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Abstract. Group testing saves time and resources by testing each pre-
assigned group instead of each individual, and one-stage group testing
emerged as essential for cost-effectively controlling the current COVID-19
pandemic. Yet, the practical challenge of adjusting pooling designs based
on infection rate has not been systematically addressed. In particular,
there are both theoretical interests and practical motivation to analyze
one-stage group testing at finite, practical problem sizes, rather than
asymptotic ones, under noisy, rather than perfect tests, and when the
number of positives is randomly distributed, rather than fixed.
Here, we study noisy group testing under the probabilistic framework
by modeling the infection vector as a random vector with Bernoulli en-
tries. Our main contributions include a practical one-stage group testing
protocol guided by maximizing pool entropy and a maximum-likelihood
recovery algorithm under the probabilistic framework. Our findings high-
light the implications of introducing randomness to the infection vectors
– we find that the combinatorial structure of the pooling designs plays a
less important role than the parameters such as pool size and redundancy.

Keywords: Non-adaptive Group Testing · COVID-19 · Experimental
Designs

1 Introduction

Group testing is a procedure to find positives in a cohort by applying tests
for the presence of any positives to cohort subsets (groups), instead of testing
each individual separately. When the fraction of positives among the samples
is low, implementing group testing saves time and resources. Group testing
has applications in genetics [21], drug screening [13] communications [25] and
epidemiology [23].

One-stage group testing [6] addresses the scenario of groups being set in
advance, independently of test results - a common practical requirement, e.g. due
to testing speed constraints. Existing algorithms on infection vector recovery for
? Columbia University unrestricted funds
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noisy group testing under the combinatorial prior (the number of positives among
samples is fixed) include LP relaxation [16], belief propagation [20], Markov Chain
Monte Carlo (MCMC) [9], Noisy Combinatorial Orthogonal Matching Pursuit
(NCOMP) [4], separate decoding [18] and Definite positives (DD) [19]. However,
group testing under a fully probabilistic framework has not been extensively
studied. In particular, to the best of our knowledge, there has been a lack of work
on non-asymptotic results on noisy group testing in the realistic scenario where
number of positives in not known in advance, as in [2, 3], but rather is a random
variable.

As part of the global efforts to control the COVID-19 pandemic, there has
been an emerging body of work on implementing one-stage group testing for
COVID-19 [10, 11, 22–24]. However, testing scenarios vary significantly due to
fluctuating infection rates across time and geography often caused by emerging
variants, as well as different testing objectives, such as screening of health care
workers versus large scale monitoring of the community. Group testing protocols
should thus be adjusted according to the infection rate among the tested samples,
measurement error rates, and the recovery error tolerance level [5].

As a result, systematically studying one-stage noisy group testing with a ran-
dom number of positives is of both theoretical interests and practical importance.
In this paper, we study noisy group testing under the probabilistic framework in
order to address the practical challenges posted by group testing implementation
for COVID-19.

The rest of the paper is organized as follows. We begin with an introduction of
the noisy group testing under the probabilistic framework in Section 2, including
a group testing protocol and a novel recovery algorithm under the probabilistic
framework. The performance of the recovery algorithm and the pooling designs is
in Section 3. Finally, we conclude with a discussion on future work in Section 4.

2 Methods

2.1 Noisy Group Testing under the Probabilistic Framework

We assume a tested cohort of n individuals, with some infection rate f among
the population the cohort is sampled for. Note, that the actual number of true
positives is not known in advance, as combinatorial priors unrealistically assume [2,
3]. Also, this is the ground truth rate of infected individuals, as opposed to the
observed positivity rate. Specifically:

Definition 1. An infection vector X is a random vector with n i.i.d. Bernoulli(f)
entries.

We aim to design a protocol to test n samples with t < n tests. We arrange
the pool assignments into a pooling matrix M ∈ {0, 1}t×n such that Mij = 1 if
and only if individual j is included in pool i. Notice that each row i sum of M
correspond to a pool size si, and each column j sum corresponds to the number
of pools that a sample participates, which we define as redundancy rj .
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Fig. 1. Four classes of
pooling designs.

