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Abstract

Given a metric space (X, d), a natural distance measure
on probability distributions over X is the earthmover
metric. We use randomized rounding of earthmover
metrics to devise new approximation algorithms for
two well-known classification problems, namely, metric
labeling and 0-extension.

Our first result is for the 0-extension problem. We
show that if the terminal metric is decomposable with
parameter α (e.g., planar metrics are decomposable
with α = O(1)), then the earthmover based linear
program (for 0-extension) can be rounded to within an
O(α) factor.

Our second result is an O(log n)-approximation for
metric labeling, using probabilistic tree embeddings in
a way very different from the O(log k)-approximation
of Kleinberg and Tardos. (Here, n is the number of
nodes, and k is the number of labels.) The key element
is rounding the earthmover based linear program (for
metric labeling) without increasing the solution’s cost,
when the input graph is a tree. This rounding method
also provides an alternate proof to a result stated
in Chekuri et al., that the earthmover based linear
program is integral when the input graph is a tree.

Our simple and constructive rounding techniques
contribute to the understanding of earthmover metrics
and may be of independent interest.
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1 Introduction

The metric labeling problem has been proposed by
Kleinberg and Tardos [KT02] to model classification
problems from several domains, ranging from categoriz-
ing web documents to machine vision, including image
recovery and the stereo matching problem. Metric la-
beling models situations in which we wish to label nodes
in a graph given some prior information about their true
labels, and also information about whether each pair of
nodes should have similar labels. See [KT02] for a mo-
tivation from the perspective of Markov random fields.

Formally, the input is an n-node graph G = (V,E)
with nonnegative edge weights w(·, ·), a set of labels
L = [k],1 assignment costs c(v, i) for all v ∈ V, i ∈ L,
and a metric d(·, ·) on the set of labels. The goal
is to find a labeling f : V → L that minimizes the
total sum of two kinds of costs. For each node v ∈ V
we incur an assignment cost c(v, f(v)), which penalizes
us for assigning v a label f(v), according to the prior
(un)likelihood of v having that label. For each edge uv ∈
E we also incur a separation cost w(u, v) ·d(f(u), f(v)),
which penalizes us for assigning dissimilar labels to
adjacent nodes.

The 0-extension problem is a special case of metric
labeling, in which k of the nodes are designated as
terminals, whose labels are fixed in advance, and all
assignment costs are zero. When, in addition, the
metric on the labels is uniform, the problem further
reduces to the multiway cut problem, which is NP-hard
(and actually APX-hard [DJP+94]) even for just three
terminals. Thus, 0-extension and metric labeling are
also NP-hard.

Earthmover metric. In this paper, we consider a
linear program (LP) for these problems based on a
family of metrics, called earthmover metrics. Given
a metric (X, d), the earthmover metric with respect
to (X, d) is a natural extension of d to probability
distributions over X. Consider mounds of earth sitting
on points of X, and suppose that moving an ε amount
of earth from point i to point j takes ε · d(i, j) work.

1Throughout, [k] denotes the set {1, . . . , k}.
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If x and y are probability distributions over X, define
dEM(x, y) to be the minimum amount of work necessary
to move the mounds from the x configuration to the y
configuration.

There are several important properties of the earth-
mover metric. First, if d is a metric, then so is dEM (as
the reader has already guessed from the name). Second,
if xi denotes the probability distribution (over X) that
has all its mass concentrated on point i ∈ X (i.e., xi = 1
and xl = 0 for all l 6= i), then dEM(xi, xj) = d(i, j) for
all i, j ∈ X. Hence, dEM is indeed an extension of d. The
distance dEM(x, y) is given by solving a transportation
problem. That is, it is the optimal value of the following
linear program (LP), where each “flow” variable zij rep-
resents the amount of earth to be moved from label i to
label j when going from configuration x to configuration
y.

Minimize
∑
i,j∈X

d(i, j)zij

subject to
∑
j

zij = xi ∀i ∈ X∑
i

zij = yj ∀j ∈ X

zij ≥ 0 ∀i, j

Note that in the special case where the metric d is
uniform, the earthmover distance dEM is proportional to
the `1 distance between the two distributions. Indeed,
one of our original motivations for this work was to
better understand the relationship between `1 metrics
and earthmover metrics.

