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Abstract 
The natural language portions of  electronic health records (EHRs) communicate critical 
information about disease and treatment progression. However, the presence of personally 
identifiable information (PII) in this data constrains its broad reuse. Despite continuous 
improvements in methods for the automated detection of PII, the presence of residual identifiers 
in clinical notes requires manual validation and correction. However, manual intervention is not 
a scalable solution for large EHR datasets. Here, we describe an automated de-identification 
system that employs an ensemble architecture, incorporating attention-based deep learning 
models and rule-based methods, supported by heuristics for detecting PII in EHR data. Upon 
detection of PII, the system transforms these detected identifiers into plausible, though fictional, 
surrogates to further obfuscate any leaked identifier. We evaluated the system with a publicly 
available dataset of 515 notes from the I2B2 2014 de-identification challenge and a dataset of 
10,000 notes from the Mayo Clinic. In comparison with other existing tools considered 
best-in-class, our approach outperforms them with a recall of 0.992 and 0.994 and a precision of 
0.979 and 0.967 on the I2B2 and the Mayo Clinic data, respectively. The automated 
de-identification system presented here can enable the generation of de-identified patient data 
at the scale required for modern machine learning applications to help accelerate medical 
discoveries. 

Introduction 
The widespread adoption of electronic health records (EHRs) by healthcare systems has 
enabled digitization of patient health journeys. While the structured elements of EHRs (e.g., 
health insurance billing codes) have been relied upon to support the business of healthcare and 
front office applications for decades, the unstructured text (e.g., history & physical notes and 
pathology reports) contains far richer and nuanced information about patient care, supporting 
novel research ​1–5​. However, this text often contains personally identifiable information (PII) as 
defined in the Health Insurance Portability and Accountability Act of 1996 (HIPAA), such as the 
personal name, phone number, or residential address​6​. As a consequence, such data has 
limited reuse for secondary purposes​7​. ​HIPAA permits data derived from EHRs to be widely 
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shared and used when it is de-identified. Under the HIPAA Privacy Rule, de-identification can 
be accomplished in several ways. The most straightforward is the Safe Harbor implementation, 
which necessitates removal of an enumerated list of 18 categories of direct- (e.g., Social 
Security Number) and quasi-identifiers (e.g., date of service).  
 
Implementing a scalable method for de-identification has several competing requirements. First, 
from a regulatory perspective, it must achieve extremely high recall, in that it needs to detect 
nearly all instances of PII. Second, from a clinical utility perspective, it must achieve extremely 
high precision, so that we maximize the correctness of biomedical research performed. And, 
third, the approach needs to be cost effective, so that millions of records can be de-identified in 
a reasonable amount of time. The traditional approach of manual detection of PII is expensive, 
time consuming and prone to human error​8,9​, which makes automated de-identification a more 
promising alternative ​10,11​.  

 
Several recent advances in natural language processing (NLP) have created an opportunity to 
build accurate and scalable automated de-identification systems. First, transfer learning of 
autoregressive and autoencoder models​12​ for a supervised task such as named entity 
recognition (NER) requires very little labelled data, reducing human effort and error. Second, 
attention-based deep learning models, such as transformers​13​, allow for the non-sequential 
processing of text and enable the generation of rich contextualized word representations. Third, 
semantic segmentation algorithms generate a subword-based vocabulary​14,15​ which can capture 
out-of-vocabulary words. Finally, ​the traditional transformer architecture has been improved 
upon through bidirectional encoder representations from transformers (BERT)​16​ and similar 
technologies that jointly train a ​masked language model​ (MLM) pre-training objective and a ​next 
sentence prediction ​task. ​BERT has set the stage for learning context independent 
representations of terms in text, and training context-sensitive models that transform those 
representations into context-aware representations based on the occurrence of a term in a 
sentence. We leverage these advances to support de-identification, which we formulate as a 
named entity recognition problem.  
 
I​n this paper, we integrate a collection of approaches, blending the beneficial aspects of modern 
deep learning along with rules and heuristics, to create a best-in-class approach to automated 
de-identification. The system transforms each detected PII instance into a suitable surrogate to 
mitigate the risk that any residual PII can be used to re-identify patients ​(Fig. 1)​. The nference 
de-identification tool can be accessed at ​https://academia.nferx.com/deid/​. 
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Fig. 1​ Automated de-identification of EHRs involves two steps: (a) Detecting PII entities and (b) 
Transforming them by replacement with suitable surrogates. 
 

Results 
We first compare the performance of the nference de-identification system with other methods 
on the I2B2 2014 dataset​17​. The resulting models are evaluated using precision, recall and 
F1-scores (formulation provided in the Supplementary Methods) for NER on several groups of 
PII as defined in ​Table​ ​1 ​. We then compare the performance of these models on a substantially 
larger and diverse dataset from the Mayo Clinic and perform a deeper dive into the types of 
errors, distribution of errors per physician note and the distribution of errors per note type. It 
should be noted that this analysis focuses solely on the performance of detecting PII instances 
and does not address the risk of re-identification based on the semantics of any instances that 
the system fails to detect, an issue that is beyond the scope of this study. 
 

Table 1 ​: The list of entities covered by each group of direct and quasi-identifiers. It should be 
noted that groups B and C encompass entities beyond HIPAA Safe Harbor. 
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Group Name Included Entities 

A 
(entities to be 
detected for a 
HIPAA Safe 

Harbor 
Implementation) 

1) Age over 89; 2) Phone/Fax numbers; 3) Email addresses; 4) Websites and URLs; 
5) IP Addresses; 6) Dates; 7) Social Security Numbers; 8) Medical record numbers; 9) 

Vehicle/Device numbers; 10) Account/Certificate/License numbers; 11) Health plan 
numbers; 12) Street addresses; 13) City; 14) ZIPcode, 15) Employer names; and 16) 

Personal names of patients and family members 

B Group A; 17) Provider (Doctor/Nurse) names; 18) User IDs (of care providers) 

C Group B; 19) Healthcare organization/facility names; 20) Country; 21) State 
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Performance on the 2014 I2B2 de-identification dataset 
The I2B2 2014 De-identification and Heart Disease Risk Factors challenge ​17​ is a publicly 
available dataset of clinical documents with annotated PII elements. This dataset consists of a 
training set of 792 clinical notes and a test set of 515 clinical notes. 
 
