cases and 13 severe cases). 2) Applicating the PRS in healthy participants, 319 

and further linking it to host inflammatory status (n=990). 3) Investigating the 320 

potential role of gut microbiota in predicting the PRS of COVID-19 based on a 321 

machine-learning method (n=301). 4) Assessing the relationships between the 322 

PRS-related gut microbiota and inflammatory factors (n=336). 5) Fecal metabolomics 323 

analysis reveals function of gut microbiota on host metabolism (n=987). 6) 324 

Investigating the impact of host and environmental factors on PRS-related core 325 

microbial OTUs (n=1729).  326 

 327 

Figure 2. Predictive proteomic profile for severe COVID-19 is correlated with 328 

pro-inflammatory factors among healthy individuals. (A) The associations of 329 

COVID-19-related blood proteomic biomarkers and proteomic risk score (PRS) with 330 

host inflammatory markers. 990 participants were involved in this analysis. # protein 331 

down-regulated in severe patients, else, up-regulated. 332 

(B) The correlation of the above blood proteomic biomarkers and PRS with host 333 

inflammatory markers stratified by the median age of participants (<58 years or ≥58 334 

years). The color of the heatmap indicates the Spearman correlation coefficients 335 

(blue-negative, red-positive). (C) The correlation of the PRS with individual host 336 

inflammatory markers stratified by the median age of participants (<58 years or ≥58 337 

years).  338 

 339 

Figure 3. Core microbiota features predict COVID-19 proteomic risk score (PRS) 340 

and host inflammation. (A) Plots of out-of-sample predicted PRS versus actual PRS 341 

based on top 20 ranked OTUs or demographic/clinical factors (age, sex BMI, fasting 342 

glucose, HDL, LDL, TC, TG, DBP, and SBP) using LightGBM with 10-fold 343 

cross-validation. The plots in the first row indicate the model performance among 344 

cross-sectional subset of individuals (n=132); the plots in the second row indicate the 345 
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model performance among prospective subset of individuals (n=169).The mean R2 346 

across the 10 cross validations, Pearson r of predicted values versus actual values, and 347 

corresponding P-value are shown in the figures. (B) The correlation of the core 348 

microbial OTUs and host inflammatory cytokines (n=336). The color of the heatmap 349 

indicates the Spearman correlation coefficients (blue-negative, red-positive). 350 

 351 

Figure 4. Fecal metabolome may be the key to link the proteomic risk 352 

score-related core microbial features and host inflammation 353 

(A) Associations of the core microbial OTUs with fecal metabolites (n=987). The 354 

relationships between microbial OTUs and fecal metabolites was assessed by a linear 355 

regression model adjusting for age, sex, BMI. Multiple testing was adjusted using 356 

Benjamini and Hochberg method, with a false discovery rate (FDR) of <0.05 being 357 

considered statistically significant. We only presented metabolites showing significant 358 

associations with more than half of the core microbial OTUs (n=20) in the figure. 359 

Sizes of the nodes represent the number of OTUs related with fecal metabolites. Red 360 

edge, β-coefficient >0; blue edge, β-coefficient <0. (B) Pathway analysis for the core 361 

fecal metabolites (shown in part A) using MetaboAnalyst 4.0 (Chong et al., 2019). (C) 362 

Metabolites enriched in the significant pathways (shown in part B).  363 

 364 

Figure 5. Host and environmental factors modulate the blood proteomic risk 365 

score-related core microbial OTUs. Host and environmental factors including 18 366 

demographic/clinical items and 22 dietary/nutritional items were used in this analysis 367 

(n=1729). The bar plot indicates the explained variation of the core OTUs 368 

composition (Bray-Curtis distance) by each item. The heatmap next to the bar plot 369 

shows the correlation coefficients of each item with the core OTUs.  370 

  371 
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STAR MEHTODS 372 

RESOURCE AVAILABILITY 373 

Lead Contact 374 

Further information and requests for resources and reagents should be directed to and 375 

will be fulfilled by the Lead Contact, Ju-Sheng Zheng 376 

(zhengjusheng@westlake.edu.cn). 377 

 378 

Materials Availability 379 

This study did not generate new unique reagents. 380 

 381 

Data and Code Availability 382 

The raw data of 16 S rRNA gene sequences are available at CNSA 383 

(https://db.cngb.org/cnsa/) of CNGBdb at accession number CNP0000829. 384 

 385 

SUBJECT DETAILS  386 

COVID-19 proteomics data set 387 

Detailed information about the COVID-19 patients and proteomics data set is 388 

described in our recent publication (Shen et al., 2020). Briefly, the proteome of sera 389 

from 46 COVID-19 patients and 53 control samples from Taizhou Public Health 390 

Medical Center were analyzed by TMTpro 16 plex-based quantitative proteomics 391 

technology. All the patients were diagnosed between January 23 and February 4, 2020. 392 

According to the Chinese Government Diagnosis and Treatment Guideline for 393 

COVID-19, the COVID-19 patients were classified into four groups, (1) mild (mild 394 

symptoms without pneumonia); (2) typical (fever or respiratory tract symptoms with 395 

pneumonia); (3) severe (fulfill any of the three criteria: respiratory distress, 396 

respiratory rate≥30 times/min; mean oxygen saturation ≤ 93% in resting state; 397 

arterial blood oxygen partial pressure/oxygen concentration ≤ 300mmHg); and (4) 398 

critical (fulfill any of the three criteria: respiratory failure and require mechanical 399 

ventilation; shock incidence; admission to ICU with other organ failure). We treated 400 
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mild and typical patients as a non-severe COVID-19 group, and the others a severe 401 

