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Abstract

Sepsis is one of the leading causes of mortality in the world. Currently, the hetero-
geneity of sepsis makes it challenging to determine the molecular mechanisms that define
the syndrome. Here, we leverage population scale proteomics to analyze a well-defined
cohort of 1364 blood samples taken at time-of-admission to the emergency department
from patients suspected of sepsis. We identified panels of proteins using explainable
artificial intelligence that predict clinical outcomes and applied these panels to reduce
high-dimensional proteomics data to a low-dimensional interpretable latent space (ILS).
Using the ILS, we constructed an adaptive digital twin model that accurately predicted
organ dysfunction, mortality, and early-mortality-risk patients using only data available
at time-of-admission. In addition to being highly effective for investigating sepsis, this ap-
proach supports the flexible incorporation of new data and can generalize to other diseases
to aid in translational research and the development of precision medicine.

1 Introduction

Sepsis is a clinical syndrome that has been re-defined as life-threatening organ dysfunction
caused by a dysregulated host response to infection (sepsis-3) [1]. Despite its clinical impact,
and over 100 clinical studies [2], the mortality of sepsis remains high and the definition imprecise
[2]. Sepsis patients are a heterogeneous population in terms of age, underlying comorbidities,
infecting pathogen, and the infection foci. In addition, they present complex pathophysiology,
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including concomitant inflammation and immunosuppression with rapid disease progression,
further augmenting the heterogeneity of the syndrome. Currently, the severity of organ dys-
function in sepsis is measured by the Sequential Organ Failure Assessment (SOFA) scoring
system and the standardized treatment strategy for sepsis includes early broad-spectrum an-
tibiotic therapy, source control, and supportive care. Modulating the host response to infection
has been proposed as a treatment strategy for decades without efficacy, although previous
reports indicate that such treatments may be beneficial for some patients [2].

Previous attempts to stratify sepsis into more homogeneous subphenotypes have focused
on subdividing patients based on clinical or molecular data [3–7]. The results of these studies
are not always comparable and sometimes contradictory, motivating the need for a more per-
sonalized and adaptive approach for stratification. Optimally, subphenotypes are defined by
a minimal number of molecular and/or clinical features to facilitate clinical implementation,
and such approaches have shown to be useful in the treatment and definition of other diseases
[8–12]. However, the use of hard cutoffs and rule-based methods, while minimizing the number
of subphenotypes, make them heterogeneous and challenging to define. In addition, updating
subphenotype models as new information is acquired is non-trivial, and definitions will need to
be repeatedly revised to account for changes in the underlying data.

The concept of a digital twin (DT) historically emerged from the field of engineering to
model real-world systems that may or may not currently exist [13]. In healthcare, the digital
twin model leverages molecular and clinical data from well-defined patient cohorts as virtual
representations of patients with known disease trajectories. This information is subsequently
used to predict the current and future states of incoming patients with unknown disease tra-
jectories using real-time data [14]. The emerging DT concept has been empowered by new
developments in generative artificial intelligence and has already contributed to understanding
disease, biomarker discovery, and drug development in other fields [14]. As a proof-of-concept,
this model has been applied in sepsis to predict patient response using prospective clinical
observations on 29 patients in the intensive care unit (ICU) [15]. The approach circumvents
the need for defining rule-based phenotypes by instead analyzing patient neighborhoods to pre-
dict, diagnose, and model outcomes for new patients. As the concept is based on matching
new patients with their closest digital families, this model can quickly accommodate new data
without the need for redefining rules and provides a framework that will improve as more data
is integrated.

Recent developments in liquid chromatography mass spectrometry (LC-MS/MS) proteomics
have increased throughput, allowing for 1000s of samples to be run for a single study [16–18].
This increased throughput facilitates the population scale interrogation of proteome profiles in
cohorts that closely resemble the pool of patients in a geographic area for a specific disease.
This population-scale analysis can reveal hidden patterns specific to homogeneous groups of pa-
tients while maintaining statistical power to compare intricate differences between rare groups
(based on microbial diversity, comorbidities, or treatment impact). Although population-scale
proteomics may provide a more accurate picture of a disease, the increased sample size intro-
duces data analysis issues, making interpretation difficult. Explainable artificial intelligence
(XAI) has emerged as a promising feature selection technique to identify groups of proteins
most strongly associated with a specific proteome state while remaining interpretable [19–26].
In systemic inflammatory syndromes, such as sepsis, this is particularly useful as many proteins
may be found to be differentially abundant between conditions [27] and the complex signal re-
quires simplification for interpretation [28]. XAI can help reduce the high-dimensionality of
-omics data to an interpretable scale for downstream analysis.

In this study, we employed population scale proteomics to analyze a well-defined cohort of
sepsis blood plasma samples taken at time-of-admission to the hospital. Using new develop-
ments in XAI, we provide a framework for the adaptive molecular investigation and digital twin
modelling of sepsis to model clinical trajectories, predict mortality, and identify high-mortality-
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risk patients in an adaptive and efficient manner.

2 Results

The overall goal of this study was to investigate if population scale proteomics could enable
the prediction of clinical trajectories for sepsis patients using only data available at time-
of-admission. In total, 3887 patients with suspected infection and the highest triage level
(sepsis alert) [29] were admitted to the emergency department (ED) during the study period,
with 3732 patients eligible for inclusion. In this study, 1264 were randomly selected and 100
additional patients were randomly chosen among the blood culture positive fraction to increase
the likelihood of including patients with sepsis for a total of 1364 patients (Figure 1a). The
patients were randomly split into two groups (80% train, 20% test) that retained the ratios
of group labels in the overall cohort to generate a training set (n = 1091) for analysis and a
held-out test set (n = 273) for unbiased evaluation throughout the study (Figure 1b).