We compared the performance of our approach on the 2014 I2B2 test set with six other 
established de-identification tools: the method proposed by Dernoncourt et al. that blends 
conditional random fields (CRFs) and artificial neural networks (ANNs)​18​, Scrubber​19​, Physionet​8​, 
Philter​20​, MIST​21​ and NeuroNER​22  
 
The results are provided in ​Table 2​. Firstly, we cite the conditional random field and artificial 
neural network approach (CRF+ANN)​18​ scores against the group A entities (HIPAA only) as 
reported in their paper. We also directly report the results for Scrubber, Physionet, and Philter 
from prior publications​20​ without performing an empirical analysis because the dataset (2014 
I2B2) and the set of PII entities is the same as that used in our investigation. We trained MIST 
using sentences from the I2B2 training corpus (see Supplementary Methods and 
Supplementary Table 3 ​). We downloaded and used a pre-trained model for NeuroNER (see 
Supplementary Methods). We present the performance of these methods on group B (see 
Table 1 ​) entities which we use as the basis of our comparison.  
 
We present two versions of the nference system. The first version was fine-tuned only on Mayo 
data and did not utilize any characteristics of the I2B2 training data. When evaluated with group 
B, this model achieved a precision, recall, and F1 score of 0.961, 0.988, and 0.974, 
respectively. The second version of our system involved fine-tuning our model with sentences 
from the I2B2 training set. We could not incorporate inclusion lists and sentence templates 
associated with the I2B2 data since the dataset is small (see Methods section for details). The 
precision, recall, and F1 score increased to 0.979, 0.992, and 0.985, respectively. Precision and 
recall per identifier type is provided in ​Supplementary Table 4​.  
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Method Name Group Precision Recall F1 Basis of 
Results 

CRF+ANN 
(Dernoncourt et al.) 

A 0.979 0.978 0.978 Ref. 18 

Physionet B 0.894 0.698 0.784 Ref. 20 

Scrubber B 0.762 0.878 0.815 Ref. 20 

Philter B 0.785 0.999 0.879 Ref. 20 

MIST ​(Trained on 
I2B2) 

B 0.907 0.879 0.893 N/A 

NeuroNER B 0.979 0.950 0.964 N/A 
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Table 2 ​: Performance of de-identification methods on the 2014 I2B2 test corpus. The results for 
Scrubber, Physionet, Philter and the CRF+ANN method are based on previous publications. 
The MIST method required training and, thus, was trained on the 2014 I2B2 training dataset. 
We used a pre-trained model for NeuroNER. The two versions of the nference approach were 

fine-tuned on (i) only the Mayo dataset and (ii) both the Mayo and I2B2 datasets. 

Performance on the Mayo test dataset 
The Mayo Clinic dataset consisted of 10,000 randomly sampled notes from a corpus of 104 
million notes corresponding to 477,000 patients’ EHR records.  
 
The evaluation performed on the Mayo test dataset was based on identifiers defined by group C 
since this group best represented the distribution of PII in the dataset. The performance of the 
de-identification methods (in terms of precision, recall and F1) are presented in ​Table 3​. The 
nference method performed best with precision, recall, and F1 scores of 0.967, 0.994, and 
0.979, respectively. Compared to the performance on the I2B2 dataset, we see improved recall 
(increase of 0.01) and a reduced precision value (decrease of 0.021). NeuroNER achieves 
precision, recall and F1 scores of 0.928, 0.933 and 0.931, respectively. The F1 scores of 
Scrubber, Physionet and Philter were lower than those achieved on the I2B2 dataset. Among 
these three methods, Philter demonstrates a relatively high recall of 0.918. Closely following 
Philter, the MIST model achieves a recall of 0.889 with overall performance similar to that on the 
I2B2 dataset.  
 

Table 3 ​: Precision, Recall and F1-Score of various de-identification methods on the Mayo test 
dataset. These methods were evaluated against group C entities.  
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nference 
(Fine-tuned on 

Mayo) 

B 0.961 0.988 0.974 N/A 

nference 
(Fine-tuned on 

Mayo+I2B2)  

B 0.979 0.992 0.985 N/A 

Method Precision Recall F1 

Scrubber 0.756 0.677 0.715 

Philter 0.709 0.918 0.800 

Physionet 0.837 0.772 0.803 

MIST  
(Trained on Mayo) 

0.818 0.889 0.852 

NeuroNER 
(Trained on Mayo) 

0.928 0.933 0.931 

nference 
(Fine-tuned on Mayo) 

0.967 0.994 0.979 
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Error analysis on the Mayo dataset 
We further investigated cases in the Mayo dataset where the nference de-identification model 
failed to successfully detect the PII element completely (i.e., false negatives). This occurred at a 
rate of 0.6% (see ​Table 4 ​). Across the 10,000 notes considered in the test set, there were 848 
error instances that contained these false negative errors. Accounting for duplicate occurrences 
of the same sentence, there were 797 unique error instances. We grouped these instances 
based on the type of identifier. The prevalence of the error category is shown in the second 
column while the third column in the table represents the contribution of each category to the 
error in recall (sums to 0.6%).  
 

6 

Category Number of error 
instances  
(N = 797) 

Contribution to 
recall error 
 (E = 0.6%) 

Example 
(The PII presented in these examples are 

fictitious) 

Clinic Location 208  0.1461% He had a DWI in January and 
was required to do treatment 
through ​Samson rehab​ in St. 
Louis, Missouri 

Dates 183 0.1285% CPL dated​4/27/04​. 

Doctor/nurse 
name/initial 

169 0.1187% Sent: 2020-10-20 10:00 AM 
Subject: RE: Consumer/​Pat 

Pharmacy Name 54 0.0379% S: Fax received from ​Trioki Rx 
with request for new RX for 
Viread (tenofovir) 

Phone Number 50 0.0351%  Phone number patient/caller is 
calling from or the number of 
the provider: ​724.161.1754​. 

Organization/Com
pany 

35 0.0246% Last we talked about her 
involvement in a group called 
GO GIRLS! 

Healthcare 
Organization 

22 0.0154% Jane is brought in by a 
Minerva ​female attendant and 
said Jane has been like this for 
"weeks and weeks." 

Numeric Identifier 9 0.0063% Manufactured by Merck lot 
number ​78-32-DK​, expiration 
date 2020/10/20 

Location (Address 8 0.0056% 500 ​State Highway 72 
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Table 4 ​: Prevalence and examples of types of false negatives encountered by the nference 
de-identification system when applied on the Mayo test set. The entity highlighted in bold 

indicates the word or phrase that the system failed to detect.  
 

The most prevalent error was in the recognition of entities pertaining to clinic locations (208 out 
of 797). Many of these were due to partially identified phrases (e.g., “​Room 7A​” was missed in 
“Out of ​Southwest Building Room 7A”​). The second most prevalent error type was in dates with 
183 false negatives. The third most prevalent error category was in doctor/nurse names and 
initials with 169 false negatives. Abbreviations and shorthand used by providers (typically while 
signing off on a clinical note) contributed to the errors in this category 
 
Ambiguous instances of PII also resulted in false negatives. These were cases that a human 
reader would have difficulty/uncertainty in deeming as PII. An example of this is the word ​tp ​in 
the phrase “​Comment: 03-12-2005 08:04:12 - verified tp​”. We found that 26% of errors were 
those in which the nurse abstractors themselves did not agree on the characterization of PII 
(Cohen's Kappa for errors was lower than non-errors, at 0.7453), pointing to the inherent 
ambiguity. 