COVID-19 group. 402 

 403 

Healthy subjects, sample collection, and clinical metadata 404 

In the present study, the healthy (non-infected) subjects are from the 405 

community-based Guangzhou Nutrition and Health Study (GNHS), and the detailed 406 

study designs of GNHS have been reported previously (Zhang et al., 2014). Briefly, 407 

participants were enrolled between 2008 and 2013, and followed up to May 2018. 408 

Blood samples were collected at enrollment and follow-up visits, and stool samples 409 

were collected only during follow-up visits. All the blood samples were collected as 410 

venous whole blood in the early morning before diet using serum separation tubes. 411 

The blood samples were centrifuged at 3,500 rpm for 10 min for serum collection. 412 

The serum samples were frozen at -80°C. The stool samples were collected at a local 413 

study site within the School of Public Health at Sun Yat-sen University, and were 414 

transferred to a -80°C facility within 4 hours after collection.  415 

 416 

Demographic and lifestyle factors were all collected by questionnaire during on-site 417 

face-to-face interviews. Habitual dietary intakes over the past 12 months were 418 

assessed by a food frequency questionnaire, as previously described (Zhang CX, 419 

2009). Physical activity was assessed as a total metabolic equivalent for task (MET) 420 

hours per day on the basis of a validated questionnaire for physical activity (Liu et al., 421 

2001). 422 

 423 

Anthropometric factors were measured by trained nurses on site during the baseline 424 

interview. Fasting venous blood samples were taken at each recruitment or follow-up 425 

visit. Serum low-density lipoprotein cholesterol and glucose were measured by 426 

coloimetric methods using a Roche Cobas 8000 c702 automated analyzer (Roche 427 

Diagnostics GmbH, Shanghai, China). Intra-assay coefficients of variation (CV) was 428 

2.5% for glucose. Insulin was measured by electrochemiluminescence immunoassay 429 

(ECLIA) methods using a Roche cobas 8000 e602 automated analyzer (Roche 430 
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Diagnostics GmbH, Shanghai, China). High-performance liquid chromatography was 431 

used to measure glycated hemoglobin (HbA1c) using the Bole D-10 Hemoglobin A1c 432 

Program on a Bole D-10 Hemoglobin Testing System, and the intraassay CV was 433 

0.75%. 434 

 435 

Ethics 436 

This study has been approved by the Ethical/Institutional Review Board of Taizhou 437 

Public Health Medical Center, the Ethics Committee of the School of Public Health at 438 

Sun Yat-sen University and Ethics Committee of Westlake University. 439 

  440 

METHOD DETAILS 441 

Proteomic analysis 442 

1 μL of serum sample from each patient was analyzed using proteomics technology. 443 

The serum was firstly denatured with 20 µL of buffer containing 8 M urea (Sigma, 444 

#U1230) in 100 mM ammonium bicarbonate at 30°C for 30 min. The lysates were 445 

reduced with 10 mM tris (2-carboxyethyl) phosphine (TCEP, Sigma #T4708) at room 446 

temperature for 30 min, and were then alkylated with 40 mM iodoacetamide (IAA, 447 

Sigma, #SLCD4031) in darkness for 45 min. The solution was then diluted with 70 448 

µL 100 mM ammonium bicarbonate to make sure urea concentration is less than 1.6M, 449 

and was subjected to two times of tryptic digestion (Hualishi Tech. Ltd, Beijing, 450 

China), each step with 2.5 μL trypsin (0.4 μg/μL), at 32°C for 4 hr and 12 hr, 451 

respectively. Thereafter, the solution was acidified with 1% trifluoroacetic (TFA) 452 

(Thermo Fisher Scientific, #T/3258/PB05) to pH 2–3 to stop the reaction. Peptides 453 

were cleaned using C18 (Thermo, #60209-001). 454 

 455 

Peptide samples were then injected for LC-MS/MS analysis using an Eksigent 456 

NanoLC 400 System (Eksigent, Dublin, CA, USA) coupled to a TripleTOF 5600 457 

system (SCIEX, CA, USA). Briefly, peptides were loaded onto a trap column (5 µm, 458 

120 Å, 10 × 0.3 mm), and were separated along a 20 min LC gradient ( 5–32% 459 
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buffer B, 98% ACN, 0.1% formic acid in HPLC water; buffer A: 2% ACN, 0.1% 460 

formic acid in HPLC water) on an analytical column (3 µm, 120 Å, 150 × 0.3 mm) at 461 

a flow rate of 5 µL/min. The SWATH-MS method is composed of a 100 ms of full 462 

TOF MS scan with the acquisition range of 350-1250 m/z, followed by MS/MS scans 463 

performed on all precursors (from 100 to 1500 Da) in a cyclic manner (Gillet et al., 464 

2012). A 55-variable-Q1 isolation window scheme was used in this study. The 465 

accumulation time was set at 30 ms per isolation window, resulting in a total cycle 466 

time of 1.9 s. 467 

 468 

After SWATH acquisition, the Wiff files were converted into mzXML format using 469 

msconvert (ProteoWizard 3.0) (Kessner et al., 2008) and analyzed using OpenSWATH 470 

(2.1) (Kessner et al., 2008) against a pan human spectral library (Kessner et al., 2008) 471 

that contains 43899 peptide precursors and 1667 unique Swiss-Prot proteins protein 472 

groups. The retention time extraction window was set at 120 seconds, and the m/z 473 

extraction was performed with 30 ppm tolerance. Retention time was then calibrated 474 

using Common internal Retention Time standards (CiRT) peptides (Kessner et al., 475 