A manual in-depth clinical chart review was conducted by infectious disease clinicians to
create a validated clinical database using a structured protocol to generate detailed clinical
information and to ensure the accuracy of the cohort. Over 370 clinical parameters per patient
were retrieved manually and the likelihood of organ dysfunction and infection was validated
to minimize the inclusion of sepsis mimics. For each of the 1364 patients, blood samples
were collected at time-of-admission and the plasma was analyzed using high-resolution liquid
chromatography and tandem mass spectrometry (LC-MS/MS) quantifying in total 838 proteins.
A combination of the extracted clinical parameters and the time-of-admission plasma proteome
maps were used for downstream analysis (Figure 1c). Additional clinical characteristics and
demographics for the cohort are available in Supplementary Table T1.

There are 5 groups defined in the cohort: no infection and no organ dysfunction (1), no
infection with organ dysfunction (2), infection without organ dysfunction (3), infection with
organ dysfunction (sepsis-3) (4), and septic shock (5) (Figure 1d). These diagnoses are based
on an increase in SOFA score and the presence of infection, determined using the Linder-
Mellhammar Criteria for Infection (LMCI) [30] (Figure 1e). There is substantial overlap
between non-sepsis (1-3) and sepsis (4-5) groups for the SOFA increase (Figure 1f) and the
LMCI score (Figure 1g), highlighting the need to utilize both metrics simultaneously. Both
SOFA and LMCI scores are clinical outcomes and are not available at time-of-admission.

2.1 Predicting sepsis patients from non-sepsis mimics

In the cohort, around 70% of the patients had sepsis or septic shock while around 10% of the
patients had organ dysfunction unrelated to sepsis (Figure 1d). A uniform manifold approx-
imation and projection (UMAP) of all quantified proteins in the 1364 proteome maps showed
little separation between non-sepsis and sepsis patients (Figure 1h). Statistical comparison
between the two groups revealed several differentially abundant proteins that were used to train
a classifier to predict sepsis with a ROC-AUC of 0.71 based on the test set (Supplementary
Figure S1 and Figure 1i). Repeating the same process for septic shock, generated a protein
panel that performed 33.8% better (0.95 ROC-AUC) than the original sepsis classifier on a fil-
tered test set (non-sepsis vs. septic shock), but worse on the complete test set (Supplementary
Figure S1 and Figure 1i). A possible explanation for the relatively low performance of the
classifiers is the heterogeneity within the cohort groups (1-5). To test this, we rescored all
sepsis patients using the septic shock protein panel from the training set and separated them
into groups of high probability severe sepsis (>0.5 probability) and low probability severe sepsis
(≤0.5 probability) (Figure 1i). The more severe sepsis patients correspond to lower survival
than the less severe sepsis group (Figure 1k), indicating that this strategy could be useful
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in identifying patients with potentially worse survival using proteomic markers from time-of-
admission samples. Collectively, these results demonstrate that the use of all quantified proteins
generates relatively poor separation between the cohort groups. One possible explanation for
this is that the predominant signal picked up from the high-dimensional proteomics data is the
unspecific inflammatory response that does not separate the patients into discrete subgroups.

2.2 Organ dysfunction panels to construct a low-dimensional latent
space

To stratify the cohort more effectively, we speculated that reducing the high-dimensional pro-
teomics data into a low-dimensional interpretable embedding could reveal actionable patterns
within the data. To that end, we mirrored the diagnosis of sepsis computationally by investigat-
ing the proteomic signatures derived from different SOFA categories (i.e. respiratory, coagula-
tion, liver, renal, cardiovascular, and central nervous system (CNS)), the presence of a verified
infection, and sepsis from non-sepsis. For these categories, we identified protein panels using
differential analysis and XAI to select for proteins specific to the clinical outcome they were pre-
dicting (Figure 2a). The selected panels of proteins could predict future clinical diagnosis from
time-of-admission samples with areas under the curve (AUC) ranging from 0.57 to 0.90 (Figure
2b). Aggregating all proteins from the individual protein panels (Figure 2c) generated a com-
bined protein-organ dysfunction network comprised of 65 unique proteins (Figure 2d). Most
proteins were singularly identified for a panel, indicating a strong association with their specific
category. Two notable examples are the highly lung-specific pulmonary surfactant-associated
protein B (PSPB) that was found most important for predicting respiratory dysfunction, and
cystatin-c (CYTC), important in renal dysfunction, which has previously been identified as a
blood-based biomarker for acute kidney injury [31]. Other examples, such as C-reactive protein
(CRP), a common biomarker for infection and inflammation, and lipopolysaccharide-binding
protein (LBP), a biomarker for infection [32], were both identified as important in predicting in-
fection. Functional analysis with STRING-DB [33] revealed several significant interactions and
biological processes statistically associated with the selected protein panels (Supplementary
Figure 2). For example, pathways involved in lipid metabolism were found enriched for the
liver panel, coagulation and platelet regulatory pathways were found enriched for the coagula-
tion panel, and opsonization and the response to bacteria were found enriched for the infection
panel. The biological relevance between the selected proteins and their corresponding cate-
gories emphasizes the robustness of our feature selection method, as the selected proteins are
tied to biological functions of the different categories rather than just common inflammatory
pathways. In the final step, we used these individual protein panels to predict probabilities
for every patient in the training data to create an interpretable probabilistic latent space (ILS)
that incorporates probabilities of organ dysfunction, infection, and sepsis to be used for further
investigation into the molecular mechanisms of the syndrome (Figure 2e).