Following [1] and [8], we focus on the following four
classes of pooling designs that are of practical interests
(see Fig. 1):

1. (constant-pool design) each test combines a fixed
number si = s of samples, where s samples are
chosen uniformly at random among the n samples;

2. (constant-redundancy design) each individual par-
ticipates in a fixed number rj = r of tests, where
r tests are chosen uniformly at random among the
t tests;

3. (doubly-regular design) draw a design uniformly at
random from the designs that are both constant-
pool and constant-redundancy;

4. (Reed-Solomon design) the pool assignment for
each individual is obtained as a concatenation of Reed-Solomon error cor-
recting code; see [8] for more details on the explicit construction.

Under the noiseless setting, a test result is negative if and only if all samples
in the pool are negative. In practice, test results might suffer from measurement
errors. Suppose the test we use for each pool has a false negative rate of f0 and
a false positive rate of f1, i.e. consider the asymmetric noisy channel (where f0
and f1 can be distinct) that combines the additive model and the dilution model
in [2]. See Fig. 2 for an example of a doubly-regular pooling matrix under the
probabilistic framework.

Fig. 2. Noisy group testing under the probabilistic framework. The pooling matrix is a
doubly-regular design with s = 3 and r = 2. A pool is negative if and only if there is no
positive sample participates in the pool. Each pool is then passed to an asymmetric
noisy channel to model measurement errors.
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2.2 A Group Testing Protocol

Let Yi be the indicator that the test result for the pool i is negative; then

Yi ∼ Bernoulli(f0(1− (1− f)si) + (1− f1)(1− f)si).

Extending the idea in [22] to the noisy setting, a pool design should maximize
the entropy of Yi; hence the optimal pool size is

arg max
si

H(yi; si) =
ln( 0.5−f0

1−f1−f0
)

ln(1− f) . (1)

Infection rates therefore dramatically affect the theoretical optimal pool size,
while measurement errors slightly offsets such optima (see Fig. 3).
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Fig. 3. Theoretically optimal pool size as a function of infection rate; false positives
(resp. negatives) slightly reduce (increase) optimal pool size.

We will show in Section 3 that given a fixed set of parameters r, s, t, the four
classes of designs (and that of each member of a given class) perform comparably
under this probabilistic framework. Hence, practitioners can safely choose a
design class with practical advantages and then optimize the parameters r, s, t.

We thus propose the following protocol for implementing one-stage group
testing under a given infection rate:

1. From the potential pool sizes (subject to practical constraints), choose s to
be closest to the theoretical optimal pool size, per Equation 1.
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2. Simulate the performance curve using the recovery algorithm in Section 2.3.
3. Choose the number of pools t based on the error tolerance level.
4. Perform one-stage group testing with the same recovery algorithm in step 2.

2.3 Recovery Algorithm

We now introduce an algorithm to recover the infection vector for noisy group
testing under the probabilistic framework.

Assume we are given a pooling design M with t pools; the pool results is

Y := sign(MX)− E(0) + E(1)

where E(0), E(1) are false-negatives vector and false-positives vector respectively,
i.e. for i = 1, . . . , t, 

E
(0)
i ∼ Bernoulli(f0) if (MX)i > 0,

E
(0)
i ∼ Bernoulli(0) if (MX)i = 0,

E
(1)
i ∼ Bernoulli(f1) if (MX)i = 0,

E
(1)
i ∼ Bernoulli(0) if (MX)i > 0.

A recovery algorithm is given a pool result y ∈ {0, 1}t and outputs (x̂, ê(0), ê(1)),
an estimate for (X, E(0), E(1)). Our recovery algorithm (Algorithm 1) is given
by solving the following integer linear program:

minimize −||x̂|| ln( f
1−f )− ||ê(0)|| ln( f0

1−f0
)− ||ê(1)|| ln( f1

1−f1
)

subject to 0.5ê
(0)
i ≤ (Mx̂)i ≤ tê

(0)
i + 0.5 i ∈ {1, . . . , t} s.t. yi = 0

−0.5ê
(1)
i + 0.5 ≤ (Mx̂)i ≤ t(1− ê

(1)
i ) + 0.5 i ∈ {1, . . . , t} s.t. yi = 1

x̂ ∈ {0, 1}n

ê(0), ê(1) ∈ {0, 1}t

Here, for a given binary vector x ∈ {0, 1}n, we use ||x|| to denote the Hamming
weight of x, i.e. ||x|| =

∑n
i=1 xi.

We now analyze the correctness and optimality of Algorithm 1.
Theorem 1. Algorithm 1 returns a realizable output.