2008). Peptide precursors were identified by OpenSWATH (version 2.0) and 476 

pyprophet (version 0.24) with FDR<0.01 to quantify the proteins in each sample. 477 

 478 

Measurement of inflammatory biomarkers  479 

For samples collected at baseline, Human FlowCytomix (Simplex BMS8213FF and 480 

BMS8288FF, eBioscience, San Diego, CA, USA) and the Human Basic Kit 481 

FlowCytomix (BMS8420FF, eBioscience, San Diego, CA, USA) on a BD 482 

FACSCalibur instrument (BD Biosciences, Franklin Lakes, NJ, USA) were used for 483 

the measurements of serum tumor necrosis factor (TNF-α), Interleukin-6 (IL-6), and 484 

Interleukin-1β (IL-1β). High-sensitivity CRP was measured using a [Cardiac 485 

C-Reactive Protein (Latex) High Sensitive (CRPHS) kit], and detected on a Cobas 486 

c701 automatic analyzer. The between-plate CVs were 14.1% for MCP1, 6.6% for 487 

TNF-α, 2.5% for IL-6, and 10.2% for IL-1β. 488 

 489 
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For samples collected during follow-up visits, serum cytokine levels were assessed by 490 

electrochemiluminescence based immunoassays using the MSD V-Plex 491 

Proinflammatory Panel 1 (human) kit. 50 µL of serum derived from whole blood by 492 

centrifugation (10 min,3,500 rpm) was processed according to the manufacturer’s 493 

instructions. Briefly, the serum was diluted at a minimum of 2-fold dilution at first, 494 

while the detection antibodies were combined and added to 2400 µL of diluent. 495 

Thereafter, wash buffer and read buffer T were prepared as instructed. After finishing 496 

washing and adding samples, washing and adding detection antibody solution and 497 

washing plates again, then the plate could be analyzed on an MSD instrument. 498 

Accuracy and precision are evaluated by measuring calibrators across multiple runs 499 

and multiple lots. Intra-run coefficient of variations (CVs) are typically below 7% and 500 

inter-ran CVs are typically below 15%. In the present study, the inters-run CVs of 501 

calibrators were 2.2% for IL-1β, 2.5% for IL-2, 1.6% for IL-4, 1.7 for IL-6, 3.6 for 502 

IL-8, 2.5 for 1.3% for IL-10, 1.1% for IL-12p70, 0.87% for IL-13, TNF-α, 2.0% for 503 

IFN-γ.  504 

 505 

Microbiome analysis ---- DNA extraction  506 

Total bacterial DNA was extracted using the QIAamp® DNA Stool Mini Kit (Qiagen, 507 

Hilden, Germany) following the manufacturer’s instructions. DNA concentrations 508 

were measured using the Qubit quantification system (Thermo Scientific, Wilmington, 509 

DE, US). The extracted DNA was then stored at -20 °C. 510 

 511 

Microbiome analysis ---- 16S rRNA gene amplicon sequencing 512 

The 16S rRNA gene amplification procedure was divided into two PCR steps, in the 513 

first PCR reaction, the V3-V4 hypervariable region of the 16S rRNA gene was 514 

amplified from genomic DNA using primers 341F(CCTACGGGNGGCWGCAG) and 515 

805R(GACTACHVGGGTATCTAATCC). Amplification was performed in 96-well 516 

microtiter plates with a reaction mixture consisting of 1X KAPA HiFi Hot start Ready 517 

Mix, 0.1µM primer 341 F, 0.1 µM primer 805 R, and 12.5 ng template DNA giving a 518 

total volume of 50 µL per sample. Reactions were run in a T100 PCR thermocycle 519 
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(BIO-RAD) according to the following cycling program: 3 min of denaturation at 520 

94 °C, followed by 18 cycles of 30 s at 94 °C (denaturing), 30 s at 55 °C (annealing), 521 

and 30 s at 72 °C (elongation), with a final extension at 72 °C for 5 min. Subsequently, 522 

the amplified products were checked by 2% agarose gel electrophoresis and ethidium 523 

bromide staining. Amplicons were quantified using the Qubit quantification system 524 

(Thermo Scientific, Wilmington, DE, US) following the manufacturers’ instructions. 525 

Sequencing primers and adaptors were added to the amplicon products in the second 526 

PCR step as follows 2 µL of the diluted amplicons were mixed with a reaction 527 

solution consisting of 1×KAPA HiFi Hotstart ReadyMix, 0.5µM fusion forward and 528 

0.5µM fusion reverse primer, 30 ng Meta-gDNA(total volume 50 µL). The PCR was 529 

run according to the cycling program above except with cycling number of 12. The 530 

amplification products were purified with Agencourt AMPure XP Beads (Beckman 531 

Coulter Genomics, MA, USA) according to the manufacturer’s instructions and 532 

quantified as described above. Equimolar amounts of the amplification products were 533 

pooled together in a single tube. The concentration of the pooled libraries was 534 

determined by the Qubit quantification system. Amplicon sequencing was performed 535 

on the Illumina MiSeq System (Illumina Inc., CA, USA). The MiSeq Reagent Kits v2 536 