2.3 Identifying distinct subphenotypes using the interpretable prob-
abilistic latent space

To determine if the interpretable latent space could reveal distinct subphenotypes, we visualized
a UMAP of the ILS using only sepsis and septic shock patients (groups 4-5) from the cohort.
In contrast to the full proteome, this UMAP revealed marked substructures of patients. We
applied the k-means algorithm directly to the ILS to identify the 5 distinct subphenotypes
within the data (Figure 3a). Each cluster was associated with distinct differences in predicted
organ dysfunction (Figure 3b) and mortality rates (Figure 3c). Cluster 4 exhibited the best
survival and was composed of high probability infection and sepsis but low probability severe
organ dysfunction. Cluster 2 had high survival and was composed of high probability sepsis,
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infection, and respiratory dysfunction, but low probability severe organ dysfunction in the other
categories. In contrast, clusters 0, 1, and 3 had worse survival and were all composed of high
probability sepsis, infection, and multiple severe organ dysfunction (Figure 3b).

To understand the molecular and clinical differences between the 5 subphenotypes, we used
the previously described XAI methods to identify the five most prominent proteomic and clinical
features for each cluster using the data available on time-of-admission (Figure 3d). Interest-
ingly, the patients in cluster 1, associated with high probability liver dysfunction, had higher
levels of bilirubin, which is a biomarker for liver dysfunction, than the other clusters as well
as higher levels of lactate. The proteins found important for cluster 1 were also found in the
liver dysfunction panel (Figure 2c). Cluster 0, the cluster with the highest mortality and high
probability of renal dysfunction, was associated with high creatinine levels and lower systolic
blood pressure. Although there were distinct differences between the identified subphenotypes,
it is clear in Figure 3d that there is considerable overlap of the clinical parameters and shared-
ness of selected proteins between the clusters. These results indicate that the subphenotypes
are heterogeneous and their associated features are not sufficient by themselves to accurately
stratify sepsis patients.

To further investigate the degree of heterogeneity within the clusters, we performed hierar-
chical clustering of the ILS for each patient in each subphenotype. The analysis revealed that
each cluster was comprised of distinct subclusters of patients revealing an additional 30 sub-
phenotypes from the original 5 subphenotypes (Figure 3e and Supplementary Figure 3).
For example, hierarchical clustering revealed 4 subclusters within cluster 1 that form separate
structures in the UMAP (Figure 3f). All 4 subclusters consist of predicted liver dysfunction
but have different frequencies of other organ dysfunctions (Figure 3g) and mortality rates
(Figure 3h). These results show that the ILS can be used to identify potential subgroups
within the sepsis cohort. However, these subgroups are heterogeneous themselves and the
number of distinctly unique subgroups could be set arbitrarily high. From these findings, we
conclude that the use of subphenotypes for the precision treatment of sepsis patients is not
optimal and a more dynamic method that can adapt as new data is acquired could lead to
more actionable translational results.

2.4 Modelling new patient outcome with adaptive digital family
analysis

As digital twin modelling has previously been shown to enable predictions of future clinical
trajectories, we first leverage the population scale proteomics data to predict the ILS for the
entire training cohort, building a database of 1091 virtual patient representations. In the second
step, probabilities for the 8 panels used to create the ILS were predicted for the 273 previously
unseen patients from the held-out test set to provide an unbiased evaluation of the approach.
Using these probabilities, we selected 273 digital families each consisting of 2.5% of the nearest
neighbors in the database (Figure 4a). These digital families enable the dynamic modelling of
all 370 clinical parameters extracted from the cohort using time-of-admission proteomics data.

The SOFA score increase is an important measure for poor prognosis but requires repeated
measurements over multiple days. Here, we used the digital families to predict the increase
in SOFA score after 24 hours for all 273 patients in the held-out test set and evaluated the
accuracy. The digital families could be used to accurately predict the increase in SOFA score
with a median error of 1 from time-of-admission samples, showcasing the ability to accurately
predict future clinical outcomes for a patient (Figure 4b). Similar results were obtained when
predicting the 30-day mortality for each patient within the held-out test set. Here, we calculated
the 30-day mortality rate of each digital family and compared that rate to the bootstrapped
(n=1000) mortality of test patients for each predicted mortality bin (Figure 4c). This analysis
revealed a linear relationship between the predicated and observed mortality rate, although the
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model overestimated mortality rates in high mortality families. Additionally, by calculating
the mortality for each patient in the held-out test set based on their digital families, we can
effectively create a mortality map of sepsis (Figure 4d). The map shows that the high mortality
rates are concentrated in the top of the high-mortality clusters we identified above, but that
the mortality landscapes within each cluster are not evenly distributed. If a new patient is
placed in an area of high mortality, it is possible to determine the mortality risk of a patient
based on their digital family without placing them in a subphenotype first.

Interestingly, the UMAP in Figure 4d shows that many of the digital families have mor-
tality rates below 10%. To investigate if these predictions could be further subdivided, we
modelled the survival profiles for each family (Figure 4f) to identify families with low over-
all mortality rates, but with a high proportion of mortality within the first 7 days. For each
family, the ratio of 7-day mortality over 30-day mortality (mortality ratio) was calculated and
plotted against the 30-day mortality of the digital family (Figure 4e), revealing four dis-
tinct subgroups of digital families. One group, comprised of high 30-day mortality rates with
over 60% mortality ratio, was populated mostly by patients from the high mortality cluster
4 subphenotype. Conversely, there were two groups with low 30-day mortality rate but with
drastically different mortality ratios. We highlight a patient in Figure 4d-e who died in less
than 3 days in the hospital that was associated with a digital family with an overall predicted
mortality of 20% (Figure 4f). However, the family had a proportionally high mortality ratio
where more than 80% of the mortality occurred within 7-days. Although future evaluation of
these patterns is required to determine the most useful parameters for clinical decision making,
these results demonstrate that the digital family model generates new opportunities to analyze
and stratify patients previously unavailable using conventional approaches. In conclusion, the
methods used here showcase how the complexity of sepsis can be modelled with the ILS and
how time-of-admission samples can be used to predict future clinical trajectories with high ac-
curacy using the adaptive digital family approach. The results here suggest that digital family
modelling represents an alternative strategy to rule-based subphenotyping and can provide a
more dynamic approach to patient stratification. This adaptive approach could prove highly
effective in the clinic for future implementations of precision medicine strategies in sepsis.