Proof. In order for an output (x̂, ê(0), ê(1)) to be realizable, each row of the
equation y = sign(Mx̂)− ê(0) + ê(1) must fall into one of the following cases:

yi = 0, (Mx̂)i = 0, ê
(0)
i = 0;

yi = 0, (Mx̂)i > 0, ê
(0)
i = 1;

yi = 1, (Mx̂)i > 0, ê
(1)
i = 0;

yi = 1, (Mx̂)i = 0, ê
(1)
i = 1.

Notice that for yi = 0, we have

ê
(0)
i = 1 ⇐⇒ 0.5 ≤ (Mx̂)i ≤ t + 0.5 ⇐⇒ 1 ≤ (Mx̂)i ≤ t,

ê
(0)
i = 0 ⇐⇒ 0 ≤ (Mx̂)i ≤ 0.5 ⇐⇒ (Mx̂)i = 0.
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Similarly, for yi = 1, we have

ê
(1)
i = 0 ⇐⇒ 0.5 ≤ (Mx̂)i ≤ t + 0.5 ⇐⇒ 1 ≤ (Mx̂)i ≤ t,

ê
(1)
i = 1 ⇐⇒ 0 ≤ (Mx̂)i ≤ 0.5 ⇐⇒ (Mx̂)i = 0.

Therefore, the constraints in the integer linear program guarantees the output is
realizable.

Theorem 2. Algorithm 1 returns a maximum likelihood estimate (MLE), i.e.
an output (x̂, ê(0), ê(1)) maximizes Pr(X = x, E(0) = e(0), E(1) = e(1)).

Proof. Let n0 be the number of pools with no positive sample and n1 be the
number of pools containing at least one positive sample. The log-likelihood is

ln Pr(X = x, E(0) = e(0), E(1) = e(1))
= ln Pr(X = x) + ln Pr(E(0) = e(0), E(1) = e(1)|X = x)
=||x|| ln f + (n− ||x||) ln(1− f) + ||e(0)|| ln f0 + (n1 − ||e(0)||) ln(1− f0)

+ ||e(1)|| ln f1 + (n0 − ||e(1)||) ln(1− f1)

=||x|| ln( f

1− f
) + ||e(0)|| ln( f0

1− f0
) + ||e(1)|| ln( f1

1− f1
) + const.

Therefore, the objective function in the integer linear program maximizes the
likelihood.

Open source code implementing all our methods is available at [15].

3 Results

For biological experiments, sample sizes n = 96, 384, 1536 are of particular
interests because the experiments tend to be conducted on 96-well plates, 384-
well plates, or 1536-well plates [8]. The savings in resources offered by pooled
design compared to individual testing stops being worth the increased complexity
of the experimental paradigm when infection rates are high. For example, under
an infection rate f = 0.1, using a constant-pool design with optimal pool size
s = 7, even a 2-fold saving, with T = n/2 = 192 pools to recover n = 384 samples,
the average accuracy over 1000 trials is unacceptably low at 96.5%. As a result,
we believe our group testing protocol should not be applied when the infection
rate is over 0.1, and limit our analysis to infection rate up to 0.025 in this section.

3.1 Performance of the Recovery Algorithm

In order to test the performance of the recovery algorithm, we used the pooling
design M ∈ {0, 1}48×384 (testing 384 individuals in 48 pools) in [23].

We simulated 1000 infection vectors x ∈ {0, 1}384 under the population
infection rate f = 0.02 and evaluated recovery under different rates of false
positives and false negatives. We observe error rate to only slightly detract from
the accuracy of noiseless measurements (see Fig. 4).
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Fig. 4. Robustness against measurements errors.

3.2 Pooling Matrices

Optimal Pool Size In order to test the theoretically optimal pool size given
in Equation 1, we simulated 1000 infection vectors under various infection rates
and evaluated the performance of constant-pool matrix with t = 48 and s ∈
{8, 16, 24, . . . , 80}. The performance of the pooling matrices is strongly correlated
with the entropy of each pool, which supports the guidance of maximizing pool
entropy in one-stage group testing designs (see Fig. 5).

In order to test the robustness of the optimal pool size s with respect to
varying the number of pools t, we tested the performance of constant-pool designs
with s ∈ {8, 16, 24, . . . , 80} based on 1000 simulated infection vectors under
f = 0.02. The optimal pool size (s = 32) achieves nearly maximal recovery
accuracy for all t (see Fig. 6).

