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Abstract

To enable formal verification of a dynamical system, given by a set of differential equations, it is abstracted
by a finite state model. This allows for application of methods for model checking. Consequently, it opens
the possibility of carrying out the verification of reachability and timing requirements, which by classical
control methods is impossible. We put forward a method for abstracting dynamical systems, where level
sets of Lyapunov functions are used to generate the partitioning of the state space. We propose to
partition the state space using an entire family of functions. The properties of these functions ensure that
the discrete model captures the behaviors of a dynamical system by generating appropriate equivalence
classes of the states. These equivalence classes make up the partition of the state space.
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1 Introduction

Verifying that a dynamical system satisfies a specifi-
cation is a complicated, but inevitable part of design-
ing a system. Frequently, it is not possible to conduct
the verification by simulation, as an exhaustive simu-
lation of all initial conditions, disturbances, etc., is not
possible. However, formal verification methods can be
applied to dynamical system if a finite combinatorial
abstraction can be devised. Apart from the automa-
tization of the verification process, formal verification
methods provide answers to entirely new type of ques-
tions in control engineering. A few examples of these
are: Do all solutions of the dynamical system, initial-
ized in a subset X0 of the state space, reach the set
of goal states Xgoal? Do all solutions of the dynami-
cal system, initialized in X0, reach Xgoal within 5 s?
Does there exist a solution of the dynamical system,
initialized in X0 that passes the unsafe states Xunsafe?

In particular, the verification of system properties
such as safety is based on reachability calculation or
its approximation. The exact reachable sets of contin-

uous and hybrid systems are in general incomputable
Asarin et al. (2006). Therefore, much research effort
has been made on the approximation of reachable sets,
specially, for continuous systems Guéguen et al. (2009).
Yet, reachability is decidable for system models given
by automata and timed automata; consequently, there
exists a rich set of tools aimed at verifying properties
of such systems, e.g., Uppaal, see Behrmann et al.
(2004).

There are essentially two methods for verifying dy-
namical and hybrid systems Guéguen et al. (2009).
The first method is to over-approximate the reachable
states of a system by sets such as ellipsoids, cubes, and
simplexes. This is accomplished in Kurzhanski and
Vályi (1997) using ellipsoids, in Girard (2005) using
zonotopes, and in Mitchell et al. (2005) using level sets
of the Hamilton-Jacobi-Isaacs partial differential equa-
tion. The other method is to abstract a system by a
model of reduced complexity, which preserves crucial
dynamical properties of the original systems. This is
accomplished in Maler and Batt (2008) for continuous
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systems, and in Tiwari (2008) for hybrid systems. Both
methods rely on explicit calculation of reachable sets of
the continuous dynamics, which is the main source of
complexity in the verification procedure Guéguen et al.
(2009).

In this paper, we provide a method for abstracting
dynamical systems by timed automata. This method
is based on partitioning the state space using level sets
of Lyapunov functions; hence, the partitioning is con-
ducted according to the dynamics of the system as in
Tiwari (2008); Prajna (2006). This allows the result-
ing combinatorial model to be relatively small. Con-
trary to Tiwari (2008); Prajna (2006), we generate a
timed model, which enables the verification of timed
temporal-logic specifications Alur et al. (1990). Ad-
ditionally, in contrast to Frehse (2005), the proposed
abstraction-procedure does not use solutions to the sys-
tem equations or any kind of simulation. Furthermore,
the proposed method permits a parallel composition,
which is vital for the verification of high-dimensional
systems.

This paper is organized as follows. Section 2 re-
calls definitions from dynamical systems. The notion
of timed automaton, the definition, and qualities are
presented in Section 3. Section 4 presents the pro-
posed abstraction procedure along with its properties.
An example in Section 5 demonstrates this procedure.
Finally, Section 6 comprises conclusions.

2 Dynamical Systems

Let E denote the Euclidean space Rn with the stan-
dard scalar product 〈x, y〉 = xTy. Occasionally, we will
indicate the dimension of E by writing En. We address
the verification problem of an autonomous dynamical
system Γ = (X, ξ), where X ⊂ E is a state space, which
will be specified later in this article, and ξ : E→ E is a
continuous locally Lipschitz vector field. We denote the
set of critical point of ξ by Cr(ξ) ≡ {x ∈ E| ξ(x) = 0}.
For an ordinary differential equation

ẋ = ξ(x), (1)

a flow map ΦΓ : [0, ε]× E→ E for an ε > 0 satisfies

dΦΓ(t, x)

dt
= ξ (ΦΓ(t, x)) (2)

for all t ∈ [0, ε]. In other words, ΦΓ(t, x) is the solution
of (1) from an initial state x in a set of initial states
X0 ⊆ X and for time t ∈ [0, ε].

Given a system Γ = (X, ξ), a set R ⊆ X is said to be
positively invariant if for all x ∈ R and for all t ∈ R+

(the set of nonnegative reals)

ΦΓ(t, x) ∈ R. (3)

In particular, the above definition implies that the ΦΓ

is defined for all x ∈ R and for all nonnegative time t.
In this article, we will often use the following notation.
For a map f : A → B, and a subset C ⊆ A, f(C) ≡
{f(x)| x ∈ C}. Thus in particular, R is positively
invariant if ΦΓ(R+, R) ⊆ R.