Earthmover based relaxation. The classification
problems mentioned above require us to map every
node of G to a label in L. A natural relaxation is
to allow the nodes to be mapped into the earthmover
metric that corresponds to the label metric (L, d). This
relaxation can be expressed by an LP. We write this LP
in terms of dEM, since this is how we shall think about
it. Namely, the configuration assigned to node v ∈ V ,
denoted by xv, represents the vector {xvi}i∈L (whose
components are the actual variables in the LP). This
further suppresses the |L|2 flow variables necessary for
representing dEM on each edge of G.

Definition 1.1. (Earthmover LP) The earthmover
linear program for metric labeling is as follows.

Min.
∑

v∈V,i∈L
c(v, i)xvi +

∑
uv∈E

wuvdEM(xu, xv)

s.t.
∑
i∈L

xvi = 1 ∀v ∈ V

xvi ≥ 0 ∀i ∈ L, v ∈ V

Adding integrality constraints on the variables
yields an exact formulation. For the 0-extension prob-
lem, we identify the labels with the k terminals, fixing
xii = 1 for all i ∈ L. All assignment costs are zero, so
the first term in the objective function is zero. Hence
this LP relaxation also makes sense for 0-extension.

1.1 Preliminaries and related work

Definition 1.2. (Decomposable metric) A metric
space (X, d) is called α-decomposable if for every δ > 0,
there is a randomized algorithm that partitions X into
clusters (subsets) {Xl}l such that2

1. Each Xl has diameter at most δ.

2. For every x, y ∈ X, the probability that x and y fall
in different clusters is at most αd(x,y)

δ .

We say that a graph (or family of graphs) is
α-decomposable if the shortest path metric on the
graph is α-decomposable. For example, it is easy to
see that a line metric is 1-decomposable. It is well-
known (see [AP90, LR99, LS93]) that any graph on n
vertices is O(log n)-decomposable, and that for some
graphs (expanders) this bound is the best possible.
Klein, Plotkin and Rao [KPR93] showed that planar
graphs are O(1)-decomposable, and that more generally,
graphs excluding a fixed minor of size r are O(r3)-
decomposable. Fakcharoenphol and Talwar [FT03]
improved the latter bound to O(r2). Charikar et
al. [CCG+98] showed that `dp-metrics are dmax{ 1

p ,1−
1
p}-

decomposable for any p ≥ 1, and that this bound is
tight.

The 0-extension problem was posed by Karzanov
[Kar98], who gave an LP relaxation that we will call
the semi-metric LP relaxation. He showed that this
linear program is integral when the terminal metric
is a tree (actually, a larger class of bipartite graphs
that contains trees; here, a tree metric cannot contain
Steiner nodes). Calinescu, Karloff and Rabani [CKR01]
gave an O(log k) approximation for 0-extension based
on this LP relaxation. For the special case of input
graphs that are planar, they gave an O(1) approxima-
tion algorithm. In fact, their algorithm extends to α-
decomposable input graphs, giving an O(α) approxima-
tion. Fakcharoenphol et al. [FHRT03] improved the gen-
eral result to O(log k/ log log k). On the other hand, the
semi-metric relaxation is known to have an Ω(

√
log k)

integrality gap [CKR01]. Finally, we note that Lee and

2A stronger definition of decomposability that is sometimes

used (padded decomposition) requires that the distance from a
vertex to its cluster’s boundary is well distributed. Our results
do not require this condition.
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Naor [LN03] have recently and independently obtained
a 0-extension result similar to ours, but using the semi-
metric relaxation.

The semi-metric LP relaxation allows nodes to
be mapped into an arbitrary metric containing the
terminal metric.3 Since the earthmover metric is a
specific metric of this type (containing the terminal
metric), the earthmover LP relaxation has an integrality
gap no larger than that of the semi-metric relaxation.
(Furthermore, all the above approximation algorithms
still work.) However, it is still unknown whether the
(worst-case) integrality gaps of the two relaxations are
different. Interestingly, it is not known if the integrality
gap of the earthmover LP relaxation is more than a
constant, even for metric labeling.

The metric labeling problem has been studied
for some time in the computer vision community.
A polynomial-time algorithm for line metrics and a
constant-factor approximation for uniform metrics were
given by Boykov et al. [BVZ98, BVZ01]. Gupta and
Tardos [GT00] gave a constant factor approximation on
truncated line metrics. Kleinberg and Tardos [KT02]
gave a 2-approximation algorithm for the case of a uni-
form metric on the labels, and combined this with Bar-
tal’s probabilistic tree embeddings [Bar98] to obtain
an O(log k log log k)-approximation for general metrics.
Fakcharoenphol et al. [FRT03] recently improved Bar-
tal’s result, leading to an improved bound of O(log k).