(Illumina Inc.) was used. Automated cluster generation and 2 × 250 bp paired-end 537 

sequencing with dual-index reads were performed. 538 

 539 

Microbiome analysis ---- 16S rRNA gene sequence data processing 540 

Fastq-files were demultiplexed by the MiSeq Controller Software (Illumina Inc.). The 541 

sequence was trimmed for amplification primers, diversity spacers, and sequencing 542 

adapters, merge-paired and quality filtered by USEARCH. UPARSE was used for 543 

OTU clustering equaling or above 97%. Taxonomy of the OTUs was assigned and 544 

sequences were aligned with RDP classifier. The OTUs were analyzed by 545 

phylogenetic and operational taxonomic unit (OTU) methods in the Quantitative 546 

Insights into Microbial Ecology (QIIME) software version 1.9.0 (Caporaso et al., 547 

2010). 548 

 549 
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Metabolomic analysis ---- sample preparation and instrumentation  550 

Targeted metabolomics approach was used to analyze fecal samples, with a total of 551 

198 metabolites quantified. Feces samples were thawed on ice-bath to diminish 552 

degradation. About 10mg of each sample was weighed and transferred to a new 553 

1.5mL tube. Then 25μL of water was added and the sample was homogenated with 554 

zirconium oxide beads for 3 minutes. 185μL of ACN/Methanol (8/2) was added to 555 

extract the metabolites. The sample was centrifuged at 18000g for 20 minutes. Then 556 

the supernatant was transferred to a 96-well plate. The following procedures were 557 

performed on a Biomek 4000 workstation (Biomek 4000, Beckman Coulter, Inc., 558 

Brea, California, USA). 20μL of freshly prepared derivative reagents was added to 559 

each well. The plate was sealed and the derivatization was carried out at 30°C for 60 560 

min. After derivatization, 350μL of ice-cold 50% methanol solution was added to 561 

dilute the sample. Then the plate was stored at -20°C for 20 minutes and followed by 562 

4000g centrifugation at 4 °C for 30 minutes. 135μL of supernatant was transferred to 563 

a new 96-well plate with 15μL internal standards in each well. Serial dilutions of 564 

derivatized stock standards were added to the left wells. Finally the plate was sealed 565 

for LC-MS analysis. 566 

 567 

An ultra-performance liquid chromatography coupled to tandem mass spectrometry 568 

(UPLC-MS/MS) system (ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA, 569 

USA) was used to quantitate the microbial metabolite in the present study. The 570 

optimized instrument settings are briefly described below. ACQUITY UPLC BEH 571 

C18 1.7 µM VanGuard pre-column (2.1×5 mm) and ACQUITY UPLC BEH C18 1.7 572 

µM analytical column (2.1 × 100 mm) were used. The column temperature was 40℃ 573 

and sample manager temperature was 10℃. Mobile phase A was water with 0.1% 574 

formic acid, and B was acetonitrile / IPA (90:10). The gradient conditions were as 575 

follows: 0-1 min (5% B), 1-12 min (5-80% B), 12-15 min (80-95% B), 15-16 min 576 

(95-100%B), 16-18 min (100%B), 18-18.1 min (100-5% B), 18.1-20 min (5% B), at a 577 

flow rate of 0.40 mL/min. The capillary of mass spectrometer were 1.5 (ESI+) and 2.0 578 

(ESI-), while the source temperature and desolvation temperature was 150℃ and 579 
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550℃, respectively. The desolvation gas flow was 1000 L/hour. 580 

 581 

Metabolome analysis ---- Analytical quality control procedures  582 

The rapid turnover of many intracellular metabolites makes immediate metabolism 583 

quenching necessary. The extraction solvents are stored in -20°C freezer overnight 584 

and added to the samples immediately after the samples were thawed. We use ice-salt 585 

bath to keep the samples at a low temperature and minimize sample degradation 586 

during sample preparation. All the prepared samples should be analyzed within 48 587 

hours after sample extraction and derivatization.  588 

 589 

A comprehensive set of rigorous quality control/assurance procedures is employed to 590 

ensure a consistently high quality of analytical results, throughout controlling every 591 

single step from sample receipt at laboratory to final deliverables.  592 

The ultimate goal of QA/QC is to provide the reliable data for biomarker discovery  593 

study and/ or to aid molecular biology research. To achieve this, three types of quality  594 

control samples i.e., test mixtures, internal standards, and pooled biological samples  595 

are routinely used in the metabolomics platform. In addition to the quality controls,  596 

conditioning samples, and solvent blank samples are also required for obtaining  597 

optimal instrument performance.  598 

 599 

Test mixtures comprise a group of commercially available standards with a mass  600 

range across the system mass range used for the study samples. These samples were  601 

analyzed at the beginning and end of each batch run to ensure that the instruments  602 

were performing within laboratory specifications (retention time stability,  603 

chromatographic peak shape, and peak signal intensity). The retention time shift  604 

should be within 4 sec. and the difference of peak intensity should be within 15% for  605 

LC-MS. 606 

 607 

Internal standards were added to the test samples in order to monitor analytical  608 

variations during the entire sample preparation and analysis processes. The Pooled  609 
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QC samples were prepared by mixing aliquots of the study samples such that the  610 

pooled samples broadly represent the biological average of the whole sample set. The  611 

QC samples for this project were prepared with the test samples and injected at  612 

regular intervals (after every 14 test samples for LC-MS) throughout the analytical 613 

run.  614 

 615 

Reagent blank samples are a mixture of solvents used for sample preparation and  616 

are commonly processed using the same procedures as the samples to be analyzed.  617 