Invariant sets play a crucial role in this work. Indeed,
we will use the observation that, if the set of initial
conditions and the goal-sets are subsets of a positively
invariant set, and the unsafe states are in its comple-
ment, then the system is safe. That is, there are no
trajectories that enter the unsafe-set. This situation is
illustrated in Figure 1.

Init.

Unsafe

Goal

Figure 1: The set of initial states and the goal-set are
subsets of a positive invariant set; whereas,
the unsafe states are in its complement.

Besides invariant, also reachable sets are instrumen-
tal for verification.

Definition 1 (Reachable set of Dyn. System)
The reachable states of a system Γ from a set of initial
states X0 ⊆ X on the time interval [t1, t2] is defined
as

ΦΓ([t1, t2], X0). (4)

Thus, the reachable set of X0 on time interval [t1, t2]
consists of all those points p for which there exists a
flow line (a trajectory) connecting the set X0 with p,
and it takes time t in the interval [t1, t2].

3 Timed Automata

In the sequel, we will abstract dynamical systems by
timed automata. A timed automaton consists of dis-
crete locations, transitions between locations, which
are labeled by actions and clocks which may be re-
set to zero whenever a transition takes place. A timed
automaton is illustrated in Figure 2. The locations are
denoted by p and q, where the initial location is p;
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c = 5, β γ, d := 0

c < 8

d < 4, α, c := 0

p q

guard
action

reset

invariant
initial location location

Figure 2: The transition between the location p and q
with the label α may take place whenever the
clock d < 4 and must take place before the
clock c ≥ 8. Once this transition occurs, the
clock c resets to 0.

there are two clocks denoted by c and d, and actions
designated by α, β, and γ. The transition between
location p and q may take place whenever the clock
d < 4 and must take place for the clock c ≥ 8. Once
this transition occurs, the clock c resets to 0.

We follow Alur and Dill (1994) and define a timed
automata as follows. A set of diagonal-free clock con-
straints Ψ(C) for the set C of clocks contains all in-
variants and guards of the timed automaton. Conse-
quently, it is described by the following grammar

ψ ::= c ./ k|ψ1 ∧ ψ2, (5a)

where

c ∈ C, k ∈ R+, and ./∈ {≤,<,=,>,≥}. (5b)

Note that the clock constraint k should usually be a
rational number, but in this paper, no effort is made
to convert the clock constraints into rational numbers.
However, any real number can be approximated by a
rational number with an arbitrary small error ε > 0.

Definition 2 (Timed Automaton) A timed au-
tomaton A is a tuple (E,E0, C,Σ, I,∆), where

• E is a finite set of locations, and E0 ⊆ E is the
set of initial locations.

• C is a finite set of clocks.

• Σ is the input alphabet.

• I : E → Ψ(C) assigns invariants to locations,
where Ψ(C) is the set of all clock constraints in
(5).

• ∆ ⊆ E × Ψ(C) × Σ × 2C × E is a finite set of
transition relations. A transition relation is a tu-
ple (e,Ge→e′ , σ, Re→e′ , e

′) which assigns an edge
between two locations, where e is the source loca-
tion, e′ is the destination location, Ge→e′ ∈ Ψ(C)
is the guard set, σ is a symbol in the alphabet Σ,
and Re→e′ ⊆ C is a subset of clocks.

To define the semantics of a timed automaton, we
adopt the notion of clock valuation Fahrenberg et al.
(2010).

Definition 3 (Clock Valuation) A clock valuation
on a set of clocks C is a mapping v : C → R+. The
initial valuation v0 is given by v0(c) = 0 for all c ∈ C.
For a valuation v, d ∈ R+, and R ⊆ C, the valuations
v + d and v[R] are defined as

(v + d)(c) = v(c) + d, (6a)

v[R](c) =

{
0 for c ∈ R,
v(c) otherwise.

(6b)

We shall denote the set of maps v : C → R+ by RC+.
This notation indicates that we identify a valuation
v with C-tuples of nonnegative reals in R#C

+ , where
#C is the number of elements in C. Notice also that
this notion is consistent with 2C denoting the set of
subsets of C. Indeed, if 2 denotes the set consisting of
two elements, say {0, 1}, then e ∈ 2C is identified with
e−1(1) ⊆ C.

Definition 4 (Semantics of Clock Constraint)
A clock constraint in Ψ(C) is a set of clock valuations
{v : C → R+} given by

Jc ./ kK = {v : C → R+|v(c) ./ k} (7a)

Jψ1 ∧ ψ2K = Jψ1K ∩ Jψ2K. (7b)

For convenience we denote v ∈ JψK by v |= ψ.

Definition 5 (Semantics of Timed Automaton)
The semantics of a timed automaton A =
(E,E0, C,Σ, I,∆) is the transition system
JAK = (S, S0,Σ ∪ R+, Ts ∪ Td), where S is the
set of states

S = {(e, v) ∈ E ×RC+| v |= I(e)},

S0 ⊆ S is the set of initial states

S0 = {(e, v) ∈ E0 ×RC+| v = v0},

and Ts ∪ Td is the union of the following sets of tran-
sitions

Ts = {(e, v)
σ→ (e′, v′)| ∃(e,Ge→e′ , σ, Re→e′ , e′) ∈ ∆

such that v |= Ge→e′ and v′ = v[Re→e′ ]},

Td = {(e, v)
d→ (e, v + d)| ∀d′ ∈ [0, d] : v + d′ |= I(e)}.