The earthmover LP was proposed independently by
Charikar [Cha00] and by Chekuri et al. [CKNZ01]. The
first successful use of this LP was in [CKNZ01], where
it was used to give matching or improved algorithms
for certain classes of distance functions d (convex and
truncated linear), which had been previously addressed
using flow techniques and local search [BVZ98, BVZ01,
GT00, IG98]. It is worth noting that this is the first
LP relaxation that directly models the general metric
labeling problem. Previously, LP relaxations were only
known for various simple classes of metrics.

Interestingly, the history of the multiway cut
problem parallels that of 0-extension in some ways.
Dahlhaus et al. [DJP+94] introduced the problem,
showed it is APX-hard, and gave a 2(1 − 1/k) approx-
imation using a combinatorial isolation heuristic. It is
known that a simple randomized algorithm based on the
semi-metric LP relaxation matches this factor, and that
the integrality gap for this LP is also 2(1−1/k) [Vaz01,
p.155]. Calinescu et al. [CKR00] strengthened the LP

3Since several nodes may be mapped onto the same point in the

containing metric, the induced distances between mapped nodes
form only a semi-metric; hence the name. Our relaxation has the
same property.

by embedding the nodes of V in `1, using it to obtain a
( 3

2 −
1
k )-approximation. Karger et al. [KKS+99] further

improved these results to a bound approaching 1.38 as
k →∞. The LP used for these algorithms is exactly the
same as the earthmover LP when the metric on labels is
uniform. It is plausible that the earthmover LP will be
similarly used to improve the approximation bound for
the general case of the 0-extension and metric labeling
problems. We believe that our results make progress in
this direction.

1.2 Our contributions. We devise two approxima-
tion algorithms that are based on rounding the earth-
mover LP. Our techniques improve the understanding of
earthmover metrics and may be of independent interest.

For 0-extension, we show in Section 2 that if the
terminal metric is α-decomposable, then there is a sim-
ple rounding algorithm for the earthmover LP which
approximates the LP solution by an integral solution
within a factor of O(α). Previously, this approximation
ratio was known to hold only under the more stringent
requirement that the input graph is α-decomposable.
Technically, we give a randomized rounding procedure
such that the expected separation cost of every two ver-
tices of G is no more than O(α) times larger than their
earthmover distance (which is simply their contribution
to the LP objective).

One case in which this is a significant improvement
on the previous known approximations is the following.
Suppose that there is a very large number of terminals,
but they all lie in a low-dimensional normed space. In
such cases, we know that α depends only on the dimen-
sion (e.g. α =

√
d for Euclidean space). Hence we can

use our rounding algorithm to give an approximation
which depends only on the dimension, and does not de-
pend on the number of terminals (or the size of G) at
all.

For metric labeling, we give in Section 3 an al-
gorithm that achieves an O(log n)-approximation. In
many cases, we would expect n, the number of objects
to be labeled, to far exceed k, the number of labels,
and then our approximation guarantee is worse than
the O(log k) currently known. However, there are ap-
plications where k � n. For instance, in recognizing the
position of a human body from an image (see [FH00]),
the objects are the handful of rigid moving parts, and
each part needs to be labeled with a six-tuple represent-
ing position, rotation and scale.4

Our new algorithm for metric labeling uses the
earthmover LP as follows. The LP solution defines

4The model used in [FH00] uses a different distance function
for each edge, but is otherwise identical to our model.
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an earthmover metric on V , which we probabilistically
approximate with a tree, and then round. The crux is
that our rounding method incurs no loss on the tree.
Our use of tree approximations contrasts with that of
[KT02], which instead approximates the label metric
by a tree, then uses a specialized LP for trees. Our
rounding method also proves that the earthmover LP
has no integrality gap when the input graph is a tree.
This phenomenon was previously mentioned by Chekuri
et al. [CKNZ01] (a proof appears in their upcoming
journal version), but our proof is very different.

Interestingly, this implies, for 0-extension on tree
graphs G, a distinction between the integrality ratio
of the earthmover LP and the semi-metric relaxations.
The former is integral as a special case of the result
above, while the latter has integrality ratio at least
2 − o(1) (e.g., if G is a star whose leaves are the
terminals).

