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Abstract

Invasive mechanical ventilation is one of the leading life support machines in the intensive
care unit (ICU). By identifying the predictors of ventilation time upon arrival, important
information can be gathered to improve decisions regarding capacity planning.

In this study, first-day ventilated patients’ ventilation time was analyzed using survival
analysis. The probabilistic behaviour of ventilation time duration was analyzed and the pre-
dictors of ventilation time duration were determined based on available first-day covariates.
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A retrospective analysis of ICU ventilation time in Ontario was performed with data
from ICU patients obtained from the Critical Care Information System (CCIS) in Ontario
between July 2015 and December 2016. As part of the protocol for inclusion, a patient must
have been connected to an invasive ventilator upon arrival to the ICU. Parametric survival
methods were used to characterize ventilation time and to determine associated covariates.
Parametric and non-parametric methods were used to determine predictors of ventilation
duration for first-day ventilated patients.

A total of 128,030 patients visited the ICUs between July 2015 and December 2016. 51,966
(40.59%) patients received invasive mechanical ventilation on arrival. Analysis of ventila-
tion duration suggested that the log-normal distribution provided the best fit to ventilation
time, whereas the log-logistic Accelerated Failure Time model best describes the associa-
tion between the covariates and ventilation duration. ICU site, admission source, admission
diagnosis, scheduled admission, scheduled surgery, referring physician, central venous line
treatment, arterial line treatment, intracranial pressure monitor treatment, extra-corporeal
membrane oxygen treatment, intraaortic balloon pump treatment, other interventions, age
group, pre-ICU LOS, and MODS score were significant predictors of the ICU ventilation
time.

The results show substantial variability in ICU ventilation duration for different ICUs,
patient’s demographics, and underlying conditions, and highlight mechanical ventilation as
an important driver of ICU costs.

The predictive performance of the proposed model showed that both the model and the
data can be used to predict an individual patient’s ventilation time and to provide insight
into predictors.

Keywords: Mechanical ventilation, Ventilation duration, Survival analysis, ICU

1 Introduction

Mechanical ventilation (MV) is defined as the use of a breathing support machine that takes over

the breathing process in patients who cannot breathe properly on their own. MV is one of the life

support alternatives provided by the Intensive Care Unit (ICU) that differentiate it from other

hospital units. There are two forms of MV: invasive and non-invasive. Non-invasive ventilation

(NIV) is the delivery of oxygen through a face mask. According to Hyzy and McSparron [2022],

invasive mechanical ventilation (IMV) is “the delivery of positive pressure to the lungs through an

endotracheal or tracheostomy tube.” During IMV, a ventilation machine (also called a ventilator)

forces a predetermined mixture of air (i.e., oxygen and other gases) into the central airways that

then flows into the alveoli [Hyzy and McSparron, 2022, Luo et al., 2017]. A patient may need

a ventilator when there is a low oxygen level in the blood or severe shortness of breath from an

infection such as pneumonia, SARS or COVID-19. Over 20 million patients worldwide per year
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are treated with mechanical ventilation [Urner et al., 2020, Adhikari et al., 2010].

Since the outbreak of the COVID-19 pandemic, one of the most globally cited causes for the

inability of ICUs to manage patients appropriately has been the lack of ventilators [Beitler et al.,

2020, Elegant, 2020, Pearce, 2020, Begley, 2020, Iyengar et al., 2020]. However, the concern about

an insufficient supply of ICU beds and ventilators to handle critically ill patients is old. COVID-19

sparked a debate on when and how ventilators should be used within the ICU. Before COVID-19,

there have been very few publications that modelled the use, demand, and practice of ventilation on

ICU patients. Kacmarek [2011] gave a detailed history of the evolution of these human breathing

aids in medicine. Ventilators are not built into ICU beds like other organ support machines.

Nevertheless, as many as 90% of ICU patients require ventilation [Pearce, 2020]. Previous papers

in the literature associate ICU ventilator use with ICU bed use, but not all patients in the ICU

use ventilators, and their use is patient-state-dependent.

From a managerial perspective, it is important to know the distribution of the time that

patients are reliant upon IMV to predict ventilation demand. In this case, survival models are

often used to determine when to stop invasive ventilation. Survival analysis is extensively used in

health care but the application of such models to ventilation time is not common. To the authors’

knowledge, no study has analyzed ventilation time using survival models.

Most studies on ventilation time in the literature were interested in classifying the duration

of mechanical ventilation into two categories: prolonged versus short [Troche and Moine, 1997,

Estenssoro et al., 2005, Dimopoulou et al., 2003, Abujaber et al., 2020, Figueroa-Casas et al.,

2015, Trouillet et al., 2009, Aung et al., 2018]. Prolonged mechanical ventilation (PMV) was

defined differently within each study. Estenssoro et al. [2005] described it as being mechanical

ventilation for longer than 21 days, Dimopoulou et al. [2003] defined PMV as longer than seven

days, Trouillet et al. [2009] defined it as ventilation for longer than three days, and Légaré et al.

[2001] described it as ventilation for more than one day. Logistic regression, linear regression and

machine learning methods are the primary tools used in the literature to model ventilation time

and identify significant predictors of PMV.

Dimopoulou et al. [2003] investigated PMV in patients with blunt thoracic trauma and found

that advancing age, severity of head injuries, and bilateral thoracic injuries were significant in

predicting PMV. Trouillet et al. [2009] gathered data on patients undergoing cardiac surgery. They
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found that a post-operative score could be used to identify patients eligible for rapid weaning of

ventilation on day three, which reduced the need for PMV. Légaré et al. [2001] took a group of

coronary artery bypass graft patients, identified the predictors of PMV, and found that intra-

operative complications significantly impacted those patients who required prolonged mechanical

ventilation. Trouillet et al. [2011] investigated the outcomes of two groups of severely ill patients

who required mechanical ventilation. One group received early percutaneous tracheotomy and

the other received prolonged intubation. When the two treatments, it was found that early

tracheotomy provided no benefit in terms of mortality rate or length of stay. Esteban et al.

[2002] found that factors at the start of mechanical ventilation and complications of critical illness

influenced the outcome of patients receiving mechanical ventilation.

Logistic regression is limited in predicting the duration of mechanical ventilation, aside from

classifying it. Moreover, when studies used linear regression, the results were often unreliable.

Seneff et al. [1996] analyzed an individual patient’s duration of mechanical ventilation using linear

regression and found an R2 of 0.18, which indicates that the predictions were not reliable. Aung

et al. [2018] used multiple linear regression to identify variables independently associated with the

duration of mechanical ventilation duration and obtained an R2 of 0.235.

Abujaber et al. [2020] and Sayed et al. [2021] used machine learning models but could not find

direct relationships between the predictors and the mechanical ventilation duration. Abujaber

et al. [2020] started with logistic regression and built upon this by creating Artificial Neural

Networks, Support Vector Machines, Random Forests, and Decision Trees to predict prolonged

mechanical ventilation. Ultimately, Support Vector Machines gave the best prediction in this

study, with an accuracy of 0.79, but had the limitation of being able to find only the predictor

importance. Sayed et al. [2021] attempted to predict the duration of mechanical ventilation using

machine learning models. When using the Light Gradient Boosting Machine, it was found that

predictors gathered before the third ICU day could be used, enabling mechanical ventilation to be

predicted earlier than other machine learning models such as random forest and extreme gradient

boosting.

This study predicted ventilation duration in the ICU using patient information available on

arrival. The distribution of ventilation duration was identified and the existing differences in

terms of first-day treatments, ICU sites, admission source, referring physician, patient category,
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sex, NEMS, and MODS were evaluated. This study demonstrates the importance of patient

information available at arrival when predicting ventilation duration among ICU patients. Hence,

these results are important in ventilation planning and management.

2 Methods

2.1 Study Design and Data Collection

This is a retrospective study designed to predict the time distribution of ICU patients that were

connected to IMV on arrival using information available on arrivals, such as Demographics, First-

day treatments, NEMS and MODS scores. The objective was to determine the predictors of

ventilation time after the first day and predict ventilation duration. Survival analysis was per-

formed using a large dataset of variables obtained from the Critical Care Information System

(CCIS) Ontario database.

The CCIS dataset contains information from July 2015 to December 2016. The data includes

forty-five variables. Priestap et al. [2020] used the CCIS dataset to predict ICU mortality and

provide detailed information on the data collection procedure, the variables and the ICUs in the

CCIS database. The following subset of covariates on patient arrival was used in this study:

Basic Monitoring, Central Venous Line, Arterial Line, Intracranial Pressure Monitor, Dialysis,

Extra-corporeal Membrane Oxygen, Intra-aortic Balloon Pump, Other Interventions Within this

Unit, Interventions Outside this Unit, the nursing workload proxy by the First-day NEMS score,

demographic information (Age, Sex), and the MODS Score. For external model validation, data

from London Health Science Center (LHSC) were also used in this study. The LHSC datasets

contain information from January 2020 to May 2021.