Hence, the semantics of a timed automaton is a tran-
sition system that comprises of an infinite number of
states: product of E and RC+ and two types of tran-
sitions: the transition set Ts between discrete states
with possibly a reset of clocks belonging to a subset
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Re→e′ , and the transition set Td which corresponds to
time passing within the invariant I(e).

The analog to the solution (2) of an autonomous
differential equation (1) is a run of a timed automaton,
which is define below.

Definition 6 (Run of Timed Automaton) A run
of a timed automaton A (with semantics JAK) is a
possibly infinite sequence of alternations between time
steps and discrete steps of the following form

(e0, v0)
d1−→ (e0, v1)

σ1−→ (e1, v2)
d2−→ . . . (8)

where di ∈ R+ and σi ∈ Σ.

In Definition 6, by forcing alternation of time and
discrete steps, the time step di is the maximal time
step between the discrete steps σi−1 and σi.

Example 1 This example clarifies the semantics of an
automaton. A timed automaton with two locations and
two clocks is illustrated in Figure 2. All runs of the
timed automaton start in the location p, and the initial
valuation of all clocks is zero. Furthermore, the time
between an action α (a transition decorated by the label
α) and an action β is 5 time units. There are infinitely
many different runs of the timed automaton, and a few
examples are

Run 1 : (p, (0, 0))
1−→ (p, (1, 1))

α−→ (q, (0, 1))
2−→

(q, (2, 3))
γ−→ (q, (2, 0))

3−→ (q, (5, 3))
β−→ (p, (5, 3))

Run 2 : (p, (0, 0))
3−→ (p, (3, 3))

α−→ (q, (0, 3))
4−→

(q, (4, 7))
γ−→ (q, (4, 0))

1−→ (q, (5, 1))
β−→ (p, (5, 1)).

A vital object for studying the behavior of any dy-
namical system is its trajectory. For this purpose, we
have already defined a run of A in Definition 6; how-
ever, more convenient for the study of continuous be-
havior of a timed automaton is a trajectory, see Defi-
nition 7. At the outset, we bring in a concept of a time
domain.

In the following, we denote sets of the form {a, . . . }
with a ∈ Z+ as {a, . . . ,∞}. Let k ∈ N ∪ {∞}; a
subset Tk ⊂ Z+ × R+ will be called a time domain
if there exists an increasing sequence {ti}i∈{0,...,k} in
R+ ∪ {∞} such that

Tk =
⋃

i∈{1,...,k}

{i} × Ti

where Ti = [ti−1, ti] if i ∈ {1, . . . , k − 1}, and

Tk =

{
[tk−1, tk] if tk <∞
[tk−1,∞[ if tk =∞.

Note that Ti = [ti−1, ti] for all i if k = ∞. We say
that the time domain is infinite if k = ∞ or tk = ∞.
The sequence {ti| i ∈ {0, . . . , k}} corresponding to a
time domain will be called a switching sequence.

We define two projections π1 : E × RC+ → E and
π2 : E ×RC+ → RC+ by π1(e, v) = e and π2(e, v) = v.

Definition 7 (Trajectory) A trajectory of the timed
automaton A (with semantics JAK) is a pair (Tk, γ)
where k ∈ N ∪ {∞} is fixed, and

• Tk ⊂ Z+×R+ is a time domain with corresponding
switching sequence {ti| i ∈ {0, . . . , k}},

• γ : Tk → S is continuous (thus constant on Ti)
and satisfies:

1. For each i ∈ {1, . . . , k−1}, there exists σ ∈ Σ
such that

γ(i, ti)
σ−→ γ(i+ 1, ti) ∈ Ts

2. For each i ∈ {1, . . . , k − 1}

π2(γ(i, Ti)) ⊂ JI(π1(γ(i, ti))K.

A trajectory at (e, v) (with v |= I(e) ) is a trajectory
(Tk, γ) with γ(1, t0) = (e, v).

We define a discrete counterpart of the flow map.

Definition 8 (Flow Map of Timed Automaton)
The flow map of a timed automaton A (with semantics
JAK) is a multivalued map

φA : R+ × S0 → 2S ,

defined by (e′, v′) ∈ φA(t; e, v) if and only if there exists
a trajectory (Tk, γ) at (e, v) such that t = tk − t0 and
(e′, v′) = γ(k, tk).

It will be instrumental to define a discrete flow map
which forgets the valuation of the clocks

ΦA : R+ × E0 → 2E , ΦA(e) = π1 ◦ φA(e, v0)

In other words, ΦA is defined by: e′ ∈ ΦA(t, e) if
and only if there exists a run (8) of JAK initialized in
(e0, v0) that reaches the location e at time t =

∑
i di.