The reagent blanks serve as a useful alert to systematic contamination. As the reagent  618 

blanks consist of high purity solvents and are analyzed using the same methods as the  619 

study samples, they are also used to wash the column and remove cumulative matrix  620 

effects throughout the study. 621 

 622 

The calibrators consist of a blank sample (matrix sample processed without  623 

internal standard), a zero sample (matrix sample processed with internal standard),  624 

and a series of seven concentrations covering the expected range for the metabolites  625 

present in the specific biological samples. LLOQ and ULOQ are the lowest and  626 

highest concentration of the standard curve that can be measured with acceptable  627 

accuracy and precision.  628 

 629 

To diminish analytical bias within the entire analytical process, the samples were  630 

analyzed in group pairs but the groups were analyzed randomly. The QC samples,  631 

calibrators, and blank samples were analyzed across the entire sample set. 632 

  633 

Metabolome analysis ----Software and quantitation  634 

The raw data files generated by UPLC-MS/MS were processed using the  635 

QuanMET software (v2.0, Metabo-Profile, Shanghai, China) to perform peak  636 

integration, calibration, and quantification for each metabolite. The current QuanMET 637 

is hosted on Dell PowerEdge R730 Servers operated with Linux Ubuntu 16.10 OS. 638 
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The secured Java UI (User Interface) permits the user have access to use a great 639 

variety of statistical tools for viewing and exploring project data. 640 

 641 

Mass spectrometry-based quantitative metabolomics refers to the determination  642 

of the concentration of a substance in an unknown sample by comparing the unknown  643 

to a set of standard samples of known concentration (i.e., calibration curve). The  644 

calibration curve is a plot of how the analytical signal changes with the concentration  645 

of the analyte (the substance to be measured). For most analyses a plot of instrument  646 

response vs. concentration will show a linear relationship and the concentration of the 647 

measured samples were calculated. 648 

 649 

STATISTICAL ANALYSIS  650 

Dataset at each step of analyses among the healthy individuals from Guangzhou 651 

Nutrition and Health Study 652 

Dataset 1 (n=990): data from the baseline of GNHS. A total of 990 subjects with 653 

measurement of serum proteomics at baseline of the GNHS cohort were included in 654 

the initial discovery cohort. Among this initial discovery cohort, 455 subjects had data 655 

of serum IL-1β and IL-6, 456 subjects had data of serum TNF-α, and 953 subjects had 656 

serum hsCRP data. These data were used to investigate the relationship between the 657 

PRS and host inflammatory status.  658 

 659 

Dataset 2 (n=301): data from a follow-up visit of GNHS. A sub-cohort of 301 660 

participants with measurement of both gut microbiota (16s rRNA) and blood 661 

proteomics data. Gut microbiota data were collected and measured during a follow-up 662 

visit of the cohort participants, with a cross-sectional subset of the individuals (n=132) 663 

having blood proteomic data at the same time point as the stool collection and another 664 

independent prospective subset of the individuals (n=169) having proteomic data at a 665 

next follow-up visit ~3 years later than the stool collection. Data from these subjects 666 

were used to explore the predictive capacity of the gut microbiota for PRS. 667 

 668 
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Dataset 3 (n=366): data from a follow-up visit of GNHS. Independent from the 669 

above 301 subjects in dataset 2, there were additionally 336 subjects with both fecal 670 

16s rRNA sequencing and serum inflammatory cytokines data, at the same time point 671 

during follow-up. The data from these 336 subjects were used to examine the 672 

relationships between the core OTUs and 10 host inflammatory cytokines.  673 

 674 

Dataset 4 (n=987): data from a follow-up visit of GNHS. A total of 987 individuals 675 

had received fecal metabolomics and fecal microbiome examination at the same time 676 

point during the follow-up visit. These subjects were included in the analysis to assess 677 

the relationships between the core gut microbiota and fecal metabolomics.  678 

 679 

Dataset 5 (n=1729): data from a follow-up visit of GNHS. In total, 1729 participants 680 

finished food frequency questionnaire, demographic questionnaire and medical 681 

examination, and provided stool samples during follow-up. Thus, this subset of 1729 682 

subjects were included to test how the dietary habits, lifestyle and health status 683 

influence the gut microbiota composition.  684 

 685 

In summary, a sum of 2413 healthy non-infected individuals are involved in the 686 

present study, which mainly consists of a subset of subjects with proteomic data at 687 

baseline (n=990) and a subset of subjects with gut microbiome and metabolome data 688 

at a follow-up visit (n=2172, within which 301 individuals also had proteomic data). 689 

  690 

Data imputation and presentation 691 

Missing values in proteomic features were imputed with 50% of the minimal value. 692 

Data are presented as mean ± SD or percentage as indicated. Statistical tests used to 693 

compare conditions are indicated in figure legends. Unless otherwise stated, statistical 694 

analysis was performed using Python 3.7, R software (version 3.6.1, R foundation for 695 

Statistical Computing, Austria), and Stata 15 (StataCorp, College Station, TX, USA).  696 

 697 

 698 
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Construction of proteomic risk score (PRS) 699 

We used 20 out of 22 previously identified proteomic biomarkers to construct a 700 

proteomic risk score (PRS) for severe COVID-19 in COVID-19 patients and healthy 701 

participants. 702 

𝑃𝑅𝑆𝑖 = ∑ 𝛽𝑗

20

𝑗=1

𝑥𝑖𝑗 703 

Where, 𝑃𝑅𝑆𝑖 is a proteomic risk score for individual i, 20 is the number of proteins 704 

involved the score construction, 𝑥𝑖𝑗  is the Z score of abundance of the protein j for 705 

individual i. β is 1 or -1 depending on the association between the protein j and risk of 706 

progressing to clinically severe phase (1, up-regulated in severe patients, -1, 707 

down-regulated in severe patients).  708 

 709 

Association of PRS with the risk of progressing to clinically severe phase 710 

Poisson regression model was used to examine the association of PRS with the risk of 711 

progressing to clinically severe phase among 31 COVID-19 patients (18 non-severe 712 

patients; 13 severe patients), adjusting for age, sex and BMI. 713 

 714 

Correlation between PRS and pro-inflammatory biomarkers  715 

Spearman correlation analysis was used to examine the correlation between PRS and 716 

pro-inflammatory biomarkers (i.e., hsCRP, IL-1β, IL-6 and TNF-α). p<0.05 was 717 

considered as statistically significant.  718 

 719 

Machine learning algorithms for identifying microbial features to predict PRS 720 