The data were pre-processed to remove duplicates, transform variables and create new variables

needed for the analysis. The data contain records of 128,030 patients admitted into the ICUs.

40.59% (51,966) of those patients received IMV on arrival. Table 1 presents the summary of the

patients’ ventilation status on arrival. Of the patients that received IMV upon arrival, those

with missing information and were excluded to obtain 49,703 (i.e., 38.82% of total ICU patients).

Furthermore, those with ventilation time greater than 60 days were excluded and the 49,467 (99.53

% of patients connected on arrival) remaining were used in the study. Table 2 shows the sex and
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Table 1: First-day ventilation frequency

Ventilation status Count Percentage

Mechanical: Invasive Ventilation 51,966 40.59

Mechanical: Non-Invasive Ventilation 8,917 6.96

No Ventilation 28,650 22.38

Supplementary Ventilator Care 38,497 30.07

Total 128,030 100

censoring distribution of patient information used in this research. Censored patients include

those discharged to the Complex Continuing Care Facility, other hospitals, the Level 3 Unit, and

Outside the ICU while on a ventilator.

Table 2: Gender and censor status distribution of data used

Ventilation status Count Percentage

Female 18,185 36.76

Male 31,282 63.24

Censored 1,407 2.84

Uncensored 48,060 97.16

Total 49,703 100

This study was approved by the Research Ethics Review Committee at King’s University

College.

2.2 Statistical analysis

Descriptive analysis

Descriptive statistical analysis was performed, reporting the following measures for continuous

variables: mean, standard deviation, skewness, kurtosis, and quartiles. For modelling, the con-

tinuous variables were grouped into categories. Categorical variables were reported as counts and

percentages.
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Non-parametric survival analysis

Kaplan-Meier analysis was used to construct non-parametric survival curves based on patients’

age and sex. The log-rank (Mantel-Cox) test and the Kruskal-Wallis test were used for multiple

comparisons between sub-groups.

Parametric survival analysis

Various classical distributions were fitted to the observed ventilation time to identify the prob-

ability distribution function (pdf) with the best fit. To assess goodness-of-fit, P-P plots, as well

as three regularly used goodness-of-fit tests: Kolmogorov-Smirnov, Anderson-Darling, and Chi-

Squared were used. Appropriate maximum likelihood estimates of the parameters were obtained

with their respective 95% confidence limits based on the probability distribution function. Para-

metric Accelerated Failure Time (AFT) modelling was done by randomly dividing the dataset into

a “training” and a “testing” set (a training set with 70% of the observations and a testing set with

30%). The training set was used for modelling, and the test set was used for model performance

prediction. External data for different years gathered from the London Health Science Center

(LHSC) were used to validate the model.

All covariates included in the analysis were obtained on arrival and are included based on their

availability, clinical relevance, statistical significance, and possible association with ICU LOS or

mortality in the literature. This study followed the variable selection approach as outlined in

Collett [2015]. This approach fits a univariate model for each covariate, identifying significant

predictors after which a multivariate model was fitted with all significant univariate predictors,

eliminating insignificant variables using backwards selection. Graphical methods, the likelihood

ratio, AIC and BIC criteria were used to compare and select the AFT models (Exponential,

Weibull, Log-normal, and Log-logistic). The validity of the model was ascertained using external

data. All tests presented are two-sided, and a p-value < 0.05 is considered significant.

Predictive performance

To assess predictive performance, the best fitted model was applied to the test set and con-

sidered the following metrics were considered: Mean Squared Error (MSE), Mean Absolute Error

(MAE), Percent bias (PBIAS), and Nash-Sutcliffe efficiency (NES). These metrics were calculated

7

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283535doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283535
http://creativecommons.org/licenses/by-nd/4.0/


as follows.

MSE =
1

NT

NT∑
i=1

(yi − ŷi)2,

MAE =
1

NT

NT∑
i=1

|yi − ŷi|,

PBIAS =

∑NT

i=1(yi − ŷi)∑NT

i=1 yi
× 100, and

NES = 1−
∑NT

i=1(yi − ŷi)2∑NT

i=1(yi − ȳi)2
,

where NT is the total number of observations in the test set and, yi and ŷi are respectively the

observed and predicted time on ventilation for the ith observation in the test set.

Statistical software

Analyses were performed using R version 4.1.2. Statistical modelling used the glmnet, flexsurv,

SurvRegCensCov, survival, and surminer packages.

3 Results

3.1 Descriptive Analysis

Table 3 summarizes the number and proportion of patients that received each of the various

treatments at ICU arrival. The most common were basic monitoring (99.93 % of patients), an

arterial line (81.76 %), and a central venous line (72.95 %). Variation in treatment patterns

showed that 98.34% had no intracranial pressure monitoring, 97.13% had no dialysis, 99.73% had

no extracorporeal membrane oxygen, 98.59% had no intra aortic balloon pump 67.38 % had no

other interventions within this unit and 78.15% had no interventions outside this unit.

Figure 3.1 shows a bar plot of the admission sources, admitting diagnosis, referring physi-

cian specialty, and patient category. The admission sources included the ward (5,607, 11.33%),

downstream unit (ie. Level 2 and Level 3 units) (2,971, 6.00%), the emergency department (ED)

(12,507, 25.28%), home (191, 0.39%), hospital outside and within the province(5,210, 10.53%),

the operating room (OR) (22,608, 45.70%), and other sources (373, 0.75%). The other sources in-

cluded complex continuing care facilities, rehabilitation centers, outside the province, and others.
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Table 3: Distribution of treatments IMV patients received

Treatment No Yes

Basic Monitoring 33 (0.06 %) 49,434 (99.93%)

Arterial Line 9,065 ( 18.33%) 40,402 ( 81.67 %)

Central Venous Line 13,383 (27.05 %) 36,084 (72.95%)

Other Interventions Within this Unit 33,331 (67.38 %) 16,136 ( 32.62%)

Interventions Outside this Unit 38,658 (78.15 %) 10,809 (21.85 %)

Dialysis 48,046 ( 97.13 %) 1,421 (2.87 %)

Intracranial Pressure Monitor 48,648 ( 98.34%) 819 ( 1.66%)

Intra Aortic Balloon Pump 48,771 ( 98.59%) 696 ( 1.41%)

Extracorporeal Membrane Oxygen 49,331 ( 99.73%) 136 ( 0.27%)

ICU admitting diagnoses were categorized as Cardiovascular (22,269, 45.00%), Gastrointestinal

(2,920, 5.90%), Neurological(4,652, 9.40), Trauma (1,927, 3.90%), and Other (17699, 35.78). Other

diagnoses included patients with the following categories of disease: Genitourinary, Metabolic,

Endocrine, Musculoskeletal, Skin, Oncology, Haematology and Others. Referring physician spe-

cialties were grouped into medical (16930, 34.22%), respiratory (1,364, 2.76%), surgical (21,848,

44.17%), and other (9,325, 18.85%). Other referring physician specialist includes Dermatology,

Psychiatry, Oncology, Haematology, Ophthalmology, Orthopaedic, and others.

[!h] [ICU admission source (other source includes Complex Continuing Care Facility - Within

and Outside, Inpatient - Rehab, Outside province, Rehab Facility - Within and Outside, and

Other - Outside and Within))]

DUnit

ED

Home
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OR
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Percentage
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Metabolic, Endocrine, Musculoskeletal, Skin, Oncology / Haematology and Other.)]
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Table 6 provides descriptive statistics for the continuous variables., and Table 5 provides de-

scriptive statistics for ventilation time under various patient categories. On average, ventilation

time was 4.57 (sd = 6.57) days, the NEMS score was 29.09 (sd = 6.85), and the MODS score

was 5.57 (sd = 3). Table 14 tabulates the baseline characteristics of the number of events under

each category and the results of the Log-rank test, which compares the differences in ventilation

times between the independent groups on each covariate. For ease of readability, the results of

the Log-rank test are shown in Table 7.

10

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283535doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283535
http://creativecommons.org/licenses/by-nd/4.0/


3.2 Non-parametric Analysis

As a preliminary exploration, a non-parametric analysis was conducted of the entire dataset using

the Kaplan-Meier method. Figure 3.2 shows the Kaplan-Meier (KM) curve of ICU ventilation

time. The KM curve shows the unconditional probability that a subject will experience the event

beyond time t but does not indicate the proportion of subjects surviving to time t. In the present

case, survival means becoming independent of ventilation by time t.
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Table 4 tabulates selected KM survival probabilities at specific times and their associated

confidence intervals. From Figure 3.2 and Table 4, the probability that a person will remain

connected to the IMV longer than one day is approximately 0.69. In other words, about 30%

get disconnected from mechanical ventilation after the first day. The probability of patients

remaining connected beyond 10 days is about 0.112, indicating that about 90% of ICU patients

get disconnected after ten days of IMV.