3 Discussion

In this study, we integrated population scale proteomics with clinical data and apply XAI to
explore the molecular landscape of patients admitted to the ED with suspected sepsis. Using
more than 1,300 time-of-admission patient samples, we demonstrate the heterogeneity of sepsis
and advocate for a more adaptive personalized approach for the identification and treatment of
sepsis patients using digital families. The population scale cohort of time-of-admission samples
enabled us to detect early patterns of heterogeneity that may be lost in smaller cohorts and
adequately visualize how heterogeneous the molecular landscape of sepsis is.

Digital twin models have been used successfully in several fields to understand disease,
identify patients with similar response to different treatments, to predict outcome, and in drug
development [14, 34]. However, to our knowledge, digital twin modelling has only been applied
in one sepsis study of 29 patients to predict response to specific treatment [15]. We demonstrate
how digital twin modelling can be applied on a large scale to accurately predict patient outcomes
and identify high-risk patients that may require early intervention or altered care. Currently, the
available data in our study is around 30-fold larger than existing digital twin sepsis studies. As
the performance of digital twin models increase with data, the population-scale size of the cohort
provides a substantial benefit. In addition, the model supports the iterative incorporation of
data where new samples and other data modalities (i.e. metabolomics, lipidomics, genomics,
transcriptomics) can be added to the database as they are acquired. With more diverse data,
new patients will be more accurately linked to their digital families which will further improve
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the modelling of their clinical disease trajectories. In our study, another area of potential
improvement is the accuracy of the ILS. As the accuracy of the ILS depends on the performance
of the related classifiers, an improvement in the underlying clinical labels has the potential to
further benefit digital twin modelling. The fluid nature of the model will also allow the instant
accommodation of new variations of sepsis when emerging diseases (i.e. COVID-19, invasive
group A streptococcal disease) surge. The performance of these models would consistently and
rapidly increase while providing a continuously evolving map of the sepsis disease landscape.
This is in stark contrast to the use of subphenotypes for patient stratification, as subphenotype
definitions will change constantly as new data is acquired and will require repeated updating. In
complex and heterogeneous syndromes, such as sepsis, dynamic digital twin modelling provides
the potential to unlock multi-omic and population scale studies for translation research and
precision medicine.

An intriguing extension of the digital twin approach is the repurposing and identification of
treatments for new patients. Here, a digital family could be used to guide treatment for new
patients if a high proportion of the digital family was responsive to the treatment in the past.
Digital families with similar molecular and clinical profiles could also be used as a tool in the
future for adaptive clinical trials, where more homogeneous patient groups are selected at the
time of admission and monitored over the course of the treatment. This is particularly relevant
for sepsis, where over 100 clinical intervention trials have failed in the past four decades [2].
Potentially, some of these treatments could be rescued and applied to patients who present a
matching receptive profile for that treatment. The digital twin model could accommodate this
type of analysis by expanding to include time-course and treatment response data for individual
patients and to extend the modality of the acquired data to analyze the plasma metabolome
and lipidome.

Overall, we provide a robust framework for the comprehensive investigation of sepsis. We
leverage population scale proteomics with XAI methods to model digital families for new pa-
tients that can predict survival, clinical parameters, and identify high risk patients. In addition
to being highly effective for the study of sepsis, we believe this methodology could easily be
applied to other complex diseases to aid in translational research and precision medicine.

4 Methods

The standards for reporting of diagnostic accuracy (STARD) guidelines were followed [35].

4.1 Settings and patient population

Patients were eligible for inclusion if ≥ 18 years and admitted to the emergency department
(ED) at Sk̊ane University Hospital, a tertiary hospital in Lund, Sweden as sepsis alert. Sepsis
alert is a modified triage system to detect patients with suspected sepsis in the ED. The criteria
for sepsis alert are patients with any of the following: active seizures, unconsciousness, a respi-
ratory rate higher than 30 breaths/min or lower than 8 breaths/min, oxygen saturation below
90%, a regular heart rate over 130 beats/min, or an irregular heart rate over 150 beats/min,
a systolic blood pressure (SBP) below 90 mmHg, p-lactate >3.5 mmol in combination with
fever, >38°C or a history of fever or chills [29]. Patients meeting the criteria for sepsis alert are
cared for immediately by emergency physician, infection consultant, nurse, and assistant nurse
and undergo immediate control of vital parameters, physical examination, blood sampling for
biochemical analyses and culture and other microbiological sampling. Sepsis alert patients are
also considered for other diagnostic procedures, treatment, level of care and surveillance.

Patients were included prospectively, consecutively from 1st September 2016 to 31st of
March 2023 and venous blood samples were drawn in citrate tubes at admission. Samples were
centrifuged and stored at -70°C within 2 hours of collection.
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4.2 Ethical permission

Informed consents were collected through an opt-out procedure. Patients received a mail fol-
lowing the ED admission and were given the opportunity to opt-out of inclusion in the study
by sending back a form in a pre-franked envelope. Ethical approval for the study was obtained
from the regional ethics board (file numbers 2022-01454-01, 2014/741 and 2016/271).

4.3 Clinical data collection

Clinical data was collected retrospectively through clinical chart review. Chart reviews were
conducted by medical researchers using a structured protocol and validated by infectious disease
clinicians.

Data were collected on demographics, vital signs, laboratory testing, microbiological inves-
tigations, medical history, diagnostic and therapeutic procedures, concomitant or new medica-
tions and level of care.