Example 2 (Continuation of Example 1) In this
example, the time domain Tk and trajectory of Run 1
in Example 1 are elucidated. The time domain is

Tk = {1} × [0, 1] ∪ {2} × [1, 3] ∪ {3} × [3, 6]∪
{4} × [6, 6]. (9)

From the time domain it is seen that there are three dis-
crete switches and the total time of the run is 6 time
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units. The trajectory of the run is shown in Figure 3.
To visualize the trajectory, the valuation of the clock c
is illustrated by a blue line and the valuation of clock
d is illustrated by a red dashed line. Furthermore, the
location, which the system is in at a given time, is in-
dicated by its name.

t
t4t3

p

q

t2
t1

q

p

t0
1

2

3

4

i

Figure 3: Trajectory of Run 1 in Example 1.

As for a dynamical system, equipped with the notion
of the discrete flow map, we define a reachable set.

Definition 9 (Reachable set of Timed Autom.)
The reachable locations of a system A from a set of
initial locations E0 ⊆ E on the time interval [t1, t2] is
defined as

ΦA([t1, t2], E0) ≡
⋃

(t,e)∈[t1,t2]×E0

ΦA(t, e). (10)

Thus far, we have avoided any explanation of the role
of labels in a timed automaton. In fact, the meaning of
labeling first becomes apparent in a network of agents,
where each agent is modeled as a timed automaton.
Subsequently, the transitions of two automata with the
same labels can be synchronized. We adopt the def-
inition of the product of timed automata from Alur
(1999).

Definition 10 (Product of Timed Automaton)
Let A1 = (E1, E1

0 , C
1,Σ1, I1,∆1) and A2 =

(E2, E2
0 , C

2,Σ2, I2,∆2). Suppose that C1 ∩ C2 = ∅.
Then the product A1||A2 is the time automaton
(E,E0, C,Σ, I,∆), where E ≡ E1×E2, E0 ≡ E1

0×E2
0 ,

C ≡ C1∪C2, Σ ≡ Σ1∪Σ2, along with I and ∆ defined
as follows

• I : E → Ψ(C), I(e1, e2) ≡ I(e1) ∧ I(e2);

• ∆ ⊆ E ×Ψ(C)× Σ× 2C × E is defined by

1. For every σ ∈ Σ1 ∪ Σ2, for every
(e1, G1, σ, R1, f1) ∈ ∆1 and for every
(e2, G2, σ, R2, f2) ∈ ∆2

((e1, e2), G1 ∧G2, σ, R1 ∪R2, (f1, f2)) ∈ ∆.

2. For every σ ∈ Σ1 \Σ2, for every (e1, G, σ,R, f1) ∈
∆1 and for every e2 ∈ E2

((e1, e2), G, σ,R, (f1, e2)) ∈ ∆.

3. For every σ ∈ Σ2 \Σ1, for every (e2, G, σ,R, f2) ∈
∆2 and for every e1 ∈ E1

((e1, e2), G, σ,R, (e1, f2)) ∈ ∆.

In Section 4, we will use the notion of an isomor-
phism of timed automata. We say that two automata
are isomorphic if they differ merely by the names of
their states.

Definition 11 (Isomorphism of Timed Automata)
Two timed automata (E,E0, C,Σ, I,∆) and
(E′, E′0, C,Σ, I

′,∆′) (with the same sets of labels
and clocks) are isomorphism if there is a bijective
function F : S → S′ such that

1. F (S0) = S′0,

2. for all s ∈ S, I(s) = I ′(F (s)),

3. (e,Ge→e′ , σ, Re→e′ , e
′) ∈ ∆ if and only if

(F (e), Ge→e′ , σ, Re→e′ , F (e′)) ∈ ∆′.

Our final remark is about the reachability problem
of timed automata. For a given timed automaton
A, a set of terminal locations F , and a time inter-
val [t1, t2], we ask the question if ΦA([t1, t2], E0)∩F is
nonempty. Nonetheless, to study reachability by com-
binatorial methods such as formal verification meth-
ods, the set of states of the semantics JAK of A is to
be finite. At the same time, the choice of clock con-
straints indicates that it is only possible to determine
if the clocks are equal, less or greater to each other.
Consequently, Alur (1999) introduces the concept of
region automaton. In this work, we explain this ab-
straction geometrically. In short, the set RC+ is parti-
tioned by a complex K consisting of all the faces of the
cubes (of dimension n ≡ #C) in {cα| α ∈ Nn}, where
cα ≡ {x = (x1, . . . , xn) ∈ Rn+| αi ≤ xi ≤ αi + 1}.
Figure 4 illustrates the partitioning for two clocks.

4 Abstractions of Dynamical
Systems

In this section, we develop a concept of an abstraction
of the dynamical system Γ. It consists of a fine number
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c(0,1) c(1,1) c(2,1)

c(0,0) c(1,0) c(2,0)

Figure 4: The valuations of two clocks are partitioned
into 6 squares, 17 edges, and 12 vertices.

of sets E ≡ {eλ| λ ∈ Λ}, which we call cells. The cells
cover the state space X

X =
⋃
λ∈Λ

eλ.

To the partitioning E, we associate an abstraction
function, which to each point in the state space asso-
ciates the cells that this point belongs to.