The patients included 18,185 (36.76 %) females with a mean ventilation time of 4.84 (sd =

6.82) and 31,282 (63.23%) males with a mean ventilation time of 4.41 (sd = 6.41). There was a

significant difference between the two sexes (χ2 p-value < 2e− 16). When investigating age, 4,355

patients (8.80%) aged 18 to 39 had a mean ventilation time of 4.91 (sd = 6.47), 38,009 (76.84%)

patients aged 40 to 79 had a mean ventilation time of 4.54 (sd = 6.61), and 7,103 patients aged

80 and above had a mean ventilation time of 4.51 (sd = 6.36). There was a significant difference

found between the age groups (χ2 p-value = 3e − 08). The admission sources with the highest

ventilation times included Other 373 (0.75%), with a mean ventilation time of 7.20 (sd = 8.52),

and downstream 2,971 (6.00%), with a mean ventilation time of 6.93 (sd = 8.16). There was a
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Table 4: Selected survival estimates from the K-M curve.

t n.risk n.event n.censor surv (95% CI)

1 49, 467 15, 125 646 0.694 (0.698, 0.690)

7 9, 100 1, 270 28 0.167 (0.170, 0.163)

10 5, 879 698 20 0.112 (0.115, 0.109)

30 791 68 2 0.016 (0.018, 0.015)

50 119 12 0 0.003 (0.003, 0.002)

55 56 12 0 0.001 (0.001, 0.001)

n.risk, n.event, n.censor, and surv are number at risk,

number of events, number censored,

and Survival probability at time t.

significant difference found between the sources of admission (χ2 p-value < 2e − 16). There was

also a significant difference found between the diagnosis, referring physician, and patient category

groups with a χ2 p-value < 2e− 16. Patients with trauma (1,927 (3.90%)) had a mean ventilation

time of 6.34 (sd = 7.13)) which was the longest average ventilation time and Cardiovascular

patients (22269 (45.02%) had a mean ventilation time of 2.87 (sd = 4.77), which was the shortest.

The MODS and NEMS scores were both significantly associated with ventilation time (χ2 p-value

= 3e − 08). Pre-ICU hospital stay was significantly associated with ventilation time (χ2 p-value

< 2e − 16). The MODS and NEMS scores were both significantly associated with ventilation

time (χ2 p-value < 2e− 16). Scheduled admission and surgery were both significantly associated

with ventilation time (χ2 p-value < 2e− 16). Among the recorded treatments received at arrival,

only basic monitoring had no significant association with ventilation time (χ2 p-value =0.8). This

can be explained by the fact that most of the patients (99.93%) received basic monitoring. This

covariate was removed in further analysis.

In Figures 3.2 and 3.2, the log-rank test of the difference shown in Table 7 is confirmed with

the distinction in the ventilation time of the various categories for each covariate.

Table 5: Descriptive statistics of ventilation time under various patient categories.
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Variables Count Mean sd Skew Kurt Q0.25 Q0.5 Q0.75

Vent days 49467 4.57 6.57 3.65 17.02 1 2 5

(Sex) Female 18185 4.84 6.82 3.59 16.35 1 2 5

Male 31282 4.41 6.41 3.69 17.39 1 2 4

(NEMS) 0− 22 629 4.79 7.21 3.75 17.09 1 2 5

23− 29 11823 4.03 6.06 4.05 21.11 1 2 4

≥ 30 37015 4.74 6.70 3.55 16.00 1 2 5

(Age group) 0− 39 4355 4.91 6.47 3.30 14.18 2 2 5

40− 79 38009 4.54 6.61 3.67 17.06 1 2 5

≥ 80 7103 4.51 6.36 3.77 18.65 1 2 5

(MODS) 1 4389 2.80 4.66 5.44 39.28 1 1 2

1− 4 14185 4.02 6.09 4.22 23.00 1 2 4

5− 8 16070 4.89 6.75 3.40 14.63 1 2 5

9− 12 6861 5.94 7.73 3.00 11.10 2 3 7

≥ 13 7962 4.71 6.52 3.55 16.28 1 2 5

Source Downstream 2971 6.93 8.16 2.57 8.03 2 4 8

ED 12507 5.50 6.78 3.24 13.79 2 3 6

Home 191 5.75 6.07 2.06 4.38 2 3 7

Hospital 5210 6.81 8.08 2.83 9.86 2 4 8

OR 22608 2.68 4.36 5.91 46.25 1 2 2

Other 373 7.20 8.52 2.65 8.15 2 4 9

Ward 5607 6.54 8.40 2.80 9.32 2 3 8

Diagnosis Cardiovascular 22269 2.87 4.77 5.61 41.35 1 2 2

Gastrointestinal2920 4.76 5.97 3.30 13.99 2 3 5

Neurological 4652 5.47 6.61 2.96 11.55 2 3 6

Other 17699 6.24 7.88 2.98 10.80 2 3 7

Trauma 1927 6.34 7.13 2.54 8.77 2 4 8

Referring Medical 16930 5.91 7.33 3.09 11.94 2 3 7

Other 9325 5.59 7.24 3.18 12.86 2 3 6

Respirology 1364 7.94 9.72 2.66 8.00 2 4 9

13

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283535doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283535
http://creativecommons.org/licenses/by-nd/4.0/


Surgical 21848 2.89 4.74 5.22 35.65 1 2 2

Pat Category Medical 22811 6.10 7.60 3.05 11.58 2 3 7

Surgical 26656 3.26 5.19 4.68 28.73 1 2 3

Table 6: Descriptive statistics of continuous variable

Variables Count Mean sd Skew Kurt Q0.25 Q0.5 Q0.75

Day 1 NEMS 49467 35.22 6.69 0.36 -0.36 28 34 39

0− 22 629 20.93 0.61 -11.6 153.35 21 21 21

23− 29 11823 27.01 0.19 -0.41 64.71 27 27 27

≥ 30 37015 38.08 5.16 0.86 0.07 34 38 40

Age 49467 63.84 15.88 -0.70 0.20 55.25 66.05 75.29

18− 39 4355 29.19 5.95 -0.10 -1.19 24.14 29.47 34.38

40− 79 38009 63.85 10.00 -0.42 -0.64 56.75 65.00 71.96

≥ 80 7103 85.02 3.79 0.93 0.57 81.95 84.23 87.32

Pre ICU LOS 49467 9.05 102.61 25.76 845.44 0 0 2

≤ 1 35911 0.19 0.40 1.54 0.36 0 0 0

2− 7 7661 3.85 1.71 0.48 -1.07 2 4 5

> 7 5895 69.78 290.10 8.93 100.69 10 15 29

MODS Score 49467 5.57 3 0.42 0.24 4 5 7

1 4389 0.58 0.49 -0.33 -1.89 0 1 1

1− 4 14185 3.23 0.81 -0.43 -1.33 3 3 4

5− 8 16070 6.87 0.80 0.23 -1.41 6 7 8

9− 12 6861 9.95 1.01 0.67 -0.75 9 10 11

≥ 13 7962 6.06 2.95 2.51 4.62 5 5 5
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Table 7: Log-rank test of equality between groups in covariates

Covariate χ2 df p-value

Pre ICU LOS 262 2 <2e-16

Age group 35 2 3e-08

Sex 77.8 1 <2e-16

ICU Site 3350 65 <2e-16

Admission source 6875 6 <2e-16

Diagnosis 5213 4 <2e-16

Referring physician 5171 3 <2e-16

Patient Category 3929 1 <2e-16

MODS 1107 4 <2e-16

NEMS 157 2 <2e-16

Scheduled admission 9579 1 <2e-16

Scheduled surgery 8809 1 <2e-16

Basic Monitoring 0.1 1 0.8

Central Venous Line 53.9 1 2e-13

Arterial Line 79.4 1 <2e-16

Intracranial Pressure Monitor 227 1 <2e-16

Dialysis. 194 1 <2e-16

Extra corporeal Membrane Oxygen 79.7 1 <2e-16

Intra Aortic Balloon Pump 22.5 1 2e-06

Other Interventions Within this Unit 878 1 <2e-16

Interventions Outside this Unit 554 1 <2e-16
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3.3 Probabilistic Characterization of ICU Ventilation Time

This study included a parametric analysis of ventilation time to determine the distribution with

the best fit to the data. Figure 3.3(a) shows a plot of the negative log of the estimated survivor

function against time. It shows approximately linear curve trends with minor deviation at the

extremes. This suggests that the exponential distribution might be a good candidate. Figure

3.3(b) shows the plot of the log of the negative log of the estimated survivor function against log

time. It shows an approximately linear trend and suggests that the Weibull distribution should be

considered a good candidate. Figure 3.3(c) shows the plot of the cumulative probabilities versus

log time. A concave trend can be observed with a faulty linear fit, suggesting that the log-normal

distribution should be investigated further. Figure 3.3(d) shows the log of the survival probability

versus the log of time in black, with a fitted linear model. It shows that the linear trend does not

fit appropriately. This implies that the logistic model is not a good fit for the ventilation data.
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Figure 3.3(a) shows a histogram of the data overlaid with the density plot of the fitted distribu-

tion and Figure 3.3(b) contains the PP plot. Table 8 tabulates the criteria (Kolmogorov-Smirnov

18

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283535doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283535
http://creativecommons.org/licenses/by-nd/4.0/


score (K-S), Cramer-von Mises score (C-M)), Anderson-Darling score (A-D), log-likelihood (log-l),

the AIC, and the BIC) of the fitted distributions. Based on the criteria, the log-normal probability

distribution function was identified as the best distribution for the First-day ventilation time. The

maximum likelihood estimates of the shape and scale parameters and their standard deviations

are given as µ̂ = 0.98(0.004), and σ̂ = 0.94(0.003) respectively. The actual form of the probability

density function is:

f(t; µ̂, σ̂) =
1

tσ̂
√

2π
exp

(
− 1

2σ̂2
(log(t)− µ)2

)
, t > 0. (1)

[!h] [Histogram with fitted pdfs.]