There are 5 groups defined in the cohort overall: no organ dysfunction under the sepsis-
3 definition [1] (< 2 increase in sequential organ failure (SOFA)) and no infection based on
the LMCI score (1), organ dysfunction under the sepsis-3 definition (≥ 2 increase in SOFA)
with no infection according to the LMCI score (2), no organ dysfunction under the sepsis-
3 definition with infection according to the LMCI score (3), and sepsis (4) and septic shock
(5) defined according to Sepsis-3 definitions with organ dysfunction defined as an increase in
sequential organ failure assessment (SOFA) ≥2 and verified infection was determined using the
LMCI score. SOFA was modified to be compatible with use outside intensive care units (ICU)
(Supplementary Table T3).

The following comorbidities were recorded: cardiovascular disease, liver disease, malignancy,
respiratory disease, diabetes mellitus, chronic kidney disease, immunodeficiency and Charlson
comorbidity index.

Microbiological diagnostics were performed at the clinical microbiology department (Labo-
ratory Medicine Sk̊ane, Lund, Sweden) per standard clinical practice.

4.4 Sample preparation for LC-MS/MS analysis

Plasma samples were diluted 1:10 with 100 mM ammonium bicarbonate (Sigma-Aldrich), and
a total of 10 µl of diluted sample (corresponding to 1 µl plasma) was used for protein diges-
tion. Samples were incubated for 60 minutes at 37°C in 4 M urea (Sigma-Aldrich) and 60
mM dithiothreitol (DTT, Sigma-Aldrich) for denaturation and reduction. Addition of DTT to
the samples, as well as the following additions, were performed with an Agilent Bravo liquid
handler. The samples were then alkylated using 80 mM 2-iodoacetamide (Sigma-Aldrich) for
30 minutes at room temperature in the dark, followed by digestion with 2 µg LysC (Lysyl
Endopeptidase, Mass Spectrometry Grade, Wako) for two hours at room temperature. The
samples were further digested using 2 µg trypsin (sequence-grade modified porcine trypsin,
Promega) for 16 hours at room temperature. The digestion was stopped with 10% trifluo-
roacetic acid until pH ∼2. The samples were stored at -80 °C until LC-MS/MS analysis.
For peptide clean-up, digested samples were diluted 1:12 in water to generate suitable con-
centrations and subsequently loaded onto disposable Evotip Pure C18 trap columns (Evosep
Biosystems, Odense, Denmark), which were prepared according to the manufacturer’s instruc-
tions. Briefly, the Evotips were activated in 0.1% formic acid in acetonitrile, conditioned by
wetting the tips in 2-propanol and equilibrated in 0.1% formic acid. Twenty microliters of
each diluted sample were transferred to tips, followed by washing with 0.1% formic acid. The
Evotips were stored in 0.1% formic acid until LC-MS/MS analysis.
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4.5 LC-MS/MS analysis

Evosep One LC system (Evosep Biosystems) was used for separation with nanoflow reversed-
phased chromatography. All samples were run with the 60 samples per day (SPD) method
(gradient length of 21 min, vendor standard settings) with a flow rate of 1 µl/min. Samples
were analyzed with timsTOF Pro 2 ion mobility mass spectrometer (Bruker Daltonics) using
an 8 cm x 150 µm Evosep column (Evosep Biosystems) packed with 1.5 µm ReproSil-Pur C18-
AQ particles. MS data was acquired using data-independent acquisition serial fragmentation
(diaPASEF) method. The accumulation and ramp times were set to 100 ms. Variable isolation
windows were used for the diaPASEF method and specified in Supplementary Table T2,
with an estimated cycle time of 2.76 s. The collision energy was ramped linearly as a function
of the mobility from 59 eV at 1/K0 = 1.5 Vs cm-2 to 20 eV at 1/K0 = 0.6 Vs cm-2.

4.6 LC-MS/MS data analysis

Data was analyzed using DIA-NN (1.8.1) [36] using a spectral library created from human tissue
and plasma samples and match-between-runs enabled. Downstream analysis was performed
using DPKS [21]. Samples were randomly split into a training (80%) and test (20%) set
keeping the distributions of the included groups (1-5) intact and were processed separately
using the following procedure to obtain protein quantities. Results were filtered for 1.0% false
discovery rate at the precursor and library level. Precursors were normalized using a retention
time sliding window mean normalization method [37] using DPKS. Proteins were quantified
from precursors using the relative quantification iq [38] algorithm in the DPKS package.

4.7 Statistical analysis and explainable machine learning

All statistical analysis, explainable machine learning, and feature selection was performed using
DPKS [21]. Statistical differential tests were performed between 2 groups using linear regres-
sion models for proteomics data, and ANOVA for clinical data. Multiple testing correction
was performed using the Storey-Tibshirani method [39]. Features (proteins or clinical features)
below a 0.1 corrected p-value were selected for downstream machine learning analysis. Fea-
ture importance was estimated using SHAP [40] with 100 bootstrapping iterations (n=100) to
account for stochasticity in explainable machine learning methods caused by the background
data using an XGBoost classifier [41]. The background data was resampled to correct for any
class imbalances between groups during interpretation.

4.8 Sepsis prediction

Comparisons between groups of non-sepsis (1, 2, 3) (n=346) and sepsis (4, 5) (n=745) were
performed using the described statistical and explainable machine learning methods. Protein
ranks were calculated for 100 bootstrap iterations and the number of times a protein appeared
in the top-20 was calculated. Proteins were selected if they were above 2 standard deviations
from the mean number of occurrences for a protein in the top-20. An XGBoost classifier was
trained to predict sepsis using the minimized protein panel. This classifier was validated using
the unbiased held-out test set.