Definition 12 (Abstraction Function) Let E ≡
{eλ| λ ∈ Λ} be a finite partition of the state space
X ⊆ E. An abstraction function for E is the multi-
valued function defined by

αE : X → 2E , αE(x) = {e ∈ E| x ∈ e}.

At last, we are able to formulate the objectives of
this work rigorously. For a given dynamical system Γ,
we want to simultaneously devise a partitioning E of
the state space X and create a time automaton A with
locations E such that

1. The abstraction is sound on an interval [t1, t2]:

αE ◦ΦΓ(X0, t) ⊆ ΦA(αE(X0), t), for all t ∈ [t1, t2]

2. The abstraction is complete on an interval [t1, t2]:

αE ◦ΦΓ(X0, t) = ΦA(αE(X0), t) for all t ∈ [t1, t2].

Figure 5 illustrates the reachable set of a dynamical
system, along with reachable sets of a sound abstrac-
tion (left) and a complete abstraction (right).

4.1 Partitioning the State Space

This subsection presents the proposed partitioning.
The cells of the partition are generated by intersections
of sublevel sets of functions. To generate sound and

X0 X0

Figure 5: Reachable set of a dynamical system (shaded
area), and reachable sets of automata (cells
within bold lines). In the left figure, the
reachable set of the automaton includes more
cells than the ones reached by the dynamical
system, i.e., the abstraction is sound. In the
right figure, the reachable set of the automa-
ton includes only the cells that are reached by
the dynamical system, i.e., the abstraction is
complete.

complete abstractions, we use functions, whose sub-
level sets are positively invariant. We call such func-
tions partitioning functions.

To this end, we define a slice as the set-difference of
invariant sets.

Definition 13 (Slice) A nonempty set S is a slice if
there exist two open sets A1 and A2 such that

1. A1 and A2 are positively invariant,

2. A1 is a proper subset of A2, and

3. S = cl(A2\A1).

It is seen that since A1 and A2 are positively invari-
ant sets, a trajectory initialized in S can propagate to
A1, but a solution initialized in A1 cannot propagate
to S. This implies that, via these invariants, we can
to some extend study the possible trajectories of a dy-
namical system. We will adopt the convention that ∅
is a positively invariant set of any dynamical systems.

Example 3 Consider two second order dynamical sys-
tems Γi = (E2, x 7→ Lix) with

L1 =

[
−λ1 0

0 −λ2

]
, L2 =

[
λ1 0
0 λ2

]
, λ1, λ2 > 0.

Let D = {x| x < 1}, and suppose A1 = ∅, A2 = D.
Hence, A1 and A2 are positively invariant sets for Γ1.
Therefore, S = cl(A2\A1) = cl(D) is a slice.

For Γ2, let A1 = E\cl(D) and A2 = E. In like
fashion, A1 and A2 are positively invariant sets for Γ2,
and S = cl(A2\A1) = cl(D) is a slice.

To devise a partition of a state space, we need to
define finite collections of slices. These collections are
called slice-families.
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Definition 14 (Slice-Family) Let

A0 ⊂ A1 ⊂ · · · ⊂ Ak

be a collection of positive invariant sets of a dynamical
system Γ = (X, ξ) with X ⊆ Ak.
We say that the collection

S ≡ {Si = cl(Ai\Ai−1)| i = 1, . . . k}

is a slice-family generated by the sets {Ai| i = 1, . . . , k}
or just a slice-family.

We associate a function to each slice-family S to pro-
vide a simple way of describing the boundary of a slice.
Such a function is called a partitioning function.

Definition 15 (Partitioning Function) Let S be a
slice-family generated by the sets {Ai| i = 1, . . . , k},
then a continuous function ϕ : E → R smooth on
E\Cr(ξ) is a partitioning function for S if there is a
sequence

a0 < . . . < ak, ai ∈ R ∪ {−∞,∞}

of regular values of ϕ such that

cl(Ai) = ϕ−1([ai−1, ai]). (11)

We remark that by regular level set theorem, for ai ∈
R, the boundary ϕ−1(ai) of Ai is an embedded smooth
submanifold of E of co-dimension 1 Tu (2008).

As stated in the beginning of the section, we will
create cells that cover the entire state space. They are
obtained by intersecting slices. To ensure robustness of
the partition, it is important that the slices intersect
transversally. The robustness of a transversal intersec-
tion is readily seen from the definition of transversal
intersection Hirsch (1976).

Definition 16 (Transversal Intersection)
Suppose that N1 and N2 are embedded subman-
ifolds of M . We say that N1 intersects N2

transversally if, whenever p ∈ N1 ∩ N2, we have
Tp(N1) + Tp(N2) = Tp(M). (The sum is not direct,
just the set of sums of vectors, one from each of the
two subspaces of the tangent space Tp(M).)