Histogram and theoretical densities

data

D
e

n
s
it
y

0 10 20 30 40 50 60

0
.0

0
0

.0
5

0
.1

0
0

.1
5

0
.2

0
0

.2
5

exp

Weibull

gamma

lognormal

gumbel

[P-P plot of

19

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2022. ; https://doi.org/10.1101/2022.12.15.22283535doi: medRxiv preprint 

https://doi.org/10.1101/2022.12.15.22283535
http://creativecommons.org/licenses/by-nd/4.0/


fitted distribution functions.]

0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

P−P plot

Theoretical probabilities

E
m

p
ir

ic
a

l 
p

ro
b

a
b

ili
ti
e

s

exp

Weibull

gamma

lognormal

gumbel

Table 8: MLE Estimates of ventilation time of all First-day ventilated patients.

Dist Estimate (sd) K-S C-M A-D log-l AIC BIC

Exp λ̂ =0.22 (0.00098) 0.22 521 2929 -124637 249275.3 249284

Weibull k̂ =0.94 0.003, λ̂ =4.40 (0.02) 0.22 462 2710 -124409 248822 248840

Gamma σ̂ =1.06 (0.01), λ̂= 0.23 (0.002) 0.23 555 3063 -124588 249179 249197

Lognorm µ̂ = 0.98 (0.004), σ̂ =0.94 (0.003) 0.19 299 1917 -115538 231080 231098

Gumbel α̂ =2.46 (0.01), σ̂ =2.78 (0.01) 0.26 739 4292 -137551 275107 275124

Dist (distribution), sd (standard deviation, KS (Kolmogorov-Smirnov), C-M (Cramer-von Mises), and A-D

(Anderson-Darling)
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3.4 Cox Proportional Hazard Model

This section describes the fitting of the Cox-proportional hazard (PH) model to check the pro-

portional hazard assumption. The Cox PH model makes no assumption about the distribution of

the event time, but it assumes that the hazard ratio is constant over time. This assumption was

tested for each covariate and globally. The results of the goodness of fit test of the proportional

hazard assumption, which are tabulated in Table 15 in the Appendix, give a significant p-value

< 2e − 16. Therefore the null hypothesis that the proportionality assumption holds is rejected

globally, indicating a lack of proportionality for the hazard function. There is a significant devia-

tion from the proportional hazard assumption for all the variables (p-value < 0.05). By inspecting

Figure s 3.2 and 3.2, the lines for male and female patients as well as the various age groups were

not parallel, confirming that the proportional hazard assumption is not reasonable in this case

involving of stratified data. The PH model is not appropriate for these data and the ventilation

time was therefore modelled using the AFT model.

3.5 Accelerated Failure Time Model

3.5.1 Model Selection

To model the ventilation time, Exponential, Weibull, Log-logistic, and Lognormal AFT models

were fitted to the data. In each case, the model was fitted to all the covariates without Basic

monitoring on arrival. From Table 9, each model was assessed using the Akaike Information

Criterion (AIC), the Bayesian Information Criterion (BIC), and the Log-Likelihood model from

the selection process. The Log-logistic model (log-likelihood = -73,400.5, AIC = 147,067, and BIC

= 148,191) was a better fit, as it is the model with the smallest criteria. The fitted log-logistic

AFT model on all covariates is tabulated in Table 16 in the Appendix.

The goodness of fit of each model was assessed using the distribution of the Cox-Snell residuals.

To do this, we compared the survival estimates of each parametric model were compared with the

KM estimates, by plotting the survival probability against the Cox-Snell residuals. The survival

function should closely follow the KM estimate. From Figure 3.5.1, the survival function for the

Log-logistic model in Figure 3.5.1(d) is superimposed on the KM curve, clearly showing that this

model approximates the empirical survival better than the other models.
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Table 9: Performance comparison of AFT models on the regional data

Model log − lik log − lik2 χ2 AIC BIC

Exponential -79951 -85627 11352 160165 161281

Weibull -79604 -85476 11745 159474 160598

Log-Normal -73852 -79452 11201 147970 149094

Log-logistics -73401 -79744 12687 147067 148191

log − lik (log-likelihood), log − lik2 (log-likelihood with intercept only)
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3.5.2 Variable Selection

Variable selection followed the approach outlined in the methods section. Using the backward

selection procedure, patient category (p-value > 0.74), dialysis (p-value > 0.57), interventions

outside (p-value > 0.10) and gender (p-value > 0.65) were eliminated, resulting in the final model

presented in Table 10.

Analysis with the log-logistic AFT model revealed that the model containing the explanatory

variables significantly improved the predictive ability of the model with the intercept only, because

the likelihood ratio gave a p-value < 2e− 16. The overall effect of each of the retained covariates

on survival time revealed that all had a significant independent effect on IMV time (all likelihood

ratio tests resulted in a p-value < 10e− 5). Table 17 tabulates the likelihood ratio test results of

variable selection criteria for models fitted to the data using backward elimination.

Table 10: Log-logistic AFT model of the training set

Covariate coef L95% U95% e(coef) L95% U95%

shape 2.26 2.24 2.28 - - -

scale 1.12 0.98 1.29 - - -

ICU Site Code

3970 (reference)

3972 0.30 0.16 0.45 1.36 1.17 1.57

3985 0.38 0.27 0.49 1.46 1.31 1.62

3986 0.47 0.34 0.60 1.60 1.40 1.82

3987 0.19 0.05 0.33 1.21 1.05 1.39

3996 0.54 0.38 0.70 1.71 1.46 2.01

4001 0.19 0.08 0.30 1.21 1.08 1.34

4044 0.33 0.17 0.49 1.39 1.19 1.63

4045 0.24 0.11 0.36 1.27 1.12 1.44

4052 0.33 0.21 0.45 1.39 1.23 1.57

4054 0.42 0.29 0.54 1.52 1.34 1.71

4056 0.46 0.32 0.59 1.58 1.38 1.80

4057 0.10 -0.13 0.32 1.10 0.88 1.38
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4063 0.02 -0.09 0.13 1.02 0.91 1.14

4071 0.07 -0.25 0.40 1.07 0.78 1.49

4073 0.29 0.17 0.42 1.34 1.18 1.52

4076 0.58 0.36 0.79 1.78 1.44 2.20

4079 0.42 0.30 0.53 1.52 1.35 1.70

4085 0.39 0.27 0.51 1.47 1.31 1.66

4089 0.43 0.16 0.69 1.53 1.18 2.00

4090 0.26 0.15 0.37 1.29 1.16 1.44

4093 -0.28 -0.62 0.07 0.76 0.54 1.07

4097 0.39 0.24 0.54 1.48 1.27 1.72

4103 0.17 0.01 0.33 1.19 1.01 1.39

4107 0.47 0.34 0.60 1.60 1.40 1.82

4108 0.70 0.50 0.90 2.02 1.65 2.46

4109 0.25 0.09 0.41 1.28 1.09 1.51

4110 0.10 -0.03 0.23 1.11 0.97 1.26

4123 0.30 0.13 0.47 1.35 1.13 1.60

4130 0.37 0.23 0.51 1.45 1.26 1.66

4131 0.02 -0.16 0.19 1.02 0.85 1.21

4138 0.62 0.49 0.76 1.87 1.63 2.13

4144 0.46 0.31 0.61 1.58 1.36 1.85

4168 0.21 0.02 0.40 1.23 1.02 1.50

4171 0.42 0.30 0.55 1.53 1.34 1.73

4180 0.16 0.05 0.27 1.17 1.05 1.31

4186 0.29 0.03 0.55 1.33 1.03 1.73

4192 0.50 0.36 0.64 1.65 1.43 1.91

4193 0.32 0.06 0.59 1.38 1.06 1.81

4197 0.06 -0.31 0.42 1.06 0.73 1.53

4199 -0.12 -0.31 0.06 0.88 0.74 1.06

4205 0.46 0.35 0.57 1.58 1.42 1.76

4209 0.14 0.01 0.28 1.15 1.01 1.32
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4231 0.20 0.09 0.30 1.22 1.10 1.35