2 0-extension algorithm for decomposable
terminal metrics

In this section we show that if the metric d on labels
(terminals) is α-decomposable, then a solution to the
0-extension earthmover LP relaxation can be rounded,
via a randomized algorithm, to an integral solution
whose expected cost is no more than O(α) times the
LP cost. Since, as remarked above, any k-point met-
ric is O(log k)-decomposable, we also get an O(log k)
approximation to the 0-extension problem in general.5

For better decomposable metrics, of course, the approx-
imation ratio is better.

Let T = [k] be the set of terminals and d be a metric
on T . For each vertex u, let xu = 〈xu1, xu2, . . . , xuk〉 be
the distribution over terminals that is associated with
u in the solution to the earthmover LP, and let dEM be
the induced earthmover metric. For a vertex u ∈ V , let
Au = mini∈T {dEM(xu, i)} be the distance from u to its
closest terminal.

At a high level, the rounding algorithm consists of
the following steps, each bringing us closer to an integral
solution.

1. Break up V into groups Vs = {u : Au ≈ 2s},
containing vertices u with approximately the same
value of Au. We will round each group separately.

2. Truncate the distribution xu so that it is concen-
trated only on terminals “close” to u.

3. Decompose the terminal metric into clusters of
diameter 2s and choose a representative terminal
from each cluster.

5We can in fact do slightly better; see the discussion at end of

this Section.

4. Project the distribution xu onto representatives, so
now all its mass is concentrated on representative
terminals close to u.

5. Round each vertex in Vs to one of the represen-
tative terminals using the rounding algorithm of
Kleinberg and Tardos [KT02] for metric labeling
on uniform metrics.

Intuitively, this last step works since to the vertices
in Vs, the metric on the representatives looks approxi-
mately uniform.

2.1 Formal rounding algorithm. Assume without
loss of generality that the smallest distance between
terminals is 1, and denote the largest distance by ∆. Let
Decomp(T, δ) be the decomposition algorithm implied
by Definition 1.2.

1. r0 ← 0.

2. For s = 1, 2, . . . , dlog2 ∆e:

2.1 Pick rs uniformly at random in [2s−1, 2s].

2.2 (Grouping) Let Vs = {u ∈ V : rs−1 < Au ≤
rs}.

2.3 Let δ = 2s.

2.4 (Truncation) Pick uniformly at random γ ∈
[4δ, 7δ]. For each u ∈ v, zero out xui whenever
dEM(xu, i) > γ and rescale the remaining xui’s
so that their sum is 1. Let x′u be the resulting
vector.

2.5 Let {Tl}l be the clusters output by
Decomp(T, δ).

2.6 Pick an arbitrary terminal il in each cluster
Tl, and make it the cluster’s representative.

2.7 (Projection) For u ∈ Vs, project the distribu-
tions xu from the clusters onto the represen-
tatives:

x′′ui ←
{ ∑

i∈Tl x
′
ui i = il

0 otherwise

2.8 (Rounding) Apply on (Vs, x′′) the rounding
algorithm of [KT02] for metric labeling on the
uniform metric.

2.2 Analysis. Let f be the final assignment output
by our algorithm, i.e. vertex u is assigned to termi-
nal f(u). For an edge uv, we will sometimes refer to
dEM(u, v) = dEM(xu, xv) as the cost of uv; the associ-
ated distribution vectors will be implicit from context.
Also, since for terminals i, j, dEM(i, j) = d(i, j), we will
when convenient use the latter notation.
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Our analysis is edge by edge. We show that for
every edge uv, the expected value of d(f(u), f(v)) is
no more than O(α) times dEM(xu, xv). Notice that
the initial step of grouping breaks up the problem
into several subproblems which we solve separately.
Consequently, every edge can be either an intragroup
edge, if its endpoints are in the same group Vs, or
an intergroup edge that goes across different groups.
Looking at the intragroup edges first, we show that
each subsequent step of the algorithm does not increase
the expected cost of any intragroup edge by too much.
Intergroup edges are easier, and will be handled at the
end.

Truncation. In the truncation step, we pick γ uni-
formly at random in [4δ, 7δ] and truncate each xui to be
concentrated only on terminals within distance γ from
u. We then rescale the xui’s to restore their sum to
1. We first show that we never need to rescale by too
much.

Lemma 2.1. For any vertex u and any terminal i,
x′ui ≤ 3

2xui.