The left subplot of Figure 6 illustrates level sets of two
partitioning functions (hence two embedded submani-
folds of E2). They intersect at the point p, and their
tangents (black lines) are identical. This implies that
their tangent vectors only span one dimension at p, i.e.,
Tp(N1)+Tp(N2) 6= Tp(M). Therefore, this intersection
is not transversal. Note that with an arbitrary small
perturbation, the intersection of the two level sets will
be empty (This perturbation is given by a smooth map,
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−0.5

0

0.5

x1

x
2 p

N1N2

Tp(N1)

Tp(N2)

−0.5 0 0.5
x1
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N1N2

Tp(N1)
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Figure 6: The left subplot shows an intersection that
is not transversal; whereas, the right subplot
shows aa transversal intersection of two level
sets.

see Theorem 2.1 in Hirsch (1976)). Therefore, this par-
tition is not robust.

In the right subplot Figure 6, two level sets inter-
secting at point p are illustrated. Their tangent vec-
tors (black lines) span E2, i.e., the level sets intersect
transversally. Note that two manifolds that do not in-
tersect are also transversal.

We define a transversal intersection of slices as fol-
lows.

Definition 17 (Transversal Intersection of Slices)
We say that the slices S1 and S2 intersect each other
transversally and write

S1 t S2 = S1 ∩ S2 (12)

if their boundaries, bd(S1) and bd(S2), intersect each
other transversally.

Cells are generated via intersecting slices. We denote
cardinality (number of elements) of a finite set S by
|S|.

Definition 18 (Extended Cell) Let S = {Si|i ∈
{1, . . . , k}} be a collection of k slice-families and let
G(S) ≡ {1, . . . , |S1|} × · · · × {1, . . . , |Sk|} ⊂ Nk. De-
note the jth slice in Si by Sij and let g ∈ G(S). Then

eex,g ≡tki=1 S
i
gi (13)

where gi is the ith component of the vector g. Any
nonempty set eex,g is called an extended cell of S.

The cells in (13) are denoted by extended cells, since
the transversal intersection of slices may form multiple
disjoint sets in the state space. It is desired to have
cells, which are connected. Therefore, the following is
defined.

Definition 19 (Cell) A cell of S is a connected com-
ponent of an extended cell of S⋃

h

e(g,h) = eex,g, (14a)
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where

e(g,h) ∩ e(g,h′) = ∅ ∀h 6= h′. (14b)

Example 4 This example illustrates the concepts of
extended cells and cells. Figure 7 shows a partition of
a two-dimensional state space generated by two slice-
families. The intersection of a slice from each slice-
families is an extended cell. The shaded area indicates
an extended cell that consists of four connected compo-
nents. Each connected component is a cell.

−1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

x
2

x1

Figure 7: Illustration of an extended cell (shaded area).
The extended cell is generated by intersecting
slices from two slice-families. The red lines
are the boundaries of the slice from the first
slice-family; accordingly, the green lines are
the boundaries of the slice from the second
slice-family.

A finite partition based on the transversal intersec-
tion of slices is defined in the following.

Definition 20 (Finite Partition) Let S be a collec-
tion of slice-families, S = {Si|i ∈ {1, . . . , k}}. We
define a finite partition E(S) by

e ∈ E(S) (15)

if and only if e is a cell of S.

We propose to use Lyapunov functions as partition-
ing functions, to obtain robustness of the partition.
The robustness is secured as the vector field is transver-
sal to the boundaries of the cells. This implies that
there exists an arbitrary small perturbation of the vec-
tor field, such that it is still transversal to the bound-
ary of the cells. The following definition of Lyapunov
function origin from Meyer (1968).

Definition 21 (Lyapunov Function) Let X be an
open connected subset of En. Suppose ξ : X → En

is continuous, and recall that Cr(ξ) denotes the set of
critical points of ξ. Then a real non-degenerate (see

(Matsumoto, 2002, p. 1)) differentiable function ϕ :
X → R is said to be a Lyapunov function for ξ if

p is a critical point of ξ ⇔ p is a critical point of ϕ

ϕ̇(x) ≡
n∑
j=1

∂ϕ

∂xj
(x)ξj(x) (16a)

ϕ̇(x) < 0 ∀x ∈ X\Cr(ξ) (16b)

and there exists α > 0 and an open neighborhood of
each critical point p ∈ Cr(ξ), where

||ϕ̇(x)|| ≥ α||x− p||2. (17)

Notice that we only require the vector field to be
transversal to the level curves of a Lyapunov function
ϕ, i.e., ϕ̇(x) = 〈∇ϕ(x), ξ(x)〉 < 0 for all x ∈ X\Cr(ξ),
and does not use Lyapunov functions in the usual sense,
where the existence of a Lyapunov function implies
stability, but uses a more general notion from Meyer
(1968). Assume that a Lyapunov function ϕ(x) is pos-
itive definite, then its sublevel sets are positively in-
variant.

A partitioning function ϕi for a slice-family Si that
is Lyapunov will be called a Lyapunov function for Si.

4.2 Generation of Abstraction

This subsection explains how a timed automaton A
is generated from a finite partition E(S) of the state
space of a system Γ = (X, ξ).

Definition 22 (Generation of Timed Automaton)
Let S = {Si| i ∈ {1, . . . , k}} be a finite collection

of slice-families, and T = {(tigi , t
i
gi) ∈ R2

+| i ∈
{1, . . . , k}, gi ∈ {1, . . . , |Si|}}. Then the timed
automaton A(S, T ) = (E,E0, C,Σ, I,∆) is defined by

• Locations: The locations of A are given by

E = E(S). (18)

This means that a location e(g,h) is identified with

the cell e(g,h) = α−1
E(S)({e(g,h)}) of the partition

E(S), see Definition 12.

