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ABSTRACT
In this paper, we propose virtual data center (VDC) as
the unit of resource allocation for multiple tenants in the
cloud. VDCs are more desirable than physical data cen-
ters because the resources allocated to VDCs can be rapidly
adjusted as tenants’ needs change. To enable the VDC ab-
straction, we designed a data center network virtualization
architecture called SecondNet. SecondNet is scalable by
distributing all the virtual-to-physical mapping, routing, and
bandwidth reservation state in server hypervisors. Its port-
switching based source routing (PSSR) further makes Sec-
ondNet applicable to arbitrary network topologies using com-
modity servers and switches. SecondNet introduces a cen-
tralized VDC allocation algorithm for virtual to physical map-
ping with bandwidth guarantee. Simulations demonstrated
that our VDC allocation achieves high network utilization
and low time complexity. Our implementation and experi-
ments on our testbed demonstrate that we can build Second-
Net on top of various network topologies, and SecondNet
provides bandwidth guarantee and elasticity, as designed.

1. INTRODUCTION
With the advent of Amazon EC2, Google App En-

gine, and Microsoft Azure, the dream of computing-as-
a-utility is becoming a reality [25, 28]. By outsourcing
computing to the cloud, utility computing frees busi-
nesses and consumers from the cost and burden of plan-
ning, purchasing, operating, and maintaining physical
hardware and software, and at the mean time, it offers
elasticity to meet dynamic demands in resources and
good economy with a pay-as-you-go billing model [14].
The Service Level Agreement (SLA) of today’s utility

computing [3, 26, 4, 27] are centered around computa-
tion (dollars per hour per virtual machine or VM), stor-
age (dollars per GB per month), Internet traffic (dollar
per GB transferred), and the availability of these re-
sources. Nevertheless, no abstraction or mechanisms
and hence no SLAs are available to capture the require-
ments on the interactions among the allocated VMs,
such as bandwidth guarantees among the VMs.
In this paper, we propose virtual data center (VDC)

as the abstraction for resource allocation. A VDC is
defined as a set of VMs with a customer-supplied IP
address range and an associated service level agree-
ment (SLA). The SLA specifies not only computation
and storage requirements (such as the number of VMs,
CPU, memory, and disk space of each VM), but also
bandwidth requirements for the VMs. The bandwidth
requirement is a key addition and offers the significant
benefit of performance predictability for distributed com-
puting. A VDC gives the illusion of a dedicated physical
data center. This requires VDCs to be isolated from one
another in all resource access and usage. A VDC is in
fact more desirable than a physical data center because
it offers elasticity which allows its SLA to be adjusted
according to the customer’s dynamic demands.
To support VDC, we have designed a data center net-

work virtualization architecture called SecondNet. The
goals of SecondNet are as follows. The design must
be scalable. For example, bandwidth reservation state
maintenance must scale up to hundreds of thousands
of servers and millions of VMs in a data center. It
must achieve high utilization of the infrastructure net-
work and support elasticity when tenants’ needs change.
Finally, the architecture must be practically deployable
with commodity servers and switches. Providing band-
width guarantees while achieving these goals is a key
challenge and is the focus of this paper.
Maintaining bandwidth allocation state at switches

is prohibitively expensive even if only a small subset
of the VMs are communicating with one another (Sec-
tion 3.2). We address the scalability issue by distribut-
ing those state at the hypervisors of servers (which need
only handle state for its hosted VMs) and use source
routing to encode the route into each packet. Conse-
quently, SecondNet’s switches are stateless. The hyper-
visors are responsible for bandwidth policing since they
are part of the trusted computing base.
For providing bandwidth guarantees, we leverage a

special characteristic of data center networks. That is,
a data center network is administered by a single entity,
and thereby its network topology and failures within
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Figure 1: SecondNet virtualizes computing,
storage, and network resources and allocates
Virtual Data Centers (VDCs) according to their
SLAs. SecondNet can work with all data cen-
ter network structures, such as fat-tree, VL2,
BCube, and DCell.