A 10-fold cross-validation (CV) implementation of gradient boosting framework 721 

—LightGBM and SHAP (Shapley Additive exPlanations) was used to link input gut 722 

microbial features with PRS (Ke et al., 2017; Lee, 2017). A 10-fold CV predict 723 

implementation was used to generate a OTU-predicted PRS value for each participant. 724 

In this approach, each LightGBM model is trained on 90% of the cohort with 10-fold 725 

CV, and PRS is predicted for the 10% of the participants who were not used for model 726 

optimization. This process is repeated ten-fold resulting in a test PRS set for each 727 
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participant and ten different average absolute SHAP value for each OTUs. The top 20 728 

ranked OTUs based the sum of the average absolute SHAP value across ten-fold were 729 

included in further analysis. The R2 score was computed by taking the mean of all the 730 

R2 scores across the 10 out-of-sample predictions. Pearson r was calculated using 731 

actual PRS and predicted PRS for the entire cohort. We also compared the predictive 732 

performance for the top 20 ranked OTUs, demographic characteristics and laboratory 733 

tests (age, BMI, sex, blood pressure and blood lipids). Our predictor is based on code 734 

adapted from the sklearn 0.15.2 lightgbm regression (Pedregosa et al., 2011). 735 

 736 

The relationship between the identified core OTUs and host inflammatory cytokines  737 

Spearman correlation analysis was used to examine the correlation between PRS and 738 

cytokines (i.e., IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α and 739 

IFN-γ). p<0.05 was considered as statistically significant.  740 

 741 

Relationship between OTUs and fecal metabolites 742 

Prior to the analysis, we excluded the participants with T2D medication use, and all 743 

fecal metabolites were natural logarithmic transformed to reduce skewness of traits 744 

distributions. Similarly, to reduce skewness of the distribution of microbial taxa 745 

counts, we first added 1 to all OTUs and then performed natural log transformation. 746 

The relationship between fecal metabolites and microbial OTUs was assessed by 747 

linear regression analysis while adjusting for age, sex, BMI. Multiple testing was 748 

adjusted using Benjamini and Hochberg method, with a false discovery rate (FDR) of 749 

<0.05 being considered statistically significant. Metabolites showed significant 750 

associations with more than half of the selected microbial OTUs, were used for 751 

subsequent pathway analysis using MetaboAnalyst 4.0 (Chong et al., 2019). 752 

 753 

Associations of host and environmental factors with gut microbial features 754 

We assessed how many variations in the identified core OTUs composition 755 

(Bray-Curtis distance) can be explained by host and environmental factors (40 factors) 756 
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using the function adonis from the R package vegan. The p value was determined by  757 

1000x permutations. The total variation explained was also calculated per category 758 

(demographic/clinical category and dietary/nutritional factors) and for all factors 759 

together. Spearman correlation analysis was used to assess the potential effect of each 760 

factor on each of the core OTU. Multiple testing was adjusted using Benjamini and 761 

Hochberg method, with a false discovery rate (FDR) of <0.05 being considered 762 

statistically significant.  763 

  764 
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Supplementary Figure Legends 765 

Figure S1. Timeline of the participants enrollment, follow-up visit and sample 766 

collection in the Guangzhou Health and Nutrition Study. (A) At baseline, 4048 767 

subjects provided completed metadata (required for analysis in the present study), and 768 

1114 subjects provided blood samples (1114 for proteomic analysis and 990 for 769 

measurement of inflammatory factors). At follow-up visit, 2172 subjects provided 770 

stool samples (n=1729 for 16s rRNA sequencing; n=987 for metabolomic analysis) , 771 

among which 667 subjects provided blood samples (n=301 for proteomic analysis; 772 

n=366 for measurement of inflammatory factors). (B) Detail information about the 773 

number of participants in the dataset1-dataset4 used in the present study. (C) Detail 774 

information about the number of participants in the dataset5 used in the present study. 775 

 776 

Figure S2. The correlation of the blood proteomic biomarkers and PRS with host 777 

inflammatory markers stratified by sex (n=990). The color of the heatmap 778 

indicates the Spearman correlation coefficients (blue-negative, red-positive). # protein 779 

down-regulated in severe patients, else, up-regulated.  780 

 781 

Figure S3. Co-variation of the core OTUs abundance and predictive proteomic 782 

biomarkers of COVID-19 (n=132). Co-inertia analysis of the relationship between 783 

20 identified OTUs and 20 predictive proteomic biomarkers among a cross-sectional 784 

subset of 132 individuals. Each sample is represented with an arrow. The sample 785 

projection in the OTUs and the proteomic biomarkers space are represented by the 786 

starting point and the end of the arrow, respectively. Length of the arrow represents 787 

distance between the projections. (A, overall; B, age ≥ 58; C, age <58).  788 

 789 

Supplementary Tables 790 

Table S1. Characteristics of the data analysis sets 791 

Table S2. List of the 20 proteomic biomarkers integrated in the proteomic risk 792 

score 793 

Table S3. List and taxonomic classifications of the PRS-related core microbial 794 