Distribution of errors per note 
We further investigated the rate at which errors in detecting PII(false negatives) occurred on a 
per note level. As shown in ​Table 5​, the error instances were distributed across 637 notes. 
Furthermore, we see that a majority of false negatives are spread evenly across the notes (525 
out of 637 notes, or 82.4%, contain a single error). For each subsequent error rate, we 
computed the coverage of PII entities. Here, coverage represents the fraction of PII present in 
the subset of notes up to the corresponding error rate. 
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or partial address)  

Patient Name 4 0.0028% PLOF: ​X ​was independent 
with self cares living 

Errors per 
Note 

Number of 
Notes 

Total Errors Cumulative 
Errors 

PII Coverage Average 
Number of 
Error Types 

0 9363 0 0 0.9940 0 

1 525 525 525 0.9978 1.00 

2 80 160 685 0.9989 1.56 

3 10 30 715 0.9991 1.75 

4 6 24 739 0.9992 2.30 
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Table 5 ​: Distribution of number of errors per note. PII coverage represents the fraction of PII 
present in the subset of notes up to the corresponding error rate. Average number of error types 

denotes the number of distinct errors types (such as date errors or name errors) per note. 
 

Even for notes with a large number of errors (more than six), the number of distinct error types 
is between two and three. This illustrates that most of the errors are of the same type and an 
artifact of repetition of text within a note. For example, in the note with ten errors, eight of the 
instances were related to location while the remaining two are related to date. Examples of the 
errors pertaining to location here are “​Location of INR sample : Other: Smallville Other: 
Smallville Other: Smallville​”, “​Recommend Recheck : Other: 04/01/2017 Smallville Other: 
04/01/2017 Smallville”, “Recommend Recheck : Other: 04/01/2017 Smallville Other: 04/01/2017 
Smallville Other: 04/01/2017 Other: 04/01/2017 Smallville”. ​Here, ​the set of location errors all 
pertain to the same location “Smallville”, which illustrates how the effective amount of 
identifiable content is substantially smaller than suggested by the raw count. The date 
presented (“04/01/2017”) was successfully detected. Both the date and location have been 
replaced with synthetic values for the purpose of this example.  

Distribution of note types 
In the Mayo test set, a physician note is associated with a note type (e.g. progress note, 
emergency visit, telephone encounter). Given that the structure and semantics of these note 
types vary greatly from each other we analyze the enrichment of errors across them. From the 
637 notes with errors, we found 134 distinct note types with at least 1 error. The top 14 note 
types with highest error content are listed in ​Table 6​. Notes of the type “Anti Coag Service Visit 
Summary” contain the highest rate of errors (22 out of 26 sampled notes) followed by 
“Electrocardiogram” (19 out of 30 sampled notes).  
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5 6 30 769 0.9994 2.75 

6 2 12 781 0.9995 2.5 

7 2 14 795 0.9996 2.25 

8 2 16 811 0.9997 2.25 

9 3 27 838 0.9999 2.33 

10 1 10 848 1.0000 2.00 

Note Type 
Number of 

Error 
Instances 

Number of 
PII Instances 

Number of 
Notes with at 

Least One 
Error 

Total Number 
of Notes 

Fraction of Notes 
With at Least One 

Error 

Phone 
Message/Call 60 7,466 54 605 0.09 
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Table 6 ​: Distribution of number of errors per note type. The proportion of sampled notes for a 
given type that contain at least one error is presented in the last column. This indicates in which 

note type an error is more likely to occur.  

Methods 

Usage of Mayo Clinic Dataset 
The Mayo EHR dataset is based on data from 477,000 patients that originated ​from multiple 
EHR data systems (including Epic and Cerner) spanning over 20 years​. The dataset includes 
104 million physician notes that capture the healthcare journey of patients in addition to 
structured tables containing lab test measurements, diagnosis information, orders, and medicine 
administration records. This research was conducted with approval from the Mayo Clinic 
Institutional Review Board.  
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Ambulatory Patient 
Summary 59 14,502 49 334 0.15 

Physician 
Office/Clinic 

Message 
42 8,352 36 661 0.05 

Report 50 3,173 36 131 0.27 

Medication 
Renewal/Refill 36 4,626 31 358 0.09 

Progress Note, 
Family Practice 

27 4,975 24 237 0.10 

Ambulatory 
Discharge 

Medication List 
27 8,109 23 226 0.10 

Anti Coag Service 
Visit Summary 24 1,189 22 26 0.85 

Electrocardiogram 19 411 19 30 0.63 

Anticoagulation 
Patient Intake - 

Text 
49 5,777 18 50 0.36 

Letter 15 3,519 14 157 0.09 

Ambulatory Depart 
Summary 12 3,938 12 163 0.07 

Progress Notes 14 3,943 11 199 0.06 

Telephone 
Encounter 

12 2,034 11 273 0.04 
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We randomly sampled 10,000 notes, which were reduced to the set of unique sentences. This 
yielded a test set of 172,102 sentences. These were subsequently annotated by six Mayo Clinic 
nurse abstractors to create a ground truth label for every word and/or phrase. Each sentence 
was annotated by at least two different nurse abstractors. The inter-annotator agreement on 
labelling a token as PII had a Cohen’s Kappa of 0.9694 ​ ​(see Supplementary Methods for 
details).  
 
An additional set of 10,000 notes were selected to fine-tune the models. We manually annotated 
61,800 unique sentences from these notes to create a tagged fine-tuning set. See 
Supplementary Methods for more details.  

Detection of PII entities 
The ensemble architecture described in this section leverages state of the art attention-based 
deep learning models in conjunction with rules harvested from the data (each of which is 
described below) to handle semi-structured text. ​(Fig. 2) 
 
 

 
Fig. 2​ Sentence-based inclusion lists and template matching prune out sentences that either 1) lack 
PII or 2) contain PII in specific well-defined patterns. An ensemble of attention-based neural 
networks identify complementary features across different PII types. For each entity type, multiple 
model versions (v​1​, v​2​, … , v​N​) are used in tandem. Additionally, pattern recognition modules and 
structured EHR content from matched patients support the anonymization process. The results from 
each component of the ensemble are aggregated to yield the original note labelled with PII tags.  
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There are several salient features of this approach that are worth noting. 
 