4233 0.26 0.14 0.39 1.30 1.15 1.48

4235 0.31 0.16 0.46 1.36 1.17 1.59

4238 0.34 0.19 0.50 1.41 1.21 1.64

4241 0.21 -0.05 0.48 1.24 0.95 1.62

4245 0.27 0.13 0.41 1.31 1.14 1.51

4260 0.25 0.04 0.46 1.29 1.04 1.59

4265 0.57 0.46 0.67 1.76 1.59 1.96

4266 0.54 0.42 0.67 1.72 1.52 1.95

4285 0.18 0.05 0.31 1.20 1.06 1.36

4303 0.48 0.37 0.59 1.61 1.44 1.80

4310 0.27 0.17 0.38 1.31 1.18 1.46

4311 0.25 0.14 0.36 1.28 1.14 1.43

4315 0.38 0.25 0.51 1.46 1.28 1.66

4414 0.36 0.21 0.51 1.43 1.24 1.66

4471 0.27 0.10 0.45 1.32 1.11 1.56

4774 0.35 0.22 0.47 1.41 1.25 1.60

4799 0.46 0.33 0.59 1.59 1.39 1.81

4832 0.32 0.20 0.43 1.37 1.23 1.54

4837 0.43 0.29 0.57 1.53 1.33 1.76

4839 0.72 0.57 0.87 2.05 1.77 2.38

4841 0.44 0.27 0.60 1.55 1.31 1.83

4845 0.45 0.30 0.61 1.57 1.34 1.84

Admission Source

Down stream units (reference)

ED -0.13 -0.17 -0.09 0.88 0.84 0.92

Home 0.13 -0.01 0.27 1.14 0.99 1.31

Hospital 0.11 0.06 0.16 1.12 1.06 1.17

OR -0.31 -0.36 -0.27 0.73 0.70 0.77

Other 0.16 0.05 0.27 1.17 1.05 1.31
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Ward -0.13 -0.18 -0.09 0.88 0.84 0.92

Diagnosis

Cardiovasclar (reference)

Gastrointestinal 0.28 0.24 0.32 1.33 1.27 1.38

Neurological 0.31 0.28 0.35 1.37 1.32 1.42

Other 0.40 0.37 0.43 1.49 1.45 1.53

Trauma 0.53 0.47 0.58 1.70 1.61 1.79

Scheduled ICU Admission

No (reference)

Yes -0.22 -0.27 -0.17 0.80 0.76 0.84

Is Scheduled Surgery

No (reference)

Yes -0.16 -0.20 -0.11 0.86 0.81 0.90

Referring physician specialty

Medical (reference)

Other -0.01 -0.04 0.02 0.99 0.96 1.02

Respirology 0.15 0.08 0.21 1.16 1.08 1.23

Surgical -0.08 -0.11 -0.04 0.93 0.89 0.96

Central venous line

No (reference)

Yes 0.17 0.14 0.19 1.18 1.15 1.21

Arterial line

No (reference)

Yes 0.19 0.16 0.21 1.21 1.18 1.24

Intra-cranial pressure monitor

No (reference)

Yes 0.56 0.48 0.63 1.74 1.62 1.88

Extracorporeal membrane oxygen

No (reference)

Yes 0.66 0.48 0.84 1.94 1.62 2.32
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Intra aortic balloon pump

No (reference)

Yes 0.34 0.26 0.41 1.40 1.30 1.51

Other Interventions Within this Unit

No (reference)

Yes 0.07 0.05 0.09 1.07 1.05 1.10

Age group

18 - 39 (reference)

40 - 79 0.12 0.09 0.15 1.12 1.09 1.16

≥ 80 0.05 0.01 0.09 1.05 1.01 1.09

Pre ICU LOS

≤ 1 days (reference)

2− 71 days 0.04 0.01 0.06 1.04 1.01 1.07

≥ 7 days 0.15 0.12 0.18 1.16 1.12 1.19

MODS

1 (reference)

1-4 0.10 0.07 0.13 1.11 1.07 1.14

5 - 8 0.22 0.19 0.25 1.25 1.21 1.29

9 - 12 0.27 0.23 0.31 1.31 1.26 1.36

≥ 13 0.17 0.14 0.21 1.19 1.15 1.23

NEMS

0-22 (reference)

23 - 29 -0.01 -0.09 0.06 0.99 0.92 1.07

≥ 30 0.04 -0.03 0.12 1.04 0.97 1.13

3.5.3 Model predictive performance

To assess the predictive performance of the model, a test dataset was used to predict the ventilation

time using the log-logistic model. The residuals of the test data were computed and compared

with those of the training data. Table 11 presents a comparison of predictive performance on the
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training and testing data. The predicted average ventilation duration was 2.96 days for the test

data compared with 2.94 days for the training data. There were insignificant losses of performance

from the prediction of the training data to that of the test data in the quantiles (1.60, 2.75, 3.81

days to 1.59, 2.77, 3.85 days), in the MSE (from 46.81 to 60.21), in the MAE (from 2.95 to 3.00),

in the PBIAS (from 0.36 to 0.35), and in the NES (from 1.090 to 1.380).

Table 11: Comparison of prediction statistics from the test and training datasets.

Statistics N (%) Mean SD Q0.25 Q0.5 Q0.75 MSE MAE PBIAS NES

Training 34,626 (70%) 2.94 2.83 1.59 2.77 3.85 46.81 2.95 0.36 1.09

Test 14,840 (30%) 2.96 4.55 1.60 2.75 3.81 60.21 3.00 0.35 1.38

Figure 3.5.3 shows the survival functions of the training (in blue) and testing (in black) residuals

superimposed on the baseline KM survival. The survival curves of the training and testing data

are similar to the baseline KM survival. The performance of the training model is revealed on the

test data with an insignificant difference and a narrow gap. This indicates that the model has a

good ability to predict patients’ ventilation duration using First-day observations.
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3.5.4 Model Validation

To validate the model predictions, a new dataset from the London Health Sciences Center (LHSC),

with data gathered from January 2019 to May 2021 was used. The first step was to calibrate the
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data. Calibration checks the agreement between observed and predicted outcomes. To assess the

need for model calibration, simple linear regression and scatter plot of observed versus predicted

outcomes was performed. Perfect predictions would yield a slope of 1 with an intercept of 0, which

is the line of best fit that should divide the first quadrant into two equal parts. A failure could

inform the need for a model that considers shrinkage. The predictive performance compares the

estimated Kaplan-Meier survival curve of the predicted residual to the expected empirical survival

curve. This was done on three subgroups: COVID-19 patients, Non-COVID-19 patients, and the

whole LHSC dataset. Figure 3.5.4(a) shows the residual of the survival obtained from the LHSC

data from January 2020 to May 2021, including all patients that received IMV on arrival.
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2019 to 2021 COVID-19 patients’ data]
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In Figure 3.5.4(a), the survival curve of the AFT model poorly approximates the expected

empirical survival, there appears to be a major departure between the two. This could have

been due to a medical condition that was not present in the previous time interval, in particular,

COVID-19. To confirm this assumption about the effect of COVID, the data were divided into

two subsets: patients with COVID-19, and patients without COVID-19.

Interestingly, in Figure 3.5.4(b), the survival function closely follows the KM estimate, sug-

gesting a good fit for the non COVID patients. However, the survival plot of the residual from

the prediction of the COVID patients in Figure 3.5.4(c) performed poorly. This is confirmed in

Table 12, where the model’s predictive performance on the three sub-datasets (Covid patients,

Non-COVID patients, and Mixed data) is numerically compared.

Table 12: Model validation performance on three sub-data set.

Statistics n mean sd Q0.25 Q0.5 Q0.75 MSE MAE PBIAS NES

Covid Patients 162 4.7 1.11 3.96 4.86 5.28 201.9 10.16 0.67 1.84

Non-Covid patients 3594 3.52 1.19 2.74 3.39 4.08 49.42 3.60 0.37 1.05

All patients 3756 3.57 1.21 2.77 3.43 4.15 56.00 3.89 0.40 1.06

4 Discussion

Accurate prediction of ICU resources helps guide therapeutic decision-making, resource allocation,

and patient flow management. The number of days on IMV is a major concern of critical care

management and costs [Dasta et al., 2005, Bice and Carson, 2019]. However, IMV duration
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prediction models in the literature were mainly based on the conventional multivariate regression

model and logistics regression but did not incorporate censored observations and were based on

classifying patients’ ventilation time as either short or long duration [Troche and Moine, 1997,

Dimopoulou et al., 2003, Abujaber et al., 2020, Figueroa-Casas et al., 2015, Trouillet et al., 2009,

Aung et al., 2018]. A comprehensive survival analysis was performed to predict and determine

predictors of ventilation time using the CCIS Ontario dataset. Information obtained at arrival is

an important component of forecasting patient ventilator days.