OTUs 795 

 796 
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Figure S3 
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Table S1. Characteristics of the data analysis seta 

Characteristics dataset1 dataset2 dataset3 dataset4 dataset5 

No. of participants 990 301 366 987 1729 

Age (year) 58.79 (5.64) 66.21 (6.41) 66.09 (5.27) 64.71 (5.77) 58.54 (6.06) 

Sex      

Women 668 (67.5%) 227 (75.4%) 241 (65.8%) 690 (69.9%) 1159 (67.0%) 

Men 322 (32.5%) 74 (24.6%) 125 (34.2%) 297 (30.1%) 570 (33.0%) 

BMI, kg/m2 23.55 (3.23) 23.57 (3.04) 23.90 (3.65) 23.63 (3.26) 23.27 (3.08) 

Marital status,%      

                       Married 911 (92.0%) 261 (87.0%) 342 (93.4%) 884 (89.6%) 1572 (90.9%) 

Others 79 (8.0%) 39 (13.0%) 24 (6.6%) 103 (10.4%) 157 (9.1%) 

Education,%      

         Middle school or lower 294 (29.7%) 82 (27.3%) 88 (24.0%) 254 (25.7%) 469 (27.1%) 

High school or professional 

college 

433 (43.7%) 116 (38.7%) 161 (44.0%) 434 (44.0%) 800 (46.3%) 

                     University 263 (26.6%) 102 (34.0%) 117 (32.0%) 299 (30.3%) 460 (26.6%) 

Income (Yuan/month/person), %       

≤500 21 (2.1%) 3 (1.0%) 7 (1.9%) 11 (1.1%) 25 (1.4%) 

501-1500 258 (26.1%) 70 (23.3%) 112 (30.6%) 235 (23.8%) 385 (22.3%) 

1501-3000 565 (57.1%) 136 (45.2%) 177 (48.4%) 567 (57.4%) 1091 (63.1%) 

>3000 146 (14.7%) 92 (30.6%) 70 (19.1%) 174 (17.6%) 228 (13.2%) 

Current smoking status      

                            No 823 (83.1%) 268 (89.0%) 310 (84.7%) 858 (86.9%) 1458 (84.3%) 

Yes 167 (16.9%) 33 (11.0%) 56 (15.3%) 129 (13.1%) 271 (15.7%) 

Current alcohol drinking      

                            No 924 (93.3%) 289 (96.0%) 341 (93.2%) 914 (92.6%) 1604 (92.8%) 

                            Yes 66 (6.7%) 12 (4.0%) 25 (6.8%) 73 (7.4%) 125 (7.2%) 

aValues are numbers (percentages) or mean (SD). 
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Table S2: List of the 20 proteomic biomarkers integrated in the proteomic risk 

score 

  

Uniprot ID Name Annotation 

Q9UK55 SERPINA10 Protein Z-dependent protease inhibitor; Inhibits activity of the coagulation protease 

factor Xa in the presence of PROZ, calcium and phospholipids. Also inhibits factor 

XIa in the absence of cofactors; Belongs to the serpin family 

Q96PD5 PGLYRP2 N-acetylmuramoyl-L-alanine amidase; May play a scavenger role by digesting 

biologically active peptidoglycan (PGN) into biologically inactive fragments. Has no 

direct bacteriolytic activity; Belongs to the N-acetylmuramoyl-L-alanine amidase 2 

family 

Q14520 HABP2 Hyaluronan-binding protein 2; Cleaves the alpha-chain at multiple sites and the beta- 

chain between 'Lys-53' and 'Lys-54' but not the gamma-chain of fibrinogen and 

therefore does not initiate the formation of the fibrin clot and does not cause the 

fibrinolysis directly. It does not cleave (activate) prothrombin and plasminogen but 

converts the inactive single chain urinary plasminogen activator (pro- urokinase) to 

the active two chain form. Activates coagulation factor VII. May function as a tumor 

suppressor negatively regulating cell proliferation and cell migration 

Q06033 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3; May act as a carrier of hyaluronan in 

serum or as a binding protein between hyaluronan and other matrix protein, including 

those on cell surfaces in tissues to regulate the localization, synthesis and degradation 

of hyaluronan which are essential to cells undergoing biological processes 

P51884 LUM Lumican; Small leucine rich repeat proteoglycans; Belongs to the small leucine-rich 

proteoglycan (SLRP) family. SLRP class II subfamily 

P18428 LBP Lipopolysaccharide-binding protein; Plays a role in the innate immune response. 

Binds to the lipid A moiety of bacterial lipopolysaccharides (LPS), a glycolipid 

present in the outer membrane of all Gram-negative bacteria. Acts as an affinity 

enhancer for CD14, facilitating its association with LPS. Promotes the release of 

cytokines in response to bacterial lipopolysaccharide; BPI fold containing 

P15169 CPN1 Carboxypeptidase N catalytic chain; Protects the body from potent vasoactive and 

inflammatory peptides containing C-terminal Arg or Lys (such as kinins or 

anaphylatoxins) which are released into the circulation; M14 carboxypeptidases 

P13796 LCP1 Plastin-2; Actin-binding protein. Plays a role in the activation of T-cells in response 

to costimulation through TCR/CD3 and CD2 or CD28. Modulates the cell surface 

expression of IL2RA/CD25 and CD69; EF-hand domain containing 

P13671 C6 Complement component C6; Constituent of the membrane attack complex (MAC) 