Proof. Let i∗ be the terminal closest to u and con-
sider the iteration in which u ∈ Vs. The group-
ing phase ensures that dEM(u, i∗) ≤ rs ≤ δ.
By definition, dEM(u, i∗) =

∑
i 6=i∗ xuidEM(i∗, i) ≥∑

i:dEM(i∗,i)>3δ 3δxui. Thus
∑
i:dEM(i∗,i)>3δ xui ≤

1
3 and

so
∑
i:dEM(i∗,i)≤3δ xui ≥ 2/3.

Moreover, by the triangle inequality, dEM(u, i) ≤
dEM(u, i∗) + dEM(i∗, i). Thus at least two-thirds of
the probability mass in xu is concentrated on terminals
within distance 4δ from u. Since α ≥ 4δ, the truncation
removes no more than a third of the probability mass,
and the scaling therefore requires multiplication by a
factor no larger than 3/2. �

We now show that the transformation does not
increase the cost of an edge uv by much.6

Lemma 2.2. For any intragroup edge uv,

E[dEM(x′u, x
′
v)] ≤ 16 · dEM(xu, xv).

Proof. Recall that dEM(xu, xv) =
∑
ij zijd(i, j), where

the zij flow variables transform the distribution xu to
xv. We will show how to modify the zij ’s slightly so
that they become a valid flow to transform x′u to x′v,
and such that the expected cost of this new flow is not
too large. Clearly the earthmover distance dEM (x′u, x

′
v),

being the cost of the best flow, is no larger.

6We make no attempts to optimize the constants here or

anywhere else in the paper.

To define the new flow z′ij , we need to set up some
terminology. Let Tu and Tv be the sets of terminals
within distance γ from u and from v, respectively. Let
pu =

∑
i∈Tu xui and qu = 1 − pu, and define pv and qv

similarly. Without loss of generality, assume pu ≥ pv.
The original flow variables z naturally fall into four
categories : fpp, fpq, fqp and fqq, where, for example,
the flow fpq goes from i ∈ Tu to j 6∈ Tv. Notice that the
new flow z′ij transforms x′u to x′v, and is thus nonzero
only on flow going from Tu to Tv.

To create the new flow, first scale up the first kind
of flow fpp by a factor of 1/pu. Set the flows in fqp and
fqq to zero. Finally, scale up the flows in fpq by 1/pu
and re-route them greedily to terminals in Tv. It is easy
to verify that the total flow leaving Tu is 1, the total
flow leaving V \ Tu is 0, the total flow entering V \ Tv
is 0, and by conservation of flow, the total flow entering
Tv is 1. Furthermore, the total flow leaving every i ∈ Tu
is at most x′ui, and, since pu ≥ pv, the last step can be
done so that the total flow entering every i ∈ Tv is at
most x′vi. Thus we get a feasible flow.

Notice that by Lemma 2.1, pu, pv ≥ 2/3, and hence
the scaling only increases any cost by a small factor.
The flows in fpq are rerouted to terminals further away.
Thus these flows contribute to an increase in cost, and
this cost needs to be bounded.

We first show that there isn’t too much such flow.
Consider any flow variable zij . For this flow to be
in fpq or fqp (note that we now cannot assume that
pu ≥ pv), it must be the case that exactly one of the
two events dEM(u, i) ≤ γ and dEM(v, j) ≤ γ happen.
In other words, γ must fall between dEM(u, i) and
dEM(v, j). The probability of that happening is clearly
at most |dEM(v, j) − dEM(u, i)|/3δ. Further, by the
triangle inequality, |dEM(v, j)−dEM(u, i)| ≤ dEM(u, v)+
dEM(i, j). Thus flow zij falls in the bad categories with
probability at most min{1, (dEM(u, v) + dEM(i, j))/3δ}.

On the other hand, if a flow in fpq is rerouted, it
now goes from i ∈ Tu to some j′ ∈ Tv (or is distributed
amongst more than one such j′). The distance traveled
by the flow is dEM(i, j′) ≤ dEM(i, u) + dEM(u, v) +
dEM(v, j′) ≤ dEM(u, v) + 14δ.

Thus the expected cost of the rerouted flow (ignor-
ing the scaling) is

∑
i,j

zij · Pr[zij is rerouted] · (cost of rerouting)

≤
∑
i,j

zij ·min{1, (dEM(u, v) + dEM(i, j))/3δ}

·(dEM(u, v) + 14δ)

≤
∑
i,j

zij · dEM(u, v) +
14
3
·
∑
i,j

zij(dEM(i, j) + dEM(u, v))
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≤ dEM(u, v) +
14
3
dEM(u, v) +

14
3
dEM(u, v)

=
29
3
dEM(u, v),

where in the second to last step, we use the fact
that

∑
i,j zijdEM(i, j) is exactly dEM(xu, xv).