The Log rank test on the KM curves of the covariates available on the first-day of ventilation

show that only basic monitoring was insignificant (p-value = 0.80). This is likely because only a

very small number did not receive the basic monitoring treatment and therefore do not have the

power to rule out a real difference and avoid a type two error (false negative).

The covariate’s effect in the AFT model is to accelerate or decelerate the event time, which

in this case is the invasive ventilation time. The results of the association are shown in Table

10. A convenient way to understand the coefficients better is through the interpretation of the

time ratio (TR), also called the acceleration factor. The TR for a given covariate is the (natural)

exponent of the estimated parameter coefficient (i.e, exp(β)). A positive coefficient corresponds

to a TR greater than 1, whereas a negative coefficient corresponds to a time ratio less than 1.

Correspondingly, a TR greater than one implies that the covariate increases the time to the event.

An acceleration factor equal to 1 corresponds to no effect on the time to the event.

A positive coefficient was observed for most of the ICUs (SiteCode), implying that for most

ICUs, the time to event was higher than average. In relative terms, the ICU that a patient visited

was a significant predictor of the patient’s ventilation time. Different ICUs had differing TR.

Compared to the ICU with code 3970 (used as a reference), ICUs with site codes 4057, 4063, 4071,

4093, 4110, 4131, 4197, 4199, and 4241 (9 out of 65) had an insignificant coefficient. In other

words, their acceleration factor’s confidence interval covers 1 and is not significantly different from

that of 3970. Moreover, the 56 remaining ICUs had significantly higher TR. Attending one of

those ICUs increased the time that a patient spent using a ventilator. This large difference in

ventilation time in the ICU may be attributed to the practices and locations of the various ICUs as

outlined in Burns et al. [2021]. The implication of this for ICU management is that ICU managers

should learn best practices from the ICUs that seem to have a lower ventilation time.
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Comparing patients admitted to the ICU from the downward stream (SDU and Level 3) to

those patients admitted from the house (TR = 1.14, CI = (0.99,1.31)), there was no significant

difference. However, patients from the ED (TR = 0.88, CI = (0.84 0.92)), OR (TR = 0.73, CI

= (0.70, 0.77)), and ward (TR = 0.88, CI =(0.84, 0.92)) had lower odds of longer ventilation

time, whereas patients admitted from hospitals (TR = 1.12, CI = (1.06, 1.17)) and other sources

(TR = 1.17, CI = (1.05,1.31)) had higher odds of longer ventilation time within the ICU. Those

admitted with cardiovascular, cardiac, vascular diagnoses had experienced longer ventilation time

as compared to those with other etiologies. Patients with gastrointestinal (TR = 1.33 , CI = (1.27

1.38)), Neurological (TR = 1.37 , CI = (1.32 1.42)), Trauma (TR = 1.70 , CI = (1.61 1.79)), and

Other diagnoses (TR = 1.49 , CI = (1.45 1.53)) had higher odds of staying on the ventilator longer

than cardiovascular patients. This could be explained by the findings of Kao et al. [2016] using

the same data where patients with cardiovascular diagnoses had higher mortality than those with

other etiologies (Priestap et al. [2020]). Patients’ admission diagnosis types were also significant

factors affecting ventilation time. Surgical patients (TR = 0.770, CI = (0.702, 0.843)) had higher

odds of leaving the ventilator earlier than medical patients.

Scheduled ICU admission (TR = 0.827, CI = (0.784, 0.873)) had a shortening effect on ventila-

tion time. This implies that scheduled admission is a significant predictor of patients’ ventilation

time. Scheduled patients have 17.3% higher odds for shorter ventilation time compared to non-

scheduled patients. This may be attributed to the fact that generally, scheduled patients are

taking medication or receiving treatment that supports their fast and safe transit through the

ventilation, and are therefore less likely to remain connected to the ventilator for long periods

than non-scheduled patients. Moreover, compared to non-scheduled surgery patients, patients

with scheduled surgery (TR = 0.823, CI = (0.783, 0.864)) had a 17.7% higher probability of

shorter ventilation time. Referring Physician services such as Cardiology (TR = 1.100, CI =

(0.989, 1.220)), Ophthalmology (AF = 1.39, CI = (0.726, 2.64)), and Psychiatry (AF = 1.01, CI

= (0.639,1.610)) had non-significant effects and acted as an average baseline. However, the rest of

the referring physicians’ services had a significantly higher TR, with none that were significantly

lower. For example, patients from Trauma (TR = 2.28, CI = (2.12, 2.45)) and Paediatric (TR =

10.100, CI = (2,910, 34.900)) had the longest time on a ventilator.

Unequivocally, treatments received on arrival had a significant effect on ventilation time. The
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likelihood of longer ventilation was much higher for patients who received a central venous line

(CVL) (TR = 1.18, CI = (1.15, 1.21)), arterial line (AL) (TR = 1.21, CI = (1.18, 1.24)), intracra-

nial pressure monitor (IPM) (TR = 1.74, CI =(1.62, 1.88)), extracorporeal membrane oxygen

(EMO) (TR = 1.94, CI = (1.62, 2.32)), Intra Aortic Balloon Pump (IABP) (TR = 1.40, CI =

(1.30, 1.51)), and other intervention within the ICU (OIWU) (TR = 1.07, CI =(1.05, 1.10)). These

treatments acted to decelerate the event. Patients who received these interventions in the ICU on

arrival were connected for a longer time than compared to those who did not. These treatments

are significant for predicting a patient’s ventilation time.

The odds of longer ventilation time are much higher for adults and seniors than for younger

people. Patients aged 40–79 (TR = 1.12, CI =(1.09, 1.16)) and those ≥ 80 years old (TR = 1.05,

CI = (1.01, 1.09)) spent longer time on the ventilator than patients aged ≤ 39. This confirms the

results reported by Piotto et al. [2012] and Lei et al. [2009] who showed that advanced age (more

than 60 years) was a significant predictor for IMV. However, this study found that the patient’s sex

was not a significant predictor. Longer pre-ICU LOS was associated with longer ventilation time.

Specifically, patients who spent more than one day but less than seven in the hospital post-ICU

(TR = 1.04, CI = (1.01, 1.07)), and those who spend more than a week post-ICU admission (TR

= 1.16, CI =(1.12, 1.19)) are more likely to experience the event later than those who spent less

than one-day post ICU admission. Higher First-day scores in MODS corresponded to increasing

time to event (MODS = (1-4), TR = 1.11, CI = ( 1.07 1.14)) (MODS = (5 - 8), TR = 1.25, CI =

( 1.21 1.29)), (MODS = (9 - 13), TR = 1.31 , CI = (1.26 1.36)), and (MODS ≥ 13, TR = 1.19,

CI = ( 1.15 1.23)). Patients with high MODS scores upon arrival were at a higher risk of longer

ventilation connection times than those with low scores.

he First-day NEMS score however had a weak association with ventilation time (NEMS =

(0-22), TR = 0.99 , CI = (0.92 1.07)), (NEMS ≥ 30, TR = 1.04 , CI = (0.97 1.13)). In the review

by Ghauri et al. [2019], results based on logistic regression models indicated no significant effects

for the Acute Physiology and Chronic Health Evaluation (APACHE II) on the prediction IMV

time of ICU patients. Although one would expect NEMS to be a significant predictor because

of the weight of the respirator component, the results show the opposite, that it is not closely

associated. However, the presence of the covariate in the model significantly increased the model’s

predictive performance, as seen in the variable selection.
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5 Conclusion

This study proposed survival analysis to investigate the duration of invasive mechanical ventila-

tion in ICU patients. Both parametric and non-parametric methods were explored. Based on the

AIC and BIC criteria, the log-logistic AFT model was retained as the best predictive model of

ventilation time for each ICU patient. ICU site, admission source, admission diagnosis, scheduled

admission, scheduled surgery, referring physicians specialty, central venous line treatment, arterial

line treatment, intracranial pressure monitor treatment, extra-corporeal membrane oxygen treat-

ment, intra-aortic balloon pump treatment, other interventions, age group, pre ICU LOS, and

MODS score were significant predictors of ICU ventilation time. Even though the data used for

modelling were five years old, they performed well on current non-COVID patients. The predictive

performance of the proposed model showed that it can be used to predict future ventilation time

duration and provide insight into predictors of ventilation time.

This study differs from previous studies in several ways. First, unlike the studies of [Troche and

Moine, 1997, Dimopoulou et al., 2003, Abujaber et al., 2020, Figueroa-Casas et al., 2015, Trouillet

et al., 2009, Aung et al., 2018] this study focused entirely on predicting continuous ventilation time

using information gathered on the first day. In addition, the sample size was larger and external

validation was used instead of bootstraps. This translates into more power to detect predictive

performance.