Hybrid Deep Learning Models: ​ The newer breed of attention based deep learning models, in 
conjunction with transfer learning, allow for faster tuning of these models with significantly 
smaller sets of labeled data for detecting PII identifiers. We use pre-trained language models 
based on the BERT​16​ architecture that are then fine tuned for detecting (a) personal names, (b) 
organizations, (c) locations, and (d) ages. We employed the bert-base-cased model 
(​https://huggingface.co/bert-base-cased ​) through the HuggingFace/Transformers 
(​https://github.com/huggingface/transformers​) library. This is a case-sensitive English language 
pre-trained model based off of the BERT architecture trained using a masked language 
modelling (MLM) objective. The fine-tuning process involves training the pre-trained language 
model on a named entity recognition task using a training set of annotated sentences. We used 
a total of 61,800 tagged example sentences to fine-tune the models. We fine-tuned each 
transformer model with a maximum sequence length of 256 (after tokenization) over 4 epochs. 
We use a training batch size of 32 and a learning rate of 5e-5 with a warmup proportion of 0.4. 
We then evaluated the model on a validation dataset and computed the accuracy. We 
performed the fine-tuning and model validation processes in an iterative manner (see 
Supplementary Methods and ​Supplementary Table 1​ for complete implementation details). 
Identifiers such as names, locations, organizations and ages are well suited to a statistical entity 
recognition method because they can use the context of the surrounding text to disambiguate 
the entity type of a word. By contrast, pattern matching rules are significantly hampered in this 
respect. It would be hard, for instance, to detect “Glasgow” as a medical term in “He had no 
helmet and his Glasgow Score was 6” and as a location in “Mr. Smith had visited his family in 
Glasgow using lookup dictionaries. 
 
However, we use patterns to deterministically tag reasonably well-defined PII identifiers, which 
are almost entirely context independent and unambiguous. This category includes dates and 
times, phone and pager numbers, clinical IDs and numeric identifiers, email, URLs, IP 
addresses, and vehicle numbers. In addition, harvested sentence templates (described further 
below) are relied upon to deterministically tag PII instances matched by the template patterns. 
Our methods apply to content in both structured (e.g lab comments) and free form text (e.g 
progress notes).  
 
Additionally, it should be noted that we designed our method to detect and transform information 
about those who provide care, such as physicians, nurses, and pharmacies. Though this is not 
required by HIPAA Safe Harbor, it allows healthcare organizations to protect the identities of 
their employees as well. 

 
Ensemble of models framework and iterative fine tuning: ​Given the regulatory necessity of 
extremely high recall for de-identification, we aggregate the results of multiple models trained for 
the same PII type. Our ensemble involved employing at least one individual model for names, 
organizations, locations and ages (see ​Supplementary Table 2​). An additional text normalized 
model was also trained and utilized for names​. ​In this respect, if a term is detected as PII in any 
of the models for that type, then it is tagged. A divide and conquer approach has been 
implemented that harnesses the power of multiple models to identify PII or extract meaningful 
entities (​Fig. 2 ​). In contrast to a “one size fits all” model, this approach enables each individual 
model to be fine-tuned to learn different (and complementary) features of the unstructured EHR 
data as has been shown to be used in prior de-identification systems​23​. For instance, one model 
focuses on identifying peoples’ names while another is geared towards addresses and 
locations.  
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Furthermore, there are additional models corresponding to cased and uncased variants of the 
raw data (referred to as “​Name Model 1​” and “​Name Model 2​” in ​Fig. 2 ​). Each model here 
corresponds to an attention-based deep neural network. One advantage of carving out the entity 
space to be handled individually by separate models is that each model needs to only learn the 
distribution of entities of a specific type as opposed to all entities. However, this introduces a 
challenge in resolving terms in a sentence that have conflicting and/or ambiguous entity types. 
These conflicts are resolved in the aggregation phase of our ensemble where a simple voting 
threshold of one claim is employed (i.e., an entity is considered PII even if one model in the 
system tags it as such). Since the majority of the components in the ensemble are designed to 
detect complementary features, we are able to improve recall without much loss of precision. 

 
Integrating databases as part of core model: ​ ​We use publicly available databases of names, 
locations, and addresses to supplement the model fine-tuning process. ​First names with 
supporting gender information were downloaded from the US Census database. Cities across 
the US as well as lists of hospitals were obtained from Wikipedia. These public databases were 
used to augment training of our models.​In addition, patient-specific information from structured 
EHRs, including patient names and residential addresses, are used to augment the model 
training and match against PII in the text. 
  
Sentence-based inclusion list: ​ Clinical note corpora contain a large number of repeated 
sentences. These stem from various processes, including automated reminders (e.g., “​Please 
let your doctor know if you have problems taking your medications​”), repeated phrases in the 
writing style of physicians (e.g. “​Rubella: Yes​”, “​Pain symptoms: No​”) or shared elements in the 
clinical notes such as section headers (e.g. “​History of Present Illness​”). From the corpus of 
physician notes from the Mayo Clinic, a set of 1,600 sentences, that did not contain PII, were 
incorporated into an “inclusion list”. This inclusion list was further expanded with a set of 25,000 
sentences containing medically relevant entities, such as disease or drug names (see 
Supplementary Methods for details on how the inclusion list was constructed). This has the 
added benefit of improving the precision of the de-identification system because it reduces the 
risk of misclassifying these important entities as PII by the neural network models. Additionally, 
sentences marked as being devoid of PII during the validation phase in the iterative fine-tuning 
process are also added to the inclusion list (see Supplementary Methods). 

 
 
Auto-Generating templates using statistical NER models: ​In addition to exact sentences 
with high prevalence there are also a large number of PII containing sentences that can be 
mapped to a template (e.g., ​“Electronically signed by: SMITH, JOHN C on 01/02/1980 at 12:12 
PM CST” ​ maps to a template of the form “​Electronically signed by: <LAST NAME>, <FIRST 
NAME> <INITIAL> on <DATE> at <TIME>” ​). While machine learning NER models can be 
trained and/or fine tuned to learn these patterns, there are instances where entity recognition 
fails. So, though a name of the form “SMITH, JOHN C” might be detected, “DEWEY” in 
“DEWEY, JONES K” may not be detected. By contrast, regular expression rules faithfully match 
every PII for these cases. 
 