• Clocks: The set of clocks is

C = {ci|i ∈ {1, . . . , k}}

.

• Alphabet: The alphabet is

Σ = {σi|i ∈ {1, . . . , k}}.
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• Invariants: In each location e(g,h), we impose an
invariant

I(e(g,h)) =

k∧
i=1

ci ≤ t
i
gi . (19)

• Transition relations: If a pair of locations e(g,h)

and e(g′,h′) satisfy the following two conditions

1. e(g,h) and e(g′,h′) are adjacent, that is e(g,h)∩
e(g′,h′) 6= ∅, and

2. g′i ≤ gi for all i ∈ {1, . . . , k}.
Then there is a transition relation

δ(g,h)→(g′,h′) = (e(g,h), G(g,h)→(g′,h′),

σi, R(g,h)→(g′,h′), e(g′,h′)), (20a)

where

G(g,h)→(g′,h′) =
k∧
i=1

{
ci ≥ tigi if gi − g′i = 1

ci ≥ 0 otherwise.

(20b)

Note that gi−g′i = 1 whenever a transition labeled
σi is taken.

Let i ∈ {1, . . . , k}. We define R(g,h)→(g′,h′) by

ci ∈ R(g,h)→(g′,h′) (20c)

iff gi − g′i = 1.

The semantics of (tigi , t
i
gi) ∈ T is the pair of a lower-

and an upper-bound on the time for any trajectory to
traverse the slice Sigi .

If the set S is a singleton, i.e., S = {S1} then by
slightly abusing the notation, we write A

(
S1, (t, t)

)
in-

stead of A
(
{S1}, {(t, t)}

)
.

Definition 23 A timed automaton Aex(S, T ) has lo-
cations given by

E = Eex(S) (21)

where a location eex,g ∈ Eex(S) is associated with
the extended cell eex,g generated by the slice-family S;
hence, eex,g = α−1

Eex(S)({eex,g}).

4.3 Properties of the Abstraction

In this subsection, we present some compositionality
results, which enables verification of high dimensional
systems. Furthermore, sufficient conditions for sound-
ness and completeness are presented. Proofs of the
propositions presented in this subsection can be found
in Sloth and Wisniewski (2011).

For a collection S = {Si| i ∈ {1, . . . , k}} of slice-
families, a product of timed automata A(Si) for i ∈
{1, . . . , k} is similar to the intersection of slices in the
slice-families Si. Therefore, the intersection of slices
should be nonempty to let the locations of the timed
automaton Aex(S) be such a product, as stated in
Proposition 1.

Proposition 1 Let S = {Si|i ∈ {1, . . . , k}} be a col-

lection of slice-families , and T = {(tigi , t
i
gi) ∈ R

2
+| i ∈

{1, . . . , k}, gi ∈ {1, . . . , |Si|}}. Suppose that for each
i, j ∈ {1, . . . , k}, and for each gi ∈ {1, . . . , |Si|} and
gj ∈ {1, . . . , |Sj |}, we have

Sigi t Sjgj 6= ∅ (22)

(the intersection is transversal and nonempty).

Then, Aex(S, T ) is isomorphic to the product of k
timed automata,

A
(
S1, (t1g1 , t

1
g1)
)
|| . . . ||A

(
Sk, (tkgk , t

k
gk

)
)
.

The property that Aex(S, T ) is isomorphic to the
product of k timed automata is of paramount impor-
tance for computations, since it allows parallel veri-
fication of the k timed automata each with only one
clock. Furthermore, it makes it possible to sequen-
tially add slice-families to the abstraction, to replace,
and to refine slice-families to improve the accuracy of
the abstraction.

The product of timed automata also allows the se-
quential verification of the abstraction. We show this
in terms of safety in the following.

Corollary 1 Suppose the premises of Proposition 1
hold. If the timed automaton

A
(
S1, (t1g1 , t

1
g1)
)
|| . . . ||A

(
Sj , (tjgj , t

j
gj )
)

is safe for some j ∈ {1, . . . , k}. Then, Aex(S, T ) is
also safe.

Sufficient conditions for soundness and completeness
of an abstraction are formulated in the following.

Proposition 2 (Sufficient Cond. for Soundness)
Let S = {Si|i ∈ {1, . . . , k}} be a collection of
slice-families. For i ∈ {1, . . . , k}, let ϕi be a Lya-
punov function for the slice-family Si. Suppose

T = {(tigi , t
i
gi) ∈ R

2
+| i ∈ {1, . . . , k}, gi ∈ {1, . . . , |Si|}}

with

tigi ≤
aigi − a

i
gi−1

sup{|ϕ̇i(x)| ∈ R+|x ∈ Sigi}
(23a)

t
i
gi ≥

aigi − a
i
gi−1

inf{|ϕ̇i(x)| ∈ R+|x ∈ Sigi}
, (23b)
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where ϕ̇i(x) is defined as shown in (16a). Then a timed
automaton A(S, T ) is a sound abstraction of the sys-
tem Γ = (X, ξ).