that plays a key role in the innate and adaptive immune response by forming pores in 

the plasma membrane of target cells; Complement system 

P12259 F5 Coagulation factor V; Central regulator of hemostasis. It serves as a critical cofactor 

for the prothrombinase activity of factor Xa that results in the activation of 

prothrombin to thrombin 

P0DJI9 SAA2 Serum amyloid A-2 protein; Major acute phase reactant. Apolipoprotein of the HDL 

complex; Belongs to the SAA family 

P0DJI8 SAA1 Serum amyloid A-1 protein; Major acute phase protein; Belongs to the SAA family 
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P05452 CLEC3B Tetranectin; Tetranectin binds to plasminogen and to isolated kringle 4. May be 

involved in the packaging of molecules destined for exocytosis; C-type lectin domain 

containing 

P05155 SERPING1 Plasma protease C1 inhibitor; Activation of the C1 complex is under control of the 

C1- inhibitor. It forms a proteolytically inactive stoichiometric complex with the C1r 

or C1s proteases. May play a potentially crucial role in regulating important 

physiological pathways including complement activation, blood coagulation, 

fibrinolysis and the generation of kinins. Very efficient inhibitor of FXIIa. Inhibits 

chymotrypsin and kallikrein; Serpin peptidase inhibitors 

P02768 ALB Serum albumin; Serum albumin, the main protein of plasma, has a good binding 

capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. 

Its main function is the regulation of the colloidal osmotic pressure of blood. Major 

zinc transporter in plasma, typically binds about 80% of all plasma zinc; Belongs to 

the ALB/AFP/VDB family 

P02750 LRG1 Leucine rich alpha-2-glycoprotein 1 

P02748 C9 Complement component C9; Constituent of the membrane attack complex (MAC) 

that plays a key role in the innate and adaptive immune response by forming pores in 

the plasma membrane of target cells. C9 is the pore- forming subunit of the MAC; 

Belongs to the complement C6/C7/C8/C9 family 

P01011 GIG25 Serpin peptidase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 3; 

Although its physiological function is unclear, it can inhibit neutrophil cathepsin G 

and mast cell chymase, both of which can convert angiotensin-1 to the active 

angiotensin-2; Serpin peptidase inhibitors 

P00751 CFB Complement factor B; Factor B which is part of the alternate pathway of the 

complement system is cleaved by factor D into 2 fragments: Ba and Bb. Bb, a serine 

protease, then combines with complement factor 3b to generate the C3 or C5 

convertase. It has also been implicated in proliferation and differentiation of 

preactivated B- lymphocytes, rapid spreading of peripheral blood monocytes, 

stimulation of lymphocyte blastogenesis and lysis of erythrocytes. Ba inhibits the 

proliferation of preactivated B-lymphocytes; Belongs to the peptidase S1 family 

P00738 HP Haptoglobin; As a result of hemolysis, hemoglobin is found to accumulate in the 

kidney and is secreted in the urine. Haptoglobin captures, and combines with free 

plasma hemoglobin to allow hepatic recycling of heme iron and to prevent kidney 

damage. Haptoglobin also acts as an Antimicrobial; Antioxidant, has antibacterial 

activity and plays a role in modulating many aspects of the acute phase response. 

Hemoglobin/haptoglobin complexes are rapidely cleared by the macrophage CD163 

scavenger receptor expressed on the surface of liver Kupfer cells through an 

endocytic lysosomal degradation. 
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Table S3: List and taxonomic classifications of the PRS-related core microbial OTUs  

  

OTUs Taxa annotation 

OTU30210_Clostridiales 

spp 

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__; g__; s__ 

OTU1090_Unassigned 2 Unassigned      

OTU174751_Clostridiu

m spp 

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Clostridiaceae; g__Clostridium; s__ 

OTU175355_Ruminococ

cus gnavus 

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; 

g__[Ruminococcus]; s__gnavus 

OTU1954_Unassigned 1 Unassigned 

OTU198475_Ruminococ

caceae spp 1 

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 

OTU212681_Blautia spp k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Lachnospiraceae; g__Blautia; s__ 

OTU27582_Klebsiella 

spp 

k__Bacteria; p__Proteobacteria; c__Gammaproteobacteria; o__Enterobacteriales; 

f__Enterobacteriaceae; g__Klebsiella; s__ 

OTU30109_Streptococcu

s spp 2 

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; 

g__Streptococcus; s__ 

OTU358_Bacteroides 

ovatus 2 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ovatus 

OTU3653_Bacteroides 

ovatus 1 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ovatus 

OTU437_Streptococcus 

spp 1 

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; 

g__Streptococcus; s__ 

OTU662_Streptococcus 

spp 3 

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Streptococcaceae; 

g__Streptococcus; s__ 

OTU743_Unassigned 3 Unassigned 

OTU808_Lactobacillus 

spp 

k__Bacteria; p__Firmicutes; c__Bacilli; o__Lactobacillales; f__Lactobacillaceae; g__Lactobacillus; 

s__ 

OTU87798_Bacteroides 

spp 2 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ 

OTU87996_Bacteroides 

ovatus 3 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ovatus 

OTU88234_Bacteroides 

spp 3 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ 

OTU91647_Ruminococc

aceae spp 2 

k__Bacteria; p__Firmicutes; c__Clostridia; o__Clostridiales; f__Ruminococcaceae; g__; s__ 

OTU92227_Bacteroides 

spp 1 

k__Bacteria; p__Bacteroidetes; c__Bacteroidia; o__Bacteroidales; f__Bacteroidaceae; 

g__Bacteroides; s__ 
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