The problem, however, is that the process of identifying such templates and generating the 
corresponding regular expressions is an arduous task because it involves manual inspection of 
a sufficiently large sample of sentences in the corpus. Here, we use the NER ensemble models 
designed for the detection of PII to aid in the harvesting of these pattern templates. Sentences 
from our fine-tuning set of 10,000 notes are passed through the ensemble and detected PII is 
transformed to its corresponding IOB2 (Inside-outside-beginning) mask (e.g., ​“Electronically 
signed by: B-PER I-PER I-PER on B-DATE at B-TIME PM CST” ​) generating a potential NER 
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template. Additionally, a ‘syntax template’ for these sentences is also generated, such that any 
term that was detected as an entity is mapped to its syntactic representation - one of ‘W’ for 
alphabets only, ‘N’ for numbers only and ‘A’ for alphanumeric (e.g., ​“Electronically signed by: W, 
W W on N/N/N at N:N PM CST” ​ ). Finally, for each unique syntax template, if there exists only 
one NER template amongst all instances of the syntax template, a regular expression rule is 
generated (e.g ​“Electronically signed by: [A-Za-z]+, [A-Za-z]+ [A-Za-z]+ on \d+/\d+/\d+ at \d+:\d+ 
PM CST” ​) by mapping each syntax token to its corresponding regular expression pattern - ‘W’ 
to ‘[A-Za-z]+’, ‘N’ to ‘\d+’ and ‘A’ to ‘\w’. 

Transformation of tagged PII entities 
The de-identification process is designed to recognize words and phrases that represent PII and 
other sensitive elements with high recall. However, if the input text is transformed to the 
de-identified version by ​redacting​ detected PII, undetected PII (e.g., ‘Hayley’ and the date ‘7/21’ 
in ​Fig. 3 ​) is obviously leaked to any person who reads the document. As such, the obfuscation 
process aims to conceal these residual PII by ​replacing​ detected PII with suitable surrogates so 
it is difficult to distinguish between the residual PII and the surrogates​21,24,25​. This method has 
been implemented in several de-identification approaches​26,27​. As highlighted in ​Fig. 3​, it is 
difficult for a human to determine which of “Jack Michaels” or “Hayley” is a leaked instance of PII 
in the output of the replacement strategy using this mechanism of Hiding in Plain Sight (HIPS)​28​. 
Evidence with human readers has shown that when the recall of a natural language processing 
tool is high (i.e., when most real identifiers are detected), the rate of distinguishing real from filler 
identifiers is no better than what one would encounter by random chance. It has further been 
shown, however, that under highly controlled conditions, it is possible for a machine learning 
system to replicate the behavior of the natural language de-identification tool to remove fillers 
and leave real identifiers in place ​28,29​.  
 

 
Fig. 3​ An illustration of the hiding in plain sight (HIPS) mechanism to highlight the utility of the detect 
→ replace strategy. After obfuscation, distinguishing real PII from surrogates is no better than what 
one would expect by random chance.  
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In addition to employing the HIPS method, we apply entity-specific rules and heuristics to 
improve the fidelity of the surrogate. We further improve interpretability of the output by ensuring 
that every unique PII token in all EHR records for a patient has the same transformation.  
Consider the input text “​John Smith, a pleasant 67 year old presented with his son Jack. John 
complains of breathing difficulty​” was transformed to “​Jane Kate, a pleasant 67 year old 
presented with his son Matt. Ryan complains of breathing difficulty​.” In this example, “​Jane 
Kate​” as a surrogate is an obvious giveaway that it is a fake name and therefore lends itself to 
be distinguished from any true PII that may have leaked. Furthermore, it appears that a third 
completely different person is complaining of breathing difficulty. So an ideal transformation 
would have maintained the format of first name followed by last name and the gender for “John 
Smith” and every instance of “​John​” or “​Smith ​” in the input would be transformed to the same 
output; something like “​Jacob Hamilton, a pleasant 67 year old presented with his son David. 
Jacob complains of breathing difficulty​.” 
 
As discussed, we manage the replacement of surrogates per entity type (see ​Supplementary 
Table 2 ​). Names are transformed in a manner that is consistent with format, gender and 
ethnicity of the original (i.e., “​Ms. Lopez visited New York General Hospital for her routine 
checkup”​ becomes “​Ms. Hernandez visited Mass General Hospital for her routine checkup”​). 
Dates are handled in a way to preserve their formatting (i.e., “​March 5th, 2014​” becomes 
“​February 27th, 2014​” and “​03-05-2014​” becomes “​02-27-2014​”). The shift in the date is a 
patient-specific random number. This ensures that dates are shifted consistently for a given 
patient. Locations and organizations are replaced with suitable surrogates chosen from a 
predefined dictionary. PII entities that contain numeric digits (such as phone number or patient 
ID) involve replacing these numbers randomly while maintaining overall length and format. 
 
While the transformation output of an input token is the same for all instances of its occurrence 
for a given patient, they would be different across patients. That is, while all instances of “John” 
in one patient might be transformed to “Jacob” for another patient it could be “Aaron”. 
 

Discussion and Future Work 
Numerous approaches to de-identification have been developed. Automated de-identification 
systems can broadly be segmented into four categories: (i) rule-based systems, (ii) traditional 
machine learning systems, (iii) deep learning systems and (iv) hybrid and ensemble systems.  
 
Rule-based systems​19,20,30–32​ use pattern matching rules, regular expressions, dictionary and 
public database lookups to identify PII elements. These are simple to implement and usually 
deterministic; however, these systems have several drawbacks. First, pattern matching rules for 
identifiers are typically not robust for handling variance in input due to typographical 
errors(spelling, punctuation, casing etc.); A rule that matches ​“Dr. John”​ may not be able to 
match ​“Dr john”​. Second, creating template patterns to match sentence fragments like ​“Provider 
Name: Dr. John”​ that tag any term after ​“Provider Name: Dr.”​ as a name, for example, requires 
manual effort to understand the data to create these templates. Doing this for large data sets 
with notes for millions of patients is time consuming and intractable. Third, dictionary-based 
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systems may not be complete, resulting in increased ‘false negatives’ (i.e. true PII that is not 
detected). Fourth, blindly using dictionary/database lookups induces ‘false positives’ because 
they tag phrases that are not identifiers in the context in which they are used that need to be 
disambiguated ​33​. For example, in ​“The doctor determined his Braden Score as normal”​, the term 
“Braden” might be flagged as PII, when it is only a clinical term​.  
 
Traditional Machine Learning (ML) systems ​21,34–36​use traditional machine learning (ML) 
algorithms, such as support vector machines (SVMs) and conditional random fields (CRFs), to 
perform NER classification as PII for each word in a sentence. The classification task involves 
creating labeled data and defining features based on properties like part of speech (POS) tags, 
typography (e.g., capitalization, casing, spacing, font weights, or font types), punctuation, and 
frequency of words and/or their neighbors. These methods, in addition to requiring significant 
effort in encoding the feature vectors, may not generalize across datasets.  
 