Since the scaling is by a factor no larger than 3/2
and (1 + 29

3 ) · 3
2 = 16, the lemma follows. �

Clustering and projection. Intuitively, we would like
the clustering and projection steps to convert the metric
on the host space T to an approximately uniform metric.
On this metric, the earthmover distance is almost the
same as the `1 metric, and we can the proceed using the
Kleinberg-Tardos rounding.

We now show that clustering of terminals and the
projection does just this. More precisely, we relate the
`1 distance between x′′u and x′′v with the earthmover
distance dEM(x′u, x

′
v).

Lemma 2.3. For any u, v ∈ Vs,

E[||x′′u − x′′v ||1] ≤ α

2s
· dEM(x′u, x

′
v)

Proof. Let the flow values z′ij be such that
dEM(x′u, x

′
v) =

∑
i,j d(i, j)z′ij . We will make use

of those values below. Let ρ(i, j) be 1 if terminals i and
j are separated by the clustering step, and 0 otherwise.
Let ρEM be the earthmover distance w.r.t. ρ. Now we
have that

E[||x′′u − x′′v ||1] = E[ρEM (x′′u, x
′′
v)](2.1)

≤ E[
∑
i,j

ρ(i, j)z′ij ](2.2)

≤
∑
i,j

α

2s
d(i, j)z′ij(2.3)

=
α

2s
dEM (x′u, x

′
v).

The first equality (2.1) holds because ρ is a uniform met-
ric, for which the earthmover metric is `1. The following
inequality (2.2) holds because one (not necessarily opti-
mal) way to route flow from x′′u to x′′v is to take the flow
induced by z′ij , i.e., the flow from one cluster representa-
tive to another equals the total flow that z′ij has routed
from all the nodes in the first cluster to all the nodes in
the second cluster; in this case, flow originating from z′ij
is associated with cost ρ(i, j). The last inequality (2.3)
is due to the requirements of Definition 1.2. �

Also note that since the clusters are of diameter δ,
the distribution xu for any terminal u is still concen-
trated on terminals within distance 8δ of u.

Kleinberg-Tardos rounding. We now go over the
rounding algorithm given by Kleinberg and Tardos
[KT02] for rounding the `1 linear program they used
for metric labeling when the terminal metric is uniform.
Given a set of terminals 1, . . . , k, a set of vertices V and
distribution vectors x′′u for every u ∈ V , their algorithm
assigns each vertex u ∈ V to some terminal.

The algorithm is as follows:

1. While there is an unassigned vertex do

1.1 Pick a terminal i uniformly at random from
T .

1.2 Pick a value c uniformly at random from [0, 1].

1.3 Assign to i all u ∈ V such that x′′ui ≥ c.

It is not difficult to show that the algorithm ter-
minates in expected polynomial time. Kleinberg and
Tardos show that the algorithm has the following nice
properties. We repeat the proof here for completeness.

Lemma 2.4. The algorithm KT has the following prop-
erties:

• For any vertex u ∈ V , the probability that u gets
assigned to i is exactly x′′ui.

• For a pair of vertices u, v ∈ V , the probability that u
and v get assigned to different terminals is at most
‖x′′u − x′′v‖1.

Proof. In any iteration, conditioned on u being unas-
signed, the probability that it gets assigned to i is ex-
actly 1

|T |x
′′
ui. Thus the first property follows. Moreover,

it follows that each vertex has a probability 1
|T | of being

assigned to some terminal in each iteration.
Now let us look at a pair of vertices u and v. The

probability that exactly one of u and v is assigned
to some terminal in a particular iteration is exactly
1
|T |
∑
i |x′′ui − x′′vi| =

1
|T |‖x

′′
u − x′′v‖1.

Thus, the probability that u and v are assigned to
different terminals can be upper bounded by

Pr[exactly one of u and v assigned in an iteration]
Pr[at least one of u and v assigned in an iteration]

Plugging in the values of these probabilities, the second
property follows. �

Intragroup summary. Since the Kleinberg-Tardos
algorithm assigns a vertex u to a terminal i with non-
zero x′′ui, our truncation step ensures that any vertex u
is assigned to a terminal within distance 8δ from u.