can be obtained. This global view of the network al-
lows a centralized bandwidth allocation together fail-
ure handling, which greatly simplifies the problem. In
contrast, significant complexity arises for achieving In-
tegrated Services for the Internet due to the numerous
ISPs involved [15].
Nevertheless, even centralized bandwidth allocation

poses significant challenges. It is an NP-hard problem.
We then designed a low time-complexity heuristic algo-
rithm. In this algorithm, we group neighboring servers
into clusters of different sizes. When allocating a VDC,
we only search the appropriate clusters instead of the
entire physical network, greatly reducing the allocation
time. This also leads to bandwidth-efficient VDCs be-
cause the servers allocated are close in distance. We
then use the efficient min-cost flow algorithm to map
VMs onto physical servers and leverage the rich connec-
tivity of the physical networks in path allocation. Our
allocation algorithm handles incremental expansion and
release of resource usage to support elasticity.
For a practical implementation of source routing in

the data center environment, we introduce a Port-Switching
based Source Routing (PSSR). Since the network topol-
ogy of a data center network is known, PSSR repre-
sents a routing path as a sequence of output ports of
switches. PSSR can be readily implemented using the
MPLS (multi-protocol label switching) [33] capability
in existing commodity switches. SecondNet therefore
can be ready deployed on top of any of the recently
proposed data center network structure, such as fat-
tree [2], VL2[11], DCell [12], and BCube [13], as shown
in Fig. 1.
The simulation results of our VDC algorithm show

that we can allocate a 5000-VM VDC in 493 seconds

on average in a 100,000-server data center. Moreover,
our allocation algorithm achieves high resource utiliza-
tion. We achieve more than 90% server bandwidth for
BCube, fat-tree, and VL2.
We have implemented SecondNet with commodity

servers and switches. We have constructed a 64-server
testbed that supports both BCube and fat-tree. Our
experiments show that SecondNet provides service dif-
ferentiation and bandwidth guarantee, and SecondNet
can perform path reallocation in seconds and VM mi-
gration in tens of seconds for failure handling and dy-
namic VDC expansion.
The rest of the paper is organized as follows. We de-

scribe VDC service model in Section 2 and overview our
SecondNet architecture in Section 3. We present PSSR
and our VDC allocation algorithm in Section 4 and Sec-
tion 5. We use simulation to study VDC allocation in
Section 6 and show implementation and experiment re-
sults in Section 7. Section 8 presents related work and
Section 9 concludes.

2. SERVICE MODEL
Addressing. For address isolation, every VDC has

its own IP address space (possibly supplied by the user
herself), which may be overlapped with other VDCs’
IP address spaces. VMs within the same VDC can
communicate with each other just as they are in the
same layer-2 Ethernet. VMs in different VDCs cannot
talk with each other by default due to security concern.
But if needed, they can communicate through a layer-3
gateways. Certainly, at least one VM needs to know the
public IP address of the peer VM in another VDC. Sim-
ilarly, VMs in VDCs can communicate with computers
in the Internet or other private networks.
Service Types. We enumerate the possible scenar-

ios needed by different tenants and make the case for
different VDC service types.
Some applications desire performance predictability

and can benefit significantly from having bandwidth
guarantees between VM-pairs. For example, many web
services can be divided into three tiers [36]: a frontend
Web server tier, a middle application tier for business
logic, and a backend database/storage tier. It is desir-
able to have bandwidth guarantees for the frontend-to-
middle and middle-to-backend communications so that
such web services can serve their tenants with predictable
performance. Also, distributed computing applications,
such as those that use MapReduce for data-intensive op-
erations, need to shuffle data among many servers. The
execution of such a MapReduce job may be severely de-
layed by a small number of straggling tasks due to con-
tentions for network bandwidth [9]. Bandwidth guar-
antees make it possible to predict the execution time
of such distributed computing applications and hence
know how long a VDC needs to be rented.
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Secondly, there are applications, such as background
file backup, that do not require bandwidth guarantee.
A best effort network service is sufficient for them.
Lastly, there are applications whose detailed traffic

patterns cannot be predetermined, but still prefer bet-
ter than best-effort service. For example, when en-
terprises move their IT infrastructures into the cloud,
they can reserve egress/ingress bandwidths for their
Web/email/file servers and assign better than best-effort
priority to these services for service differentiation.
Based on these observations, we support a service

model of three VDC types. Type-0 service provides
guaranteed bandwidth between two VMs, which is anal-
ogous to Integrated Service [15]. We also provide the
traditional best-effort service without any bandwidth
guarantee. Between type-0 and best-effort, we offer a
type-1 service that provides local egress/ingress band-
width reservation for a virtual machine. Our VDC
model focuses on bandwidth since network bandwidth
is a scarce resource [9]. How to include metrics such as
latency into the VDC model is our future work.
From a service differentiation point of view, type-0