Nevertheless, this study has several limitations. The analysis included only patients who

entered the ICU over one and one half years. Although the patient characteristics of this subgroup

were not dissimilar to those of the patients in the validation set, it must be noted that the different

study period could have significant, unrecognizable differences due to the appearance of COVID-

19. The heterogeneity of the ICU sites may also have affected the results. Because the models

performed differently for different ICUs, each ICU sites could be considered as a random effect. In

that case, each ICU woull have to have its own model. Nonetheless, with the current model, the

acceleration functions of the various ICUs in Ontario can be compared. The survival model used

in this research could benefit from the automatic variable selection tools of penalized AFT models.

In addition, other machine learning methodologies, such as the random forest and Support vector

machines (SVM) could be used. In addition, the nonlinear tree based machine learning algorithms

implemented in libraries such as XGBoost, scikit-learn, LightGBM, and CatBoost with higher
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accuracy estimation could be used. However, state-of-the-art implementations of such methods

for the AFT models are few.
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Appendix

Table 13: Selected estimates from the K-M curve.

Time n.risk n.event n.censor surv UCI LCI

1 49, 467 15, 125 646 0.694 0.698 0.690

2 33, 696 12, 213 273 0.443 0.447 0.438

3 21, 210 5, 179 129 0.335 0.339 0.330

4 15, 902 2, 979 60 0.272 0.276 0.268

5 12, 863 2, 092 39 0.228 0.231 0.224

6 10, 732 1, 594 38 0.194 0.197 0.190

7 9, 100 1, 270 28 0.167 0.170 0.163

8 7, 802 998 33 0.145 0.149 0.142

9 6, 771 866 26 0.127 0.130 0.124

10 5, 879 698 20 0.112 0.115 0.109

15 3, 249 326 8 0.064 0.066 0.062

20 1, 963 176 0 0.040 0.041 0.038

25 1, 258 110 6 0.026 0.027 0.024

30 791 68 2 0.016 0.018 0.015

35 528 41 2 0.011 0.012 0.010

40 334 26 0 0.007 0.008 0.006

45 201 25 1 0.004 0.005 0.004

50 119 12 0 0.003 0.003 0.002

55 56 12 0 0.001 0.001 0.001

59 10 9 0 0.000 0.000 0.000

n.risk (number at risk at time t), n.event (number of events at time t),

surv (Survival probability), UCI (upper confident interval limit),

LCI (lower confident interval limit).
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Table 14: Description of the Log rank uni-variate test

Covariates Counts events

Pre ICU LOS (χ2 = 262 on 2 df, p <2e-16)

<=1 35911 34925

<8 7661 7430

>7 5895 5705

Age group (χ2 = 35 on 2 df, p= 0.00000003)

18-35 4355 4209

36-64 38009 36914

65+ 7103 6937

Sex (χ2 = 77.8 on 1 df, p <2e-16)

Female 18185 17696

Male 31282 30364

ICU Site (χ2 = 3350 on 65 df, p <2e-16 )

3970 359 349

3972 296 293

3985 2417 2353

3986 530 526

3987 398 387

3996 261 254

4001 2352 2292

4044 291 251

4045 612 604

4052 882 870

4054 786 774

4056 476 468

4057 80 76

4063 1596 1578

4071 31 29

4073 586 568
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4076 127 123

4079 1127 1101

4085 813 802

4089 58 57

4090 2881 2856

4093 27 27

4097 270 261

4103 196 193

4107 559 546

4108 126 123

4109 228 221

4110 504 490

4123 159 145

4130 409 400

4131 170 163

4138 540 524

4144 281 278

4168 127 124

4171 660 653

4180 1563 1530

4186 57 55

4192 334 327

4193 62 62

4197 29 28

4199 138 131

4205 2516 2474

4209 427 423

4231 4112 3995

4233 661 655

4235 302 278
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4238 242 236

4241 58 52

4245 352 348

4260 127 123

4265 3567 3508

4266 786 776

4285 642 625

4303 2570 2088

4310 3215 3198

4311 1441 1428

4315 489 482

4414 417 406

4471 180 170

4774 754 739

4799 622 620

4832 1265 1255

4837 430 413

4839 399 392

4841 230 224

4845 265 260

Admission source (χ2 = 6875 on 6 df, p <2e-16)

Downstream Unit 2971 2864

ED 12507 12217

Home 191 181

Hospital 5210 5000

OR 22608 21927

Other 373 358

Ward 5607 5513

Diagnosis (χ2 = 5213 on 4 df, p <2e-16)

Cardiovascular 22269 21517
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Gastrointestinal 2920 2866

Neurological 4652 4557

Other 17699 17255

Trauma 1927 1865

Referring Physician (χ2 = 5171 on 3 df, p <2e-16)

Medical 16930 16457

Other 9325 9098

Respirology 1364 1316

Surgical 21848 21189

Patient Category (χ2 = 3929 on 1 df, p <2e-16)

Medical 22811 22189

Surgical 26656 25871

MODS (χ2 = 1107 on 4 df, p <2e-16)

<=1 4389 4070

1− 4 14185 13704

5− 8 16070 15787

9− 13 6861 6721

>13 7962 7778

NEMS (χ2 = 157 on 2 df, p <2e-16)

<22 629 613

C2 11823 11462

C3 37015 35985

Scheduled admission (χ2 = 9579 on 1 df, p <2e-16)

No 32488 31629

Yes 16979 16431

Scheduled surgery (χ2 = 8809 on 1 df, p <2e-16)

No 30670 29858

Yes 18797 18202

Scheduled (χ2 = 0.1 on 1 df, p= 0.8)

No 33 31
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Yes 49434 48029

CentralVenousLine (χ2 = 53.9 on 1 df, p= 2e-13)

No 13383 12996

Yes 36084 35064

ArterialLine (χ2 = 79.4 on 1 df, p <2e-16)

No 9065 8822

Yes 40402 39238

IntracranialPressureMonito (χ2 = 227 on 1 df, p <2e-16)

No 48648 47253

Yes 819 807

Dialysis. (χ2 = 194 on 1 df, p <2e-16 )

No 48046 46668

Yes 1421 1392

ExtracorporealMembraneOxygen (χ2 = 79.7 on 1 df, p <2e-16)

No 49331 47934

Yes 136 126

IntraAorticBalloonPump (χ2 = 22.5 on 1 df, p= 0.000002)

No 48771 47390

Yes 696 670

OtherInterventionsWithinthisUnit (χ2 = 878 on 1 df, p <2e-16)

No 33331 32357

Yes 16136 15703

InterventionsOutsidethisUnit (χ2 = 554 on 1 df, p <2e-16)

No 38658 37531

Yes 10809 10529
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Table 15: Test of Cox PH assumption

Covariate χ2 df p−value

Site Code 1156.267 65 < 2e− 16

Admission Source 847.177 6 < 2e− 16

Diagnosis 851.135 4 < 2e− 16

Scheduled ICU Admission 953.906 1 < 2e− 16

Scheduled Surgery 884.831 1 < 2e− 16

Patient Category 609.514 1 < 2e− 16

Physician Specialty 688.851 3 < 2e− 16

Central Venous Line 29.441 1 5.8e− 08

Arterial Line 0.206 1 0.6502

Intracranial Pressure Monitor. 69.925 1 < 2e− 16

Dialysis 33.588 1 6.8e− 09

Extra-corporeal Membrane Oxygen 7.091 1 0.0077

Intra-Aortic Balloon Pump 21.868 1 2.9e-06

Other Interventions Within this Unit 113.692 1 < 2e− 16

Interventions Outside this Unit 186.073 1 < 2e− 16

Age 27.107 1 1.9e-07

Gender 8.828 1 0.0030

Age group 7.381 2 0.0250

Pre LOS 28.340 2 7.0e-07

MODS Cat 145.383 4 < 2e− 16

NEMS Cat 21.775 2 1.9e-05

GLOBAL 2552.177 101 < 2e− 16

χ2 (Chi-square value), df (degree of freedom)

Table 16: Survival distribution of log-logistic AFT model for CCIS data

Covaraite est L95% U95% exp(est) L95% U95%

shape 2.26 2.24 2.28 NA NA NA
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scale 1.11 0.96 1.27 NA NA NA