When vertices u and v are assigned to different
terminals f(u) and f(v), the distance d(f(u), f(v)) is
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bounded by dEM(f(u), u) + dEM(u, v) + dEM(v, f(v)),
where dEM(f(u), u) ≤ 8δ and dEM(f(v), v) ≤ 8δ.
Moreover, by Lemma 2.4, the probability that u and
v are assigned different terminals is at most ‖x′′u−x′′v‖1.
Thus, using Lemmas 2.2 and 2.3, the expected value of
dEM(f(u), f(v)) is at most min{1, 16(α/δ) · dEM(u, v)} ·
(dEM(u, v) + 16δ) = O(α) · dEM(u, v). Thus we have
shown the following.

Lemma 2.5. For every u, v ∈ Vs,

E[d(f(u), f(v))] = O(α) · dEM(xu, xv).

Intergroup edges. We now argue about the inter-
group edges.

Lemma 2.6. For any edge uv ∈ E, the contribution
to the expected cost of uv due to intergroup cutting is
O(dEM(xu, xv)).

Proof. As argued above, each vertex u ∈ Vs is assigned
to a terminal closer than 8 · 2s. Let uv ∈ E be
an edge that goes from u ∈ Vs to v ∈ Vs′ where
s′ ≤ s. Then d(f(u), f(v)) is at most dEM(f(u), u) +
dEM(u, v) + dEM(v, f(v)). Since dEM(u, f(u)) ≤ 2s+3

and dEM(f(v), v) ≤ 2s+3, it follows that d(f(u), f(v)) ≤
dEM(u, v) + 2s+4.

Moreover, note that uv is an intergroup edge
only if Au ≤ rs−1 < Av, which happens with
probability at most min{1, (Av − Au)/2s−2} ≤
min{1, dEM(u, v)/2s−2}. Thus the expected contribu-
tion to the length of an edge uv due to the intergroup
cutting is O(dEM(u, v)). �

We note that the proof of lemma 2.6 does not
use any property of the earthmover distance, and this
grouping can be applied to the semi-metric relaxation as
well. This leads to a much simpler proof of the Calinescu
et al. [CKR01] result on decomposable graphs. We omit
the details here.

Combining lemmas 2.5 and 2.6, we get

Theorem 2.1. The algorithm described above gives an
O(α) approximation algorithm to the 0-extension prob-
lem when the terminal metric is α-decomposable.

We note that each of the random steps of the
algorithm can be easily derandomized using standard
techniques, leading to a deterministic algorithm with
the same performance guarantee. We omit the details
from this extended abstract.

Discussion. Recall that it is always the case that α =
O(log k), so that our algorithm has an O(log k) worst-
case bound. However, the clustering and projection

steps above could in fact have been done at any scale
larger than 2s; the analysis for the intragroup edges
still goes through. Thus, if the terminal metric has a
better decomposition at some large scale, the intragroup
edges do not overpay in expectation. (The bound on the
distance of a vertex from its assigned terminal, however,
goes up, increasing the expected cost of intergroup
edges.)

To take advantage of this, we pick a random i ∈
[0, 1

2 log log k], and do the decomposition at scale 2s+i

instead. In expectation, this can be shown to be
a worst-case O(log k/ log log k)-decomposition, and the
intergroup edges are also fine in expectation. Thus we
can improve the result for general graphs from O(log k)
to O(log k/ log log k), matching the result in [FHRT03].

It can be shown that the techniques of [CKR01]
imply an O(β) approximation to the problem when the
terminal metric satisfies |B(x, 2r)|/|B(x, r)| ≤ 2β for
every x and r. (Here B(x, r) is the set of points within
radius r from x in the metric.) Since any such metric
has a β-decomposition, their results follow from ours.
However, there are metrics where β is much larger than
α (e.g. d-dimensional Euclidean spaces have β = d
but have

√
d-decompositions) and thus our results are

stronger than those implied by previous techniques.

3 Metric labeling via tree-rounding

In this section we use the earthmover LP to obtain an
O(log n)-approximation for the metric labeling problem.
The basic idea of our algorithm is to use the LP to define
an embedding of the nodes of V into the earthmover
metric space defined from the label metric (L, d). We
then approximate the metric space (V, dEM) with a tree,
and round in a coordinated way based on the tree. The
crux of this method is that we can round on a tree while
preserving both separation costs along tree edges and
all assignment costs. We start off by showing how to do
this.