provides hard end-to-end bandwidth guarantee. Type-
1 provides only last and/or first hop guarantee, but its
performance is better than best-effort. We therefore as-
sign type-0 traffic the highest priority followed by type-
1 traffic, and best-effort traffic has the lowest priority.
We monitor and shape the type-0 and type-1 traffic and
ensure that they do not violate their reservations. Low
priority traffic can use the network bandwidth reserved
by high priority traffic if those bandwidth is not fully
utilized. Hence the hybrid of different service types nat-
urally results in efficient network bandwidth usage.
A VDC’s bandwidth requirements can be specified

using a set of rules of the format [VDCId, srcVM, dstVM,
srcPort, dstPort, protocol]→ servType (bandwidth). For
example, [vdc0,vm0,vm1,80,*,TCP]→ type-0 (100Mb/s)
specifies that TCP packets from vm0 to vm1 with source
port 80 in vdc0 requires a type-0 service with an end-
to-end bandwidth guarantee of 100Mb/s. SecondNet
needs to reserve the sum of the bandwidth required for
all type-0 flows from vm0 to vm1. In another example,
[vdc1, vm2, *, 139, *, TCP] →type-1 (50Mb/s) speci-
fies that all TCP packets from source port 139 of vm2

requires a type-1 service with a local egress bandwidth
guarantee of 50Mb/s at vm2.

3. SECONDNET OVERVIEW
To support the above service model, we have de-

signed a data center virtualization architecture called
SecondNet as illustrated in Fig. 2. SecondNet focuses
on bandwidth allocation and leverages server hyper-
visor technology for computation and storage (CPU,
memory, disk) isolation and allocation. It introduces a
VDC manager for VDC creation, adjustment, and dele-

Figure 2: The SecondNet architecture. The red
dashed lines form a spanning tree for signaling
and failure handling. The green broad lines show
a port-switching source routing (PSSR) path.

tion. VDC manager decides how a VDC is mapped to
the physical infrastructure. The commodity switches
are configured to support PSSR. VDC manager, server
hypervisors, and switches form the trusted computing
base because they are managed by data center operator.
It what follows, we present the design of VDC man-

ager and the data plane, and how failures are handled
by VDC manager together with the data plane.

3.1 VDC Manager
A physical data center is administered by a single

entity. This led us to introduce a logically centralized
VDC manager to manage VDCs. VDC manager con-
trols all resources. It performs admission control for
VDC requests based on the available physical resources
and the SLAs in the requests, using a VDC allocation
algorithm (Section 5). The allocation algorithm decides
how the VMs and virtual edges of a VDC are mapped
onto physical servers and routing paths. The algorithm
also supports elasticity when tenants expand or shrink
the resources of their VDCs, or when various server,
switch, or link failures happen.
VDC manager assigns every VDC a unique VDC ID

and uniquely identifies a VM by its VDC ID and IP
address. When VDC manager creates a VM for a VDC,
it configures the server hypervisor with the VDC ID and
IP address of the VM, the reserved bandwidths for type-
0 and type-1 services, the routing paths for type-0 VM-
pairs, and the rule set for mapping traffic to different
service types.
Since VDC manager maps VMs to physical servers,

it is a natural place for the VM-to-physical-server res-
olution. Suppose vm0 at server s0 needs to talk to its
peer vm1, the host server s0 looks up the host server of
vm1 through VDC manager and caches the result for
later use.
VDC manager needs to be scalable and highly fault
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tolerant. It needs to be up all the time and scale with a
large number of VDC requests both in computation and
in bandwidth. As we will show in Section 6, one sin-
gle server can carry out our VDC allocation for VDCs
with thousands of VMs at most hundreds of seconds.
The traffic between VDC manager and the servers in-
clude VDC creation, adjustment, release requests and
the associated configuration messages. The traffic vol-
ume is low. For example, the traffic volume for creating
a VDC with 1000 VMs is about 30MB, which can be
transmitted in one second.
VDC manager needs to maintain two types of state

for its operations. To perform VDC allocation, VDC
manager needs to store the complete physical network
topology tagged with residual link capacities. For each
allocated VDC, VDC manager needs to store all the re-
source allocation state (i.e., the VM-to-physical-server
mapping, egress/ingress bandwidth reservation for type-
1 services, and bandwidth reservation and routing paths
for type-0 services). Our calculation and simulation
showed that we need 5GB memory to store all the state
for a VL2 [11] network that contains 100k servers.
For fault tolerant, consistent, and high available state

maintenance, we adopt a similar approach to that of the
directory service of VL2 [11] for VDC manager, using
replicated state machines and Paxos consensus proto-
col [23].