Deep Learning systems​18​, ​have become the state-of-the-art for a wide variety of application 
domains, including vision (e.g., image classification) and speech (e.g., voice recognition and 
generation). In language-related tasks (e.g machine translation), these approaches have 
surpassed human level performance ​37​. Deep learning has proven beneficial in numerous NLP 
tasks, including predicting the next word (language modeling), tagging tasks such as part of 
speech tags, entities in a sentence (entity recognition), and dependency parsing. This has 
enabled applications that traditionally required custom rules and hand-crafted features to be 
solved without any feature engineering. ​Modern deep learning approaches for de-identification 
have been shown to outperform their predecessors​18​, but they require very large quantities of 
domain specific labeled training data to perform well. Specifically, the challenges include, but 
are not limited to, the presence of long and highly descriptive sentences, usage of clinical 
shorthand (that vary across physicians and medical specialties), and a variety of semi-structured 
machine generated content. Moreover, publicly available datasets for de-identification (including 
the popular i2b2 2014 dataset​17​) lack diversity, often focusing on only a few types of notes or 
areas of disease. Training and benchmarking with such datasets is likely to bias the resulting 
models and fail to capture the nuanced and complex nature of physician notes. Recently, 
attention-based neural network (transformer) models have also been implemented for 
de-identification but have shown limited generalizability in the absence of support from encoded 
rules​38​.  
 
Hybrid​39​ and Ensemble Systems​40,41​ use combinations of rule-based and machine 
learning-based components in tandem to improve PII detection efficacy. With these approaches, 
the choice of components, finding the right split of tasks between them and the optimal strategy 
for combining results from them become crucial. Some approaches​42​ invoke engineering 
post-processing layers that fix the errors that are introduced by other (earlier) components. In 
cases where there is, by design, overlap in the type of PII being predicted (e.g. multiple 
components detecting people names), considerable effort is spent measuring and choosing a 
method, like a stacked meta classifier or voting scheme, to pick a winning component​40​. The 
nference de-identification system presented here addresses the limitations of prior methods​11 
and achieves high levels of recall and precision.  
 
There are several opportunities to further improve the performance of de-identification systems. 
First, existing knowledge graphs and language models trained on biomedical corpora can be 
leveraged. For example, if a patient’s note contains the sentences “​Patient diagnosed with lung 
cancer” and “ECOG performance status was determined to be 2​”, ECOG would not be treated 
as PII since it has a strong biological association with lung cancer based on the knowledge 
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graph. In the de-identification process, this could be used to recover biological terms incorrectly 
tagged as PII (false positives). Second, the quality of sentences that are provided to the model 
can be improved. Unstructured clinical text does not always contain well-formatted text 
commonly due to missing punctuations and incorrect casing. A case-sensitive pre-trained model 
along with a masked-language model objective can be used to train a system capable of 
correctly introducing punctuation in the right location. Another challenge with the quality of 
clinical documents is the prevalence of short fragments and bullet points giving rise to 
sentences with poor context. Context of a single sentence can be expanded using preceding 
and succeeding sentences or employing document level transformer models such as 
Transformer-XL ​43​. Third, unsupervised methods can be incorporated to accelerate the 
annotation process of the NER task. Grouping the word representations generated by a 
transformer model yields informative clusters (e.g. a cluster of names) that can be annotated 
according to the nature of words present in the cluster. The NER task can then be formulated as 
a mask language task, where the overlap of the list of potential candidates for a missing word 
with the clusters can inform the entity type of the missing word.  

Conclusion 
Overall, this work implemented an ensemble approach to de-identification of unstructured EHR 
data incorporating transformer models supported by heuristics for automatically identifying PII 
across diverse clinical note types. Upon detection, suitable surrogates replaced PII in the 
processed text thereby concealing residual identifiers (hiding in plain sight). The system 
demonstrates high precision and recall on both publicly available datasets and a large and 
diverse dataset from the Mayo Clinic.  
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Supplementary Methods 

Ensemble Architecture Implementation details 
We employed the ​bert-base-cased ​model (​https://huggingface.co/bert-base-cased ​) through the 
HuggingFace/Transformers (​https://github.com/huggingface/transformers​) library. This is a 
case-sensitive English language pre-trained model based off of the BERT architecture trained 
using a masked language modelling (MLM) objective. The BERT model was pretrained on 
BookCorpus (​https://huggingface.co/datasets/bookcorpus​), a dataset comprising 11,038 
unpublished books in addition to English Wikipedia.  
 
Our ensemble involved employing at least one individual model for names, organizations, 
locations and ages. An additional ​text normalized ​model was also trained and utilized for 
names. Here, text normalization refers to the process of converting all uppercase words to title 
case (lowercase words are retained as is). A total of 61,800 tagged example sentences were 
used for fine-tuning the models. The final number of examples for each entity type is shown in 
Supplementary Table 1 ​.  

 

Supplementary Table 1: ​BERT models employed in our ensemble and the corresponding entity 
type and number of fine-tuning examples. The Model Priority # denotes the order of precedence in 

the event that a word is tagged as PII by multiple models. For example, if a word is tagged as both a 
name and a location, it will be assigned the name entity (which has higher priority). 

 
Each transformer model is fine-tuned with a maximum sequence length of 256 (after 
tokenization) over 4 epochs. We use a training batch size of 32 and a learning rate of 5e-5 with 
a warmup proportion of 0.4. The Adam optimization algorithm was employed to update network 
weights. Loss was computed using cross entropy loss. 
 
Each model is iteratively fine-tuned with training samples being continuously added to the initial 
set of training samples. The sentences chosen for fine-tuning the model are specifically selected 
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Model Priority # Entity Type Text Normalized? Fine-tuning Examples 

1 Name No 44,929 

2 Name Yes 44,929 

3 Location No 11,461 

4 Age No 5,409 

5 Organization No 44,825 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted February 23, 2021. ; https://doi.org/10.1101/2020.12.22.20248270doi: medRxiv preprint 

http://paperpile.com/b/S9AzZM/xzy86
http://paperpile.com/b/S9AzZM/xzy86
http://paperpile.com/b/S9AzZM/xzy86
http://dx.doi.org/10.18653/v1/p19-1285
http://paperpile.com/b/S9AzZM/xzy86
https://huggingface.co/bert-base-cased
https://github.com/huggingface/transformers
https://huggingface.co/datasets/bookcorpus
https://doi.org/10.1101/2020.12.22.20248270


from the space of errors that was seen in prior models. The iterative process of fine-tuning 
models therefore results in the generation of multiple individual neural networks (different 
versions) for each PII type each having a specific performance. To maximize the overall recall, 
we choose the two best performing models for each entity type and employ them in tandem.  
 
To complement the above improvements on model architecture and algorithms for 
de-identification, an iterative learning framework is deployed in tandem that allows rapid 
validation and performance evaluation for trained models (​Supplementary Fig. 1​)​. This allows 
each component of the ensemble framework to be re-trained and fine-tuned to learn from 
previous mistakes independently of other models.  

Supplementary Fig. 1:​ Iterative model generation process and learning from errors. Model 
performance improves during its evolution from v0 to vN.  