Coordinated rounding. Given two distributions x
and y over labels, we show how to randomly round
x and y to labels in a way that obeys the specified
distributions, but is coordinated so that the expected
distance between the resulting labels is dEM(x, y). For
i ∈ [k+ 1], define the breakpoint Bi =

∑i−1
`=1 xi. Identify

label i with the interval Ii = [Bi, Bi+1). Generate a
uniform random variable Ux ∈ [0, 1), and round x to
the label into whose interval Ux falls. We now use the
flow variables zij to determine how to round y. Further
subdivide Ii into intervals Iij = [Bij , Bi(j+1)), where
Bij = Bi +

∑j−1
`=1 zij , j ∈ [k + 1]. If Ux lands in the

subinterval Iij , we round x to i (since Ux ∈ Iij ⊆ Ii) and
y to j. We also generate a [0, 1) random variable Uy as a
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function of Ux (for use later in further propagating the
rounding). Break [0, 1) into intervals I ′j , and partition
each I ′j into subintervals I ′ij by the zij flow values,
analogously to what we did for x. If Ux ∈ Iij , then
set Uy = B′ij + (Ux − Bij). That is, Uy is defined so
that it lands in the same spot in interval I ′ij as Ux did
in interval Iij . This process leads easily to the following
proposition.

Proposition 3.1. In the rounding scheme above, x
and y are each rounded to labels with probabilities
matching their given distributions, and the expected
distance between these labels is dEM(x, y). Moreover,
Uy is distributed uniformly in [0, 1).

This rounding technique easily extends to trees,
where each node is assigned a distribution over labels.
Fix an arbitrary root node r, and generate a uniform
[0, 1) random variable Ur. Round r according to Ur
using the procedure described above, and propagate this
rounding to all of r’s children, thereby generating an
associated random rounding variable Uc for each child
c. In this way, we propagate the rounding all the way
down the tree.

Corollary 3.1. If the input graph is a tree, the earth-
mover LP has an integrality gap of 1.

We note that the metric labeling problem is poly-
nomial time solvable on trees using dynamic program-
ming. The above corollary then provides an alternative
approach. More importantly, this rounding technique
leads to a new approach for the general metric labeling
problem.

Our algorithm. A probabilistic tree approximation of
a metric d with distortion c is a probability distribution
over a collection of trees T such that for all u, v ∈ V , we
have ET∈T [dT (u, v)] ≤ cd(u, v), while for every T ∈ T
we have dT (u, v) ≥ d(u, v). In general, the trees may
contain Steiner points not in the original metric space.
Our algorithm uses the following two results.

Theorem 3.1. (Fakcharoenphol et al. [FRT03])

For every n-point metric d there is a probabilistic tree
approximation with distortion O(log n) from which we
can sample in polynomial time.

Theorem 3.2. (Gupta [Gup01]) For every tree T =
(V ′, E, w) and a set of required vertices V ⊆ V ′, there
exists a tree T ∗ = (V,E∗, w∗) such that for all u, v ∈ V ,
dT (u, v) ≤ dT∗(u, v) ≤ 8dT (u, v).

Here is our algorithm:

1. Solve the earthmover LP.

2. Define the metric dLP on V by dLP (u, v) =
dEM(xu, xv). Use Theorems 3.1 and 3.2 to generate
a random tree T spanning just V that probabilisti-
cally approximates dLP with dilation O(log n).

3. Compute the earthmover distances along each edge
of T to obtain the flow variables. Select one node
arbitrarily as the root, randomly round it, and
propagate the results to the rest of the tree.

Let A and S denote the assignment and separation
costs of our solution, while ALP and SLP denote the
corresponding costs in the optimal LP solution.

Theorem 3.3. Our algorithm achieves E[A] = ALP
and E[S] ≤ O(log n)SLP . Thus, it provides O(log n)-
approximation for metric labeling.

Proof. The LP solution provides a lower bound on the
cost of OPT . By Proposition 3.1, the nodes of the tree
are each rounded to labels according to the distribution
specified by the LP, so the assignment cost is preserved
in expectation. The separation cost is preserved in
expectation along each tree edge, so by the triangle
inequality, E[d(f(u), f(v))] ≤ dT (u, v) for all u, v ∈ V
(here the expectation is over the randomized rounding).
But ET [dT (u, v)] ≤ O(log n)dEM(xu, xv), so summing
over the edges of G yields the desired bound.

�

We note that this algorithm can also be easily
derandomized. We omit the details.
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