Comparisons between non-sepsis (1, 2, 3) (n=346) and septic shock (5) (n=67) were per-
formed using the above described statistical and explainable machine learning methods. Protein
ranks were calculated for 100 bootstrap iterations and the number of times a protein appeared
in the top-20 was calculated. Proteins were selected if they were above 2 standard deviations
from the mean number of occurrences for a protein in the top-20. An XGBoost classifier was
trained to predict sepsis using the minimized protein panel. This classifier was validated using
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the unbiased held-out test set (n=273) and a filtered test dataset consisting of just the sepsis
groups 1, 2, 3, and 5 (non-sepsis and septic shock).

4.9 Septic shock stratification

Probabilities for all patients in the training data were calculated using the septic shock classifier.
The non-septic shock sepsis patients (4) were split into 2 groups (≤ 0.5 and > 0.5 probability)
and their survival rates over 30-days were plotted.

4.10 Protein panel identification

Eight clinical outcomes were identified and analyzed to investigate the underlying proteins
associated with them: 6 Organ dysfunction groups based on SOFA scores (respiratory, renal,
liver, cardiovascular, coagulation, and central nervous system), presence of infection, and sepsis-
3 (1, 2, 3 vs. 4, 5). This analysis was performed using the training data and validated using the
unbiased test set. The following comparisons were made for the 6 organ dysfunction groups:

• Respiratory organ dysfunction: respiratory SOFA 0 (n=92) to respiratory SOFA >2
(n=102)

• Coagulation organ dysfunction: platelets >200 x 109/L (n=502) to platelets below 150 x
109/L (n=109)

• Liver organ dysfunction: bilirubin <20 µmol/L (n=556) to bilirubin >32 µmol/L (n=70)

• Cardiovascular organ dysfunction: cardiovascular SOFA 0 (n=618) to cardiovascular
SOFA >0 (n=469)

• Central nervous system (CNS) organ dysfunction: CNS SOFA 0 (n=766) to CNS SOFA
>0 (n=321)

• Renal organ dysfunction: renal SOFA 0 (n=615) to renal SOFA >0 (n=291)

The cutoffs are preferably chosen to provide a zone of uncertainty of 1 SOFA in-between
to separate a more severe presence from the absence of organ dysfunction when possible. For
respiratory dysfunction the zone of uncertainty between presence and absence of organ dysfunc-
tion is expanded since oxygen saturation is a volatile examination. As there is no definition for
infection within the Sepsis-3 definition, we used the Linder-Mellhammar Criteria of Infection
[30] (no infection = 139, verified infection = 741). The sepsis panel was determined using
groups 1, 2, 3 (n=346) vs. 4, 5 (n=745) in the cohort.

For each of the 8 panels, proteins were selected using the statistical analysis and explainable
machine learning methods described above. The percentage a protein is found in the top-10 in
a bootstrap iteration (n=100) was calculated, and the top 90th percentile were selected as the
representative proteins for a particular comparison.

To verify the biological function of the selected panels, we predicted high-confidence (> 0.9)
functional interactions using STRING-DB [33] with up to 20 interactions and performed GO
Biological Function overrepresentation tests to infer the biological function associated with the
selected protein panels.
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4.11 Creation of the probabilistic latent space

The probabilistic interpretable latent space is created by predicting probabilities for every
patient in the training data for each of the 8 clinical outcome protein panels. This created a
1091 x 8 matrix that contains no missing values where each column represents the probability
that a patient will develop one or several organ dysfunctions, infection, or sepsis based on time-
of-admission samples. These probabilities are interpretable and can be associated with the
molecular panel profiles identified using the explainable machine learning approach described
above.

4.12 Identification and analysis of subphenotypes

The 8-dimensional ILS was clustered using the k-means algorithm (k = 5) into 5 different
groups. The survival profiles were constructed for each subgroup over 365 days and were
compared at 3 days, 30 days, and 365 days. To obtain the qualitative descriptions of the
ILS for each of the clinical outcome protein panels, the average rate of panel prediction was
calculated by dividing the number of positively predicted instances (> 0.5) by the total number
of patients in a particular cluster.

The most important proteins and clinical parameters were identified for each subgroup
using the statistical and explainable machine learning methods described above by comparing
each cluster to a combination of all other clusters (one-vs-all). The 5 most important clinical
parameters were visualized for each cluster against the values from all other clusters.

4.13 Creation of the digital family model and analysis of the unbi-
ased held-out test set

Probabilities were predicted for the held-out test set (n=273) and neighborhoods consisting of
2.5% of the ILS were extracted the nearest neighbor algorithm to build digital families consist-
ing of 27 patients per patient in the held-out test set. The predicted SOFA increase was derived
for each family by calculating the median SOFA increase for day 1. The SOFA error was calcu-
lated as the difference between the predicted SOFA increase and the actual SOFA increase of
the test patient. 30-day survival was calculated for 3 bins of predicted 30-day mortality for each
digital family ([0.0-0.1], [0.1-0.3], [0.3-0.6] predicted mortality bins). For each predicted 30-day
mortality rate, the actual 30-day mortality rate of the test set was calculated for the current bin.
This was bootstrapped (n=1000) to get the estimated 30-mortality rate in the held-out test set.