 
All of our experiments were performed on an Ubuntu 16.04 machine (12 CPU cores and 220GB 
RAM) with two NVIDIA Tesla V100 GPUs (16GB of RAM each). We used Python v3.6.9 with 
PyTorch v1.3.1 and pytorch-pretrained-bert v0.6.1 (now HuggingFace/Transformers).To 
de-identify text, we first perform sentence tokenization to convert documents into sentences. On 
two GPUs, our system achieved an inference speed of 53 sentences per second (inference 
batch size was set to 128). Additionally, fine-tuning an individual model of our ensemble took 45 
minutes for ~44k sentences with both GPUs being utilized.  
 
In order to maximize recall of our ensemble, we employ a voting ensemble scheme across 
models of different entity types with a voting threshold of 1. That is, a word is determined to be 
PII if it is detected by at least one model. If a word is detected as PII by more than one model, it 
is assigned an entity type based on its priority (as described in ​Supplementary Table 1​). 

Creating an inclusion list of sentences 
In a repository of 103 million physician notes (from 477,000 patients) from the Mayo Clinic, a 
total of approximately 3.1 billion sentences corresponded to approximately 700 million unique 
sentences, which highlights the redundancy in a corpus of this size and provides optimization 
opportunities in the de-identification processing pipeline. In particular, sentences with high 
prevalence were found to typically not contain PII (since they occur across a large number of 
patients, the chances that they contain information specific to any one patient is low). We 
computed the prevalence of all sentences and found that the top 1,600 most common 
sentences correspond to 1.01 billion sentences overall (one-third of the entire corpus). 
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These 1,600 sentences represented the initial inclusion list. Additionally, we filtered out the top 
25,000 most prevalent sentences that contain a disease or a drug entity. This ensures that 
medically relevant sentences that are also highly prevalent are preserved. All of the sentences 
that are part of the inclusion list are manually verified.  

Obfuscation methods 
For each category of PII, obfuscation is performed through the replacement methods described 
in ​Supplementary Table 2 ​.  
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Category Sub-category Replacement Method Example 

Name First Name Replace with sampled 
surrogate after gender and 

ethnicity matching 

Mohammad​ visited the 
clinical today. → ​Imran 
visited the clinic today. 

Name Last Name Replace with sampled 
surrogate after ethnicity 

matching 

Ms. ​Lopez ​ agreed with the 
procedure → Ms. 

Hernandez​ agreed with the 
procedure.  

Name Initial Replace letters randomly John ​W.B.​ Smith → Jack 
G.S. ​ Parker 

Name IDs Replace letters and numbers 
randomly 

Signed ​DF14 → ​Signed 
AB76 

Location N/A Replace with sampled 
surrogate 

She is from ​Springfield, 
Illinois ​ → She is from 

Ithaca, New Yor ​k 

Organization N/A Replace with sampled 
surrogate 

Welcome to ​Veterans 
Memorial Center​ → 

Welcome to ​Butler County 
Health Care Center 

Age N/A If age is greater than 89 
years, replace with “89+” 

Mr. Johnson is ​92​ years old 
→ Mr. Michaels is ​89+​ years 

old  

Date N/A Shift date by a randomly 
selected number of days. 

Maintain format of the date 
string. 

Appt date: ​04/12/2020​ → 
Appt date: ​03/29/2020 

Time N/A Do nothing N/A 

Website N/A Replace with sampled 
surrogate 

For more info check 
mayoclinic.org ​ → For more 
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Supplementary Table 2​:​ Obfuscation methods for each PII category 

Evaluation metrics 
To evaluate model performance on the de-identification task, we computed the precision, recall 
and F1 scores. These were computed as follows: 

 
Precision = TP / (TP+FP) 

 
Recall = TP / (TP+FN) 

 
F1 = 2*Precision*Recall / (Precision+Recall) 

 
where TP is the true positive count, FP is the false positive count and FN is the false negative 
count. 

De-identification on 2014 I2B2 test dataset 
The 2014 I2B2 dataset consisted of 515 notes each in an individual XML file (present in the 
folder: ./2014 De-identification and Heart Disease Risk Factors Challenge 
Downloads/test_data/PHI Gold Set - Fixed).  
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info check ​healthcarefor 
you.org 

Email 
Address 

N/A Replace with sampled 
surrogate 

Reach out to 
john.smith@care.com ​ → 

Reach out to 
primaryprovider@care.co

m  

Vehicle Plate N/A Replace letters and numbers 
randomly 

Vehicle plate: ​6TR-435​ → 
Vehicle plate: ​7TH-129 

Phone 
Number 

N/A Replace numbers randomly 546-123-0543​ → 
574-784-1122 

Numeric 
Identifier 

N/A Replace numbers randomly Patient Clinic​ #4433245​ → 
Patient Clinic ​#1382135 

Zip Code N/A Replace numbers randomly Cambridge MA, ​02139​ → 
Tucson, AZ, ​45241 

Pager N/A Replace numbers randomly Dr. Jones ​1-12435​ → Dr. 
Smith ​4-63259 

IP Address N/A Replace numbers randomly 127.0.0.1​ → ​176.3.5.7 
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Evaluation of existing methods​: We report the performance of Scrubber, Physionet and Philter 
systems on the 2014 I2B2 data in their standard modes of operation (without additional 
dictionaries or gazetteers). To run MIST on the 2014 I2B2 data, we converted the dataset into 
the 2006 I2B2 data format since the stable software release of MIST directly supported the 2006 
format (and not the 2014 format). Additionally, MIST assigns PII categories that are different 
from the 2014 I2B2 entity set. To address this issue, we constructed a mapping between the 
two sets of PII categories as described in ​Supplementary Table 3​. In our implementation of 
MIST, we did not use gazetteers. As a result the scores we report for MIST are lower than those 
of the Dernoncourt et al. implementation which was configured to use the same gazetteers as 
their CRF model. We installed and implemented NeuroNER with instructions as outlined in the 
GitHub repository (​https://github.com/Franck-Dernoncourt/NeuroNER/​). In particular, we 
downloaded and ran the ​i2b2_2014_glove_spacy_bioes​ pre-trained model on the I2B2 
validation set.  
 
 

Supplementary Table 3: ​Mapping between MIST and I2B2 PII categories 
 
 
Handling document IDs​: The nference system was designed to identify document IDs in 
unstructured text (e.g. “​3-1272852​”​ ​in the sentence “​eScription document: 3-1272852 
BFFocus​”). These entities were however not marked as PII in the ground truth of the I2B2 
dataset and hence contributed to the false positive rate of our system. If we exclude such cases 
(we found 87 instances of document ID) our precision improves from 0.979 to 0.986.  
 