SiteCode 3972 0.31 0.16 0.46 1.36 1.18 1.58

SiteCode 3985 0.39 0.28 0.50 1.48 1.32 1.64

SiteCode 3986 0.48 0.34 0.61 1.61 1.41 1.84

SiteCode 3987 0.22 0.08 0.36 1.25 1.09 1.43

SiteCode 3996 0.55 0.39 0.71 1.73 1.48 2.03

SiteCode 4001 0.20 0.09 0.31 1.22 1.09 1.36

SiteCode 4044 0.34 0.18 0.50 1.40 1.20 1.64

SiteCode 4045 0.25 0.12 0.37 1.28 1.13 1.45

SiteCode 4052 0.35 0.23 0.47 1.41 1.25 1.59

SiteCode 4054 0.43 0.31 0.55 1.53 1.36 1.73

SiteCode 4056 0.49 0.35 0.62 1.62 1.42 1.86

SiteCode 4057 0.10 -0.12 0.33 1.11 0.89 1.39

SiteCode 4063 0.03 -0.08 0.14 1.03 0.92 1.15

SiteCode 4071 0.07 -0.25 0.40 1.08 0.78 1.49

SiteCode 4073 0.31 0.19 0.44 1.36 1.20 1.55

SiteCode 4076 0.57 0.36 0.78 1.76 1.43 2.18

SiteCode 4079 0.43 0.31 0.55 1.54 1.37 1.73

SiteCode 4085 0.40 0.28 0.52 1.49 1.32 1.68

SiteCode 4089 0.44 0.17 0.70 1.55 1.19 2.02

SiteCode 4090 0.27 0.16 0.38 1.31 1.18 1.46

SiteCode 4093 -0.29 -0.64 0.06 0.75 0.53 1.06

SiteCode 4097 0.41 0.25 0.56 1.50 1.29 1.75

SiteCode 4103 0.19 0.03 0.35 1.21 1.03 1.42

SiteCode 4107 0.46 0.33 0.59 1.58 1.39 1.80

SiteCode 4108 0.71 0.51 0.91 2.04 1.67 2.49

SiteCode 4109 0.26 0.10 0.42 1.30 1.11 1.53

SiteCode 4110 0.11 -0.01 0.24 1.12 0.99 1.27

SiteCode 4123 0.30 0.13 0.47 1.35 1.13 1.60

SiteCode 4130 0.37 0.23 0.51 1.45 1.26 1.66
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SiteCode 4131 0.04 -0.14 0.21 1.04 0.87 1.24

SiteCode 4138 0.63 0.50 0.77 1.88 1.65 2.15

SiteCode 4144 0.47 0.31 0.62 1.59 1.37 1.86

SiteCode 4168 0.22 0.03 0.42 1.25 1.03 1.52

SiteCode 4171 0.43 0.31 0.56 1.54 1.36 1.75

SiteCode 4180 0.17 0.06 0.28 1.19 1.06 1.33

SiteCode 4186 0.26 0.00 0.52 1.30 1.00 1.69

SiteCode 4192 0.51 0.37 0.65 1.66 1.44 1.92

SiteCode 4193 0.35 0.08 0.62 1.42 1.09 1.86

SiteCode 4197 0.05 -0.32 0.42 1.06 0.73 1.53

SiteCode 4199 -0.12 -0.30 0.06 0.89 0.74 1.07

SiteCode 4205 0.47 0.36 0.58 1.60 1.43 1.78

SiteCode 4209 0.15 0.01 0.28 1.16 1.01 1.33

SiteCode 4231 0.21 0.10 0.32 1.23 1.11 1.37

SiteCode 4233 0.28 0.15 0.40 1.32 1.16 1.49

SiteCode 4235 0.33 0.17 0.48 1.39 1.19 1.62

SiteCode 4238 0.37 0.21 0.52 1.44 1.24 1.68

SiteCode 4241 0.22 -0.05 0.49 1.25 0.96 1.63

SiteCode 4245 0.28 0.14 0.42 1.33 1.15 1.53

SiteCode 4260 0.29 0.07 0.50 1.33 1.08 1.65

SiteCode 4265 0.58 0.47 0.69 1.79 1.60 1.99

SiteCode 4266 0.55 0.43 0.68 1.74 1.54 1.96

SiteCode 4285 0.19 0.07 0.32 1.21 1.07 1.37

SiteCode 4303 0.49 0.38 0.60 1.63 1.46 1.82

SiteCode 4310 0.29 0.18 0.39 1.33 1.20 1.48

SiteCode 4311 0.26 0.15 0.37 1.30 1.16 1.45

SiteCode 4315 0.37 0.24 0.50 1.45 1.27 1.66

SiteCode 4414 0.37 0.22 0.52 1.44 1.25 1.67

SiteCode 4471 0.28 0.11 0.45 1.32 1.11 1.57

SiteCode 4774 0.35 0.23 0.48 1.42 1.26 1.61
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SiteCode 4799 0.46 0.34 0.59 1.59 1.40 1.81

SiteCode 4832 0.33 0.22 0.45 1.40 1.24 1.57

SiteCode 4837 0.44 0.30 0.58 1.55 1.35 1.79

SiteCode 4839 0.73 0.58 0.88 2.08 1.79 2.41

SiteCode 4841 0.44 0.27 0.60 1.55 1.31 1.83

SiteCode 4845 0.47 0.31 0.62 1.60 1.36 1.87

Admission Source ED -0.13 -0.17 -0.08 0.88 0.84 0.92

Admission Source Home 0.13 -0.01 0.27 1.14 0.99 1.31

Admission Source Hospital 0.11 0.06 0.16 1.12 1.07 1.17

Admission Source OR -0.31 -0.36 -0.26 0.73 0.70 0.77

Admission Source Other 0.15 0.04 0.26 1.17 1.04 1.30

Admission Source Ward -0.13 -0.18 -0.08 0.88 0.84 0.92

Diagnosis Gastrointestinal 0.28 0.24 0.33 1.33 1.27 1.38

Diagnosis Neurological 0.31 0.27 0.35 1.37 1.31 1.42

Diagnosis Other 0.40 0.37 0.43 1.49 1.45 1.53

Diagnosis Trauma 0.52 0.47 0.58 1.69 1.59 1.79

Scheduled ICU Admission Yes -0.22 -0.27 -0.17 0.80 0.77 0.85

Scheduled Surgery Yes -0.16 -0.21 -0.11 0.85 0.81 0.90

Patient Category Surgical 0.01 -0.04 0.06 1.01 0.96 1.06

Physician Specialty Other -0.01 -0.04 0.03 0.99 0.96 1.03

Physician Specialty Respirology 0.15 0.09 0.22 1.16 1.09 1.24

Physician Specialty Surgical -0.08 -0.13 -0.03 0.92 0.88 0.97

Central Venous Line Yes 0.17 0.14 0.19 1.18 1.16 1.21

Arterial Line Yes 0.19 0.16 0.21 1.20 1.17 1.24

Intracranial Pressure Monitor Yes 0.55 0.48 0.63 1.74 1.61 1.87

Dialysis Yes 0.01 -0.04 0.07 1.01 0.96 1.07

Extra corporeal Membrane Oxygen Yes 0.67 0.49 0.85 1.95 1.63 2.33

Intra Aortic Balloon Pump Yes 0.33 0.25 0.40 1.39 1.29 1.50

Other Interventions in this Unit Yes 0.07 0.05 0.09 1.07 1.05 1.10

Interventions Outside this Unit Yes 0.02 0.00 0.04 1.02 1.00 1.04
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Gender Male 0.00 -0.01 0.02 1.00 0.99 1.02

Age group2 0.12 0.08 0.16 1.13 1.08 1.18

Age group3 0.05 -0.01 0.12 1.05 0.99 1.12

Pre LOSC2 0.04 0.02 0.06 1.04 1.02 1.07

Pre LOSC3 0.15 0.12 0.18 1.16 1.12 1.19

MODS CatC2 0.11 0.07 0.14 1.11 1.08 1.15

MODS CatC3 0.22 0.19 0.26 1.25 1.21 1.29

MODS CatC4 0.27 0.23 0.31 1.31 1.26 1.36

MODS CatC5 0.18 0.14 0.21 1.19 1.15 1.24

NEMS CatC2 -0.01 -0.09 0.06 0.99 0.91 1.06

NEMS CatC3 0.04 -0.04 0.11 1.04 0.96 1.12
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Table 17: Variable selection criteria for models fitted to the data using backward elimination.

Variable removed df Deviance Pr(>Chi)

Site Code 65 1267.19 2.80E-222

Admission Source 6 452.51 1.42E-94

Diagnosis 4 889.69 2.86E-191

ScheduledICUAdmission 1 75.50 3.65E-18

ScheduledSurgery 1 38.93 4.38E-10

PatientCategory (PC) 1 0.10 0.7498

PC + PhysicianSpecialty 4 44.34 5.46E-09

PC + CentralVenousLine 2 184.81 7.40E-41

PC + ArterialLine 2 193.28 1.07E-42

PC + IntracranialPressureMonitor 2 210.01 2.50E-46

PC + Dialysis (D) 2 0.40 0.8200

PC + D + ExtracorporealMembraneOxygen 3 51.27 4.28E-11

PC + D + IntraAorticBalloonPump 3 77.06 1.31E-16

PC + D + OtherInterventionsWithinthisUnit 3 42.75 2.78E-09

PC + D + Interventions Outside (IO) 3 3.06 0.3826

PC + D + IO + Gender 4 3.24 0.5179

PC + D + IO + Gender + Age group 6 77.82 1.00E-14

PC + D + IO + Gender + Pre LOS 6 100.58 1.90E-19

PC + D + IO + Gender + MODS 8 273.48 1.79E-54

PC + D + IO + Gender + NEMS 6 26.86 0.0002
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