The mortality map for sepsis was created by calculating the proportion of patients within
the digital family that died within 30-days. Each patient in the test data was colored by this
rate and reduced using the same UMAP used to visualize the subphenotypes. The mortality
ratio was calculated by modelling the 7-day mortality rate for each family and dividing it by
the 30-day mortality rate for the family. These were plotted against each other to visualize
how much of the 30-day mortality occurred earlier in the hospital visit.
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Figure 1: Cohort overview and the definition of sepsis proteome signatures: a Strobe chart visualizing
the inclusion criteria for the patients in the study. b Split of the 1364 included patients into a training set
(n=1091) and a test set (n=273). c An overview of the selection of patients and the acquisition of data used in
the study. Time-of-admission samples were collected at the emergency department from patients suspected of
sepsis and analyzed using LC-MS/MS and clinical parameters were extracted for each patient in the cohort. d
A barplot showing the percentage distributions of 5 groups within the cohort (1-3 = non sepsis, 4-5 = sepsis)
based on clinical parameters. e A scatter plot showing the distribution of SOFA score increase against the
Linder-Mellhammar Criteria of Infection (LMCI) score colored by cohort group. f-g Distributions of SOFA
increase for day 1 and LMCI score colored by the cohort group. h A UMAP of the proteome from the 1364
patient samples. Colors indicate sepsis (True = cohort group 4-5) or non-sepsis (False = cohort group 1-3). i
ROC curves and AUC values for sepsis (full test data) and septic shock (full and reduced test data) classifiers. j
Histogram of re-scored probabilities for all patients in the training set calculated using the septic shock classifier,
colored by cohort group. The dotted line represents the 0.5 probability cutoff used to separate the sepsis-3 (4)
patients. k Survival curves for sepsis-3 (group 4) patients predicted as high probability severe (shock like) or
low probability severe using the septic shock classifier.
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Figure 2: Explainable machine learning uncovers specific molecular panels in sepsis: a All time-
of-admission plasma samples from the training data were analyzed using LC-MS/MS to obtain proteome maps
for each patient sample. From the global list of identified proteins, 8 different clinical markers used in the
diagnosis of sepsis (i.e. organ dysfunction, infection, sepsis) were analyzed and proteins were selected using
explainable machine learning that were the most descriptive for each proteome state. b ROC curves displaying
the performance of the selected protein panels on the held-out test data set. c Bar plots showing the mean
importance, calculated using SHAP, of the selected proteins after 100 bootstrap iterations. d All proteins shown
in (c) displayed as a network graph. Edges are unweighted and based on the inclusion of a protein in a panel.
e An overview of the workflow used to predict organ dysfunction, infection, and sepsis for all patients in the
training cohort to create the interpretable latent space. Probabilities for each of the 8 panels are predicted for
each patient in the training data to assemble an 8-dimension latent space where each dimension represents a
probability for one of the 8 panels.
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Figure 3: Identifying heterogeneous subgroups within sepsis: a A UMAP of the 8-dimensional latent
space, subdivided into 5 clusters using the k-means algorithm on the 8-dimensional latent space and colored by
the assigned cluster. The same colors are used throughout the figure to represent the 5 clusters (0-4). b The
percentage organ dysfunction, infection, and sepsis was determined for each clusters and plotted in a radar plot
and colored according to clusters. c The survival profiles of the 5 clusters across 365 days. The dotted lines
highlight survival at 30 and 90 days respectively. d The top-5 most important proteins and clinical parameters
selected using explainable machine learning in a one-vs-all analysis for each cluster. The gray box plots represent
the values for all other clusters combined. The boxes represent the quartiles of the data, while the whiskers
represent the remaining distribution. Outliers are not shown. e Cluster maps for each of the 5 clusters and 8
clinical parameters displaying the raw predicted probabilities of the latent space shown using a green color scale.
f A zoomed in UMAP of cluster 1 from (a) colored by 4 subclusters identified using hierarchical clustering.
These colors are used for the same subclusters in g-h g A radar plot of the percentage organ dysfunction,
infection, and sepsis for the 4 unique subclusters found within cluster 1. h Survival profiles for the 4 subclusters
within cluster 1. Similar graphs for the other 4 main clusters shown in (a) are available in the supplementary
material.
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Figure 4: Digital family analysis facilitates accurately modelling of unknown disease trajectories.
a Using the proteome from time-of-admission samples of the training data and the detailed clinical data, the
interpretable latent space (ILS) is predicted (Figure 2). This ILS is used as a database to determine groups of
patients that are most similar to a new patient. Probabilities for new patients from the held-out test set were
predicted for each of the 8 panels from Figure 2 and the nearest neighbors consisting of 2.5% of the database
were selected as the digital family for each new patient. b A histogram of the error in predicted SOFA score,
determined by taking the absolute value of the median SOFA score increase of the digital family subtracted from
the actual SOFA score increase of the patient from the held-out test set. The dotted line represents the median
SOFA error at 1.0. c A line plot showing the relationship between the predicted 30-mortality of the digital
family, calculated as the percentage of how many in the digital family have survival less than 30-days, against
the bootstrapped (n=1000) mortality rates in the test data. d Digital families were created for each patient
in the held-out test set, and a UMAP was plotted of that test set using the same projection from Figure 3a.
The colors indicate the predicted 30-day mortality of the digital family for each patient. The shaded colored
outlines represent the 5 clusters from Figure 3. e Scatter plot of the 7-day survival ratio against the predicted
30-day mortality for each digital family with jitter added so all points are visible. Histograms for each axis are
shown above and to the right of the plot. The coloring is based on the predicted cluster from Figure 3 of each
patient in the held-out test set. f A selected survival profile for a patient with relatively high predicted 30-day
mortality, but a higher 5-day survival gradient. This selected patient died within 5 days after admission to the
hospital. Dotted circles show where this particular patient is placed in d and e.
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6 Supplementary Figures
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Supplementary Figure S1: Proteomic comparison of the cohort a Volcano plot and selected proteins for
the comparison of sepsis (4, 5) to non-sepsis (1, 2, 3). b Volcano plot and selected proteins for the comparisons
of sepstic shock (5) to non-sepsis (1, 2, 3).
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Supplementary Figure S3: Subclusters of the identified subphenotypes a Subclusters of group 0, b
subclusters of group 2, c subclusters of group 3, d subclusters of group 4
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Demographics

Age, median (IQR) 76.0 (66.5-83.8)

Gender, female, n (%) 524 (38.4)