PII entity-wise precision and recall comparison ​: For each entity class and I2B2 entity type we 
computed the precision and recall for both versions of the nference system (fine-tuned only on 
Mayo data and fine-tuned on Mayo as well as I2B2 data) as shown in ​Supplementary Table 4​. 
Since the tagset used by nference is different from I2B2 entities, the recall could be calculated 
for each I2B2 entity and for each entity class. However, the precision could only be determined 
at the level of the entity class. Rule-based components on the nference ensemble performed 
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MIST PII Category I2B2 PII Categories 

NAME PATIENT, DOCTOR, USERNAME 

LOCATION ORGANIZATION, STREET, CITY, STATE, COUNTRY, ZIP, 
LOCATION-OTHER 

AGE AGE 

DATE DATE 

CONTACT PHONE, FAX, EMAIL 

ID IDNUM, MEDICALRECORD, DEVICE 

PROFESSION PROFESSION 
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identically across both versions of our system since they are not impacted by fine-tuning. 
Support was computed at the word level (i.e. “John Smith'' corresponds to a support of 2).  
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   nference (fine-tuned on Mayo) nference (fine-tuned on 
Mayo+I2B2) 

Entity 
Class 

I2B2 Entity Support Precision 
(False Positive 

Count) 

Recall (False 
Negative 
Count) 

Precision 
(False Positive 

Count) 

Recall (False 
Negative 
Count) 

All All 10861 0.961 (436) 0.988 (135) 0.979 (239) 0.992 (92) 

Date  4951 0.975 (126) 0.994 (27) 0.975 (126) 0.994 (27) 

 DATE 4951 N/A 0.994 (27) N/A 0.994 (27) 

Names  4131 0.974 (109) 0.991 (36) 0.996 (17) 0.994 (23) 

 PATIENT 1353 N/A 0.992 (11) N/A 0.998 (2) 

 DOCTOR 2691 N/A 0.992 (21) N/A 0.993 (17) 

 USERNAME 87 N/A 0.954 (4) N/A 0.954 (4) 

Location  1177 0.911 (113) 0.980 (24) 0.968 (38) 0.987 (15) 

 STREET 415 N/A 0.978 (9) N/A 0.992 (3) 

 CITY 327 N/A 0.982 (6) N/A 1.0 (0) 

 STATE* 188 N/A 1.0 (0) N/A 1.0 (0) 

 COUNTRY* 94 N/A 1.0 (0) N/A 1.0 (0) 

 ZIP 133 N/A 1.0 (0) N/A 1.0 (0) 

 LOCATION-
OTHER 

20 N/A 0.55 (9) N/A 0.6 (12) 

   nference (fine-tuned on Mayo) nference (fine-tuned on 
Mayo+I2B2) 

Entity 
Class 

I2B2 Entity Support Precision 
(False Positive 

Count) 

Recall (False 
Negative 
Count) 

Precision 
(False Positive 

Count) 

Recall (False 
Negative 
Count) 

Organizatio
n 

 1639 0.969 (43) 0.815 (302) 0.991 (13) 0.914 (140) 

 HOSPITAL* 1502 N/A 0.821 (269) N/A 0.922 (128) 

 ORGANIZA
TION 

137 N/A 0.759 (33) N/A 0.912 (12) 

Numeric 
Identifiers 

 576 0.926 (45) 0.977 (13) 0.926 (45) 0.977 (13) 

 IDNUM 201 N/A 0.968 (7) N/A 0.968 (7) 
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Supplementary Table 4: ​PII entity-wise precision and recall for both versions of the nference 
system: (a) Fine-tuned on Mayo and (b) Fine-tuned on Mayo+I2B2. The first column corresponds to 
the entity class and the second column corresponds to the specific I2B2 entity type. Dates, numeric 
identifiers and contacts are implemented through rule-based methods and therefore have the same 

precision and recall across both system versions. For this analysis, only ages over 89 in the test 
dataset were considered (totally 8 instances of such an age were found) and our method detected all 

of those entities successfully. We therefore omit ages from this table. ​The tagset used by nference 
groups is different from I2B2 entities. Therefore, recall is calculated for each I2B2 entity and for each 

entity class but the precision is determined only at the level of the entity class.​ (*) While precision 
and recall have been computed for COUNTRY, STATE and HOSPITAL entities, we do not include 

for computing the final recall (in accordance with the group B entity set defined in Table 1.) 

Mayo test set annotation 

Inter-rater reliability 
Cohen’s Kappa is used to compute the inter-rater reliability for categorical terms. We calculate 
Cohen’s Kappa for the Mayo test dataset annotated by Mayo Clinic nurses in the following 
manner.  
 
Step 1 ​: In the ground truth tagged sentences for each nurse, we convert each PII entity (e.g., 
names, dates, and locations) to a universal “ PII entity” type. Non PII entities are left as is.  
Step 2 ​: Since the full set of sentences to review is split into three groups and within each group 
every sentence is reviewed by two nurses, we consider two nurse extractor groups. Group 1 is 
comprised of nurses 1, 3, and 5 and group 2 is comprised of nurses #2, #4, and #6.  
Step 3 ​: We then construct an agreement/disagreement matrix. The numbers in the 
Supplementary Table 5 ​ denote the number of words for each category. For example, there are 
4,919 words that were marked as PII by group 1 but were not marked as PII by group 2.  
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 DEVICE 10 N/A 0.9 (1) N/A 0.9 (1) 

 MEDICALR
ECORD 

365 N/A 0.986 (5) N/A 0.986 (5) 

Contact  171 1.0 (0) 0.988 (2) 1.0 (0) 0.988 (2) 

 PHONE 167 N/A 0.994 (1) N/A 0.994 (1) 

 FAX 3 N/A 0.666 (1) N/A 0.666 (1) 

 EMAIL 1 N/A 1.0 (0) N/A 1.0 (0) 

 Nurse Extractors Group 2 

PII entity Non PII entity 

Nurse Extractors 
Group 1 

PII entity 185455 (a) 4919 (b) 

Non PII entity 5411 (c) 1483221 (d) 
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Supplementary Table 5: ​Agreement matrix for measuring inter-rater reliability 
 
Step 4 ​: The observed proportionate agreement p ​0​ = (a+d)/(a+b+c+d) =​ 0.9938 
Step 5 ​: The expected probability (i.e. probability of random agreement between the two groups) 
is the probability that both groups agreed on either yes or no. The probability that both groups 
agreed on yes (p ​yes​) is given below 
P​yes​ = (a+b)/(a+b+c+d) . (a+c)/(a+b+c+d) =​ 0.0128 
P​no​ = (c+d)/(a+b+c+d) . (b+d)/(a+b+c+d) = ​0.7858 
Therefore, 
p ​e​ = p ​yes​ + p ​no​ = ​0.7987 
Step 6 ​: Compute Cohen’s Kappa 
κ = (p ​o​ - p ​e​)/(1 - p ​e​) = ​0.9694 
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