Explicit Constructions Combinatorial structure of pooling matrices has been
studied under the combinatorial framework [7]. Recent development of explicit
pooling matrices construction for noisy group testing is based on error correcting
codes [1]. Pooling design based on Reed-Solomon code was introduced in [14]
and shown to be optimal under a more restricted probabilistic setting (assuming
a random set of positives of a fixed size) [12].

Authors in [23] use a design based on Reed-Solomon error correcting code; the
matrix assigns each individual in 6 pools such that each pool has 48 individuals.
We compare the performance of the Reed-Solomon design, a randomly drawn
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Fig. 5. Entropy of each pool against the performance of constant-pool designs with
pool size s ∈ {8, 16, . . . , 80} and t = 48 pools; infection vectors are simulated with 384
Bernoulli(f) entries. The direction of the triangular markers indicates increasing s.
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Fig. 6. Average recovery accuracy of designs with the pool size s ∈ {8, 16, 24, . . . , 80}
and varying the number of pools under the infection rate f = 0.02; the pool size s = 32
achieves the maximum pool entropy.
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doubly-regular design (with r = 6 and s = 48), a randomly drawn constant-
redundancy design (with r = 6 and varying pool sizes), and a randomly drawn
constant-pool design (with s = 48 and varying redundancies).

We found that under the probabilistic framework, the performance of the
three random designs is comparable to that of the Reed-Solomon design in terms
of both the average and the standard deviation of the recovery accuracy (see
Fig. 7). For each of the three random designs, we computed the distribution of
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Fig. 7. Performance of the Reed-Solomon (red), the doubly-regular r = 6, s = 48 (blue),
the constant redundancy r = 6 (green), and the constant pool s = 48 (orange) designs
under simulated data with n = 384 individuals, t = 48 pools. The box shows the
four quartiles, the whiskers show the rest of the distribution, and the points show the
outliers.

the inner products of column vectors (which are derived from code words) of 1000
randomly-drawn matrices. The performance guarantees of Reed-Solomon design
under the combinatorial setting follows from the minimum pairwise distance of
the code words [1]. The authors in [17] studied explicit pooling matrices and
showed the dependency of the error probability on both the minimum and the
average distance under the assumption of a fixed number of positives. In the same
spirit, we found that maximizing the number of pairs of column vectors with
zero inner products could lead to performance guarantees under the probabilistic
framework (see Fig. 8).

As a first step towards understanding the role of combinatorial structures
of the pooling matrices under the probabilistic framework, we randomly drew
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Fig. 8. Distributions of the inner products of column vector. Error bars are computed
based on 1000 matrices.

1000 constant-pool designs with s = 48 to test n = 384 individuals with t = 48
pools, and computed the average accuracy on two sets of 1000 simulated infection
vectors under the infection rate f = 0.02. We observe low correlation (≈ 0.0884;
p ≈ 0.00516) between the performance of designs on the two sets of vectors, which
suggests that under the probabilistic framework, the combinatorial structure of
the pooling matrices plays a less significant role than the parameters s, r, t.

4 Discussion

We presented a framework that addresses several practical issues, including
randomness of the infection vector and noisy measurements. Our findings suggest
that in practice, the combinatorial structure of pooling design matrices plays
a lesser role compared to parameters such as redundancy, pool sizes, and the
number of pools. Furthermore, we provide a protocol and an implementation for
practitioners to choose the parameters in order to design pooling matrices.

From a theoretical perspective, there are several promising future directions
for this work. The ILP problem presented in Section 2.3 can be viewed as a
generalization of the smallest satisfying set (SSS) problem [1], which is NP-hard.
One direction of future work is to design polynomial-time approximation recovery
algorithm under the probabilistic framework.

In addition, non-asymptotic theoretical understanding of one-stage group
testing under the probabilistic framework is still limited. An interesting future
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research direction is to explore theoretical justifications on the effect of the
number of pairs of column vectors with zero inner product on the performance,
as observed in Section 3.

From a practical perspective, while no significant difference in performance
among the four classes of designs is observed in the simulations performed in
this study, future research should be conducted on further investigating the
significance of the combinatorial structure of the pooling matrices under other
scenarios such that parameter values with a higher range of recovery accuracy
and sample sizes other than n = 384 that are germane to biological experiments.

As the COVID-19 pandemic continue to ravage large populations of resource
limited nations, cost effective testing with simple designs is an absolute necessity
for sustaining daily life in a safe manner.
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