Comorbidities

Diabetes Mellitus, n (%) 358 (26.2)

Cardiovascular disease, n (%) 565 (41.4)

Respiratory disease, n (%) 262 (19.2)

Liver disease, n (%) 20 (1.5)

Renal disease, n (%) 140 (10.3)

Malignancy, n (%) 234 (17.2)

Immunodeficiency, n (%) 150 (11.0)

Charlson Comorbidity Index (IQR) 5 (3-6)

No comorbidites, n (%) 384 (28.2)

Organ dysfunction

SOFA increase day 1, median (IQR) 3 (2-4)

CNS SOFA increase ≥1 day 1 399 (29.3)

Cardiovascular SOFA increase ≥1 day 1 583 (42.7)

Respiratory SOFA increase , 73 day 1 1217 (89.3)

Renal SOFA increase ≥1 day 1 450 (32.9)

Liver SOFA increase ≥1 day 1 192 (14.1)

Coagulation SOFA increase ≥1 day 1 179 (13.1)

Diagnosis

No, possible or indeterminable infection, n (%) 290 (21.3)

Infection probable or verified, n (%) 1073 (78.7)

Infection foci n = 1073

Pneumonia, n (%) 160 (14.9)

Urinary tract infection, n (%) 282 (26.3)

Abdominal infection, n (%) 49 (4.6)

Skin or soft tissue infection, n (%) 99 (9.2)

Bone or joint infection, n (%) 12 (11.2)

Upper respiratory tract, n (%) 16 (1.5)

COVID-19, n (%) 40 (3.7)

Blood stream infection, n (%) 73 (6.8)

Other, n (%) 296 (21.7)

Bacteriemia n = 586

Escherichia Coli, n (%) 220 (37.5)

Other Enterobacterales, n (%) 119 (20.3)

Beta-hemolytic streptococci, n (%) 49 (8.4)

Staphylococcus Aureus, n (%) 61 (10.4)

Streptococcus pneumoniae, n (%) 27 (4.6)

Enterococci, n (%) 37 (6.3)

Sepsis n = 932

Septic shock, n (%) 84 (9.0)

Critical care, n (%) 124 (13.3)

In-hospital mortality, n (%) 108 (11.6)

28-day mortality, n (%) 119 (12.7)

90-day mortality, n (%) 158 (16.9)

Supplementary Table T1: Demographic and clinical characteristics, n=1364
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MS Type Cycle ID 1/K0 Begin 1/K0 End Start Mass End Mass
[Vs/cm2] [Vs/cm2] [m/z] [m/z]

PASEF 1 0.83 1.6 681.04 708.33

PASEF 1 0.6 0.83 258.48 409.55

PASEF 2 0.88 1.6 708.33 733.83

PASEF 2 0.6 0.88 409.55 444.26

PASEF 3 0.89 1.6 733.83 760.32

PASEF 3 0.6 0.89 444.26 474.76

PASEF 4 0.9 1.6 760.32 790.62

PASEF 4 0.6 0.9 474.76 502.25

PASEF 5 0.92 1.6 790.62 823.07

PASEF 5 0.6 0.92 502.25 525.91

PASEF 6 0.93 1.6 823.07 858.4

PASEF 6 0.6 0.93 525.91 548.77

PASEF 7 0.94 1.6 858.4 899.09

PASEF 7 0.6 0.94 548.77 571.27

PASEF 8 0.96 1.6 899.09 948.46

PASEF 8 0.6 0.96 571.27 592.32

PASEF 9 0.98 1.6 948.46 1010.99

PASEF 9 0.6 0.98 592.32 612.8

PASEF 10 0.99 1.6 1010.99 1079.07

PASEF 10 0.6 0.99 612.8 634.8

PASEF 11 1.02 1.6 1079.07 1187.54

PASEF 11 0.6 1.02 634.8 656.97

PASEF 12 1.08 1.6 1187.54 1443.66

PASEF 12 0.6 1.08 656.97 681.04

Supplementary Table T2: LC-MS/MS Acquisition Windows.

SOFA score
Organ system 1 2 3 4
Respiration PaO2/FIO2 mmHg <400 <300 <200 <100
corresponding SpO2 without O2 support <95% <91% with respiratory support
Coagulation Platelets x 10ˆ9/L <150 <100 <50 <20
Liver Bilirubin µmol/L >19 >32 >101 >204

Cardiovascular Hypotension
MAP <
70mmHg

Dopamine ≤ 5
µg/kg/min or
dobutamine

Dopamine >5 or
epinephrine or

norepinephrine ≤
0,1 µg/kg/min

Dopamine >15
or epinephrine or
norepinephrine
>0.1 µg/kg/min

for at least one hour
Central Nervous System (CNS)
Glascow Coma Scale 13-14 10-12 6-9 <6
Renal Creatinine µmol/L >110 >170 >300 >440
or urine output mL/day <500 <200

Supplementary Table T3: SOFA definitions.

24

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 22, 2024. ; https://doi.org/10.1101/2024.03.20.24304575doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304575
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Predicting sepsis patients from non-sepsis mimics
	Organ dysfunction panels to construct a low-dimensional latent space
	Identifying distinct subphenotypes using the interpretable probabilistic latent space
	Modelling new patient outcome with adaptive digital family analysis

	Discussion
	Methods
	Settings and patient population
	Ethical permission
	Clinical data collection
	Sample preparation for LC-MS/MS analysis
	LC-MS/MS analysis
	LC-MS/MS data analysis
	Statistical analysis and explainable machine learning
	Sepsis prediction
	Septic shock stratification
	Protein panel identification
	Creation of the probabilistic latent space
	Identification and analysis of subphenotypes
	Creation of the digital family model and analysis of the unbiased held-out test set

	Acknowledgements
	Supplementary Figures
	Supplementary Tables