The sufficient condition states that the abstraction is
sound if tigi is less than or equal to the time it takes to

traverse Sigi maintaining a constant speed equal to the

largest possible speed within Sigi . Similarly, t
i
gi is to be

greater than or equal to the time it takes to traverse
Sigi maintaining a constant speed equal to the smallest

possible speed within Sigi .

Proposition 3 (Suff. Cond. for Completeness)
Let S = {Si|i ∈ {1, . . . , k}} be a collection of
slice-families, and let

Sigi = (ϕi)−1([aigi−1, a
i
gi ]). (24)

If the following two conditions are satisfied

1. for any g ∈ G(S), recall the definition of G(S) from
Definition 18, with gi ≥ 2 there exists a time tigi
such that for all x0 ∈ (ϕi)−1(aigi)

φΓ(tigi , x0) ∈ (ϕi)−1(aigi−1) (25)

and

2. tSi
gi

= tSi
gi

= tigi

then a timed automaton A(S, T ) with T =

{(tigi , t
i
gi)| i ∈ {1, . . . , k}, gi ∈ {1, . . . , |S

i|}} is a com-
plete abstraction of Γ.

Equation (25) states that it takes the time tigi for

all trajectories of Γ to propagate from (ϕi)−1(aigi)

to (ϕi)−1(aigi−1) (i.e., tigi is the time to traverse the

slice Sigi). If in addition, the time bounds for both
the invariant and guard conditions are the same (i.e.,
tSi

gi
= tSi

gi
= tigi) then the abstraction is complete.

Recall that t is used for invariants, while t is used for
guard conditions.

Proposition 3 is difficult to use for generating parti-
tioning functions. Therefore, the following proposition
gives a sufficient condition for satisfying (25), based on
the partitioning functions themselves.

Proposition 4 Let S = {Si|i ∈ {1, . . . , k}} be a col-
lection of slice-families. For the system Γ, let ϕi(x)
be a Lyapunov function for the slice-family Si (i ∈
{1, . . . , k}), i.e., Sigi = (ϕi)−1([aigi−1, a

i
gi ]). If

ϕi(x) = αϕ̇i(x) ∀x ∈ Rn (26)

then there exists a time tigi such that for all x0 ∈
(ϕi)−1(aigi) with gi ≥ 2

φΓ(tigi , x0) ∈ (ϕi)−1(aigi−1). (27)

5 Illustrative Example

To illustrate the use of the developed abstraction
method, an example is provided. It demonstrates what
type of questions can be answered using the proposed
abstraction.

In the example, we consider a simple dynamical sys-
tem, but a quite complicated specification. The system
is given by the following third order differential equa-
tion

ẋ =

−0.5387 −0.2851 −0.3479
−0.3815 −0.3010 −0.2343
−0.0512 −0.1277 −0.1078

x. (28)

Subsequently, we check if the system satisfies the
following specification illustrated in Figure 8: Do all
trajectories of the system (28) initialized in X0 (blue
box)

• avoid the unsafe region (red box),

• and reach the goal set (green box) within 10 s and
stay there.

To verify this specification, we partition the state
space using three quadratic Lyapunov functions
ϕi(x) = xTP ix, for i ∈ {1, 2, 3} and

P 1 =

0.5826 0.4020 0.4058
0.4020 0.2832 0.2811
0.4058 0.2811 0.2847

 (29a)

P 2 =

 1.4606 −1.8855 0.2278
−1.8855 2.5466 −0.7147
0.2278 −0.7147 1.6435

 (29b)

P 3 =

 1.3272 −2.0953 1.6566
−2.0953 3.5655 −3.7219
1.6566 −3.7219 7.3826

 . (29c)

The figure does not show the partition, but both the re-
quirements and some trajectories of (28) are depicted.

The analysis of the resulting timed automaton has
shown that the specifications are satisfied, as no tra-
jectories reach the red box, and all trajectories reach
the green box after 7.7 s. This also complies with the
simulated trajectories shown in Figure 8.

6 Conclusions

We have presented a method for abstracting au-
tonomous dynamical systems by timed automata. The
method is based on partitioning the state space using
positive invariant sets, which are generated by sublevel
sets of a family of Lyapunov functions. The proposed
method enables formal verification of reachability and
timing requirements of a dynamical system. This is

88



Wisniewski and Sloth, “Abstraction of Dynamical Systems by Timed Automata”

−2

−1

0

1
−1 0 1 2 3

−1

0

1

2

3

x2

x1

x
3

Figure 8: The blue box illustrates the initial states of
the system, the red box illustrates the unsafe
states, and the green box illustrates the goal
states. A set of system trajectories are drawn
with black lines.

done by model checking of the generated timed au-
tomaton.

The abstraction method is compositional, in the
sense that an abstraction of a high-dimensional system
can be generated as a product of timed automata each
having one clock. This improves the scalability of the
method. Furthermore, sufficient conditions for sound
and complete abstractions have been presented. These
conditions indicate how well the behavior of the ab-
straction resembles the dynamical system. Finally, an
example has been provided to illustrate a specification
that is possible to verify using the proposed abstraction
method.
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