3.2 Data Plane
Stateless switches. To provide bandwidth guaran-

tee, we need to pin the routing paths for every type-0
VM-pairs. One traditional way for bandwidth reser-
vation is setup the bandwidth reservation state in not
only the physical servers, but also the switches along
the routing path. However, this approach incurs se-
vere scalability problem in switch state maintenance.
We use VL2 [11] as an example to illustrate the prob-
lem. In VL2, a top-of-rack (ToR) switch connects 20
servers, and an Aggregation switch connects 72 ToR
switches. Suppose each server hosts 32 VMs and each
VM talks to 1000 other VMs. Then the bandwidth
reservation state in an Aggregation switch will be 46
million (32 × 1000 × 20 × 72) entries. The entries in a
server and a ToR switch are 32k (32 × 1000) and 640k
(32×1000×20), respectively. The state-of-the-art, high-
end switches (e.g., Aristanetworks 7100 [5] and Cisco
Nexus 7000 [8]) can only have 16k-128k forwarding en-
tries.
To make state maintenance scalable at switches, we

use source routing. With source routing, switches be-
come stateless and are unaware of any VDC and band-
width reservation state at all. They just perform prior-
ity queueing and forward packets based on the source
routing information carried in the packet headers.
Hypervisors. Source server hypervisors store virtual-

to-physical mappings, routing paths and bandwidth reser-
vation state. The number of bandwidth reservation en-
tries in a server is around 32k in the above example.
This number can be trivially managed by servers.
Hypervisors classify VM packets to different service

types and assign priority to those packets according
to the SLA rule set. They then monitor and shape
the type-0 and type-1 traffic before the traffic enters
switches. Best-effort traffic does not need traffic shap-
ing due to its lowest priority. Best-effort traffic there-
fore can use network bandwidth when type-0 and type-1
services do not fully use their reservations. Hypervisors
also encode the priority and routing path into packet
headers. We note that traffic monitoring, shaping and
prioritization must be placed at hypervisors instead of
VMs since VMs are not trusted.
Practical deployment. Commodity servers and

switches provide the best performance-price tradeoff [6].
We therefore want to implement both priority queueing
and source routing on commodity servers and switches.
Priority queueing is widely available in both servers and
switches. Source routing can be efficiently implemented
in current server operating systems as kernel drivers.
However, source routing generally is not available in

commodity switches. Furthermore, commodity switches
use MAC or IP address for packet forwarding. Some
data center network structures may even not use MAC
or IP address. For example, both DCell [12] and BCube
[13] introduce their own addressing schemes, and Port-
Land [16] overrides the MAC address to encode their
fat-tree topology information.
To this end, we introduce port-switching based source

routing (PSSR). Instead of carrying a sequence of next-
hop addresses in source routing path, we directly carry
the sequence of next-hop output port numbers. With
PSSR, SecondNet can be implemented with any ad-
dressing schemes and network topologies. PSSR can
be implemented readily with MPLS (multi-protocol la-
bel switching) [33], which is a commodity technology.
Fig. 2 shows one PSSR path {0,2,2,1} from vm0 to vm1

in VDC0. Suppose vm0 in VDC0 needs to send a packet
to its peer vm1, it first generates a packet that contains
vm1 as the destination address and vm0 as the source
address and delivers the packet to the host hypervisor
s0. The host s0 then inserts the routing path, {0,2,2,1},
priority, and related information into the packet header
and sends the packet to the neighboring switch. The
switches then route the packet using PSSR. After the
destination server s1 receives the packet, it removes the
PSSR header, and delivers the packet to vm1.

3.3 Signaling and Failure Handling
VDC manager needs a signaling channel to manage

all the server hypervisors. Signaling delivery becomes
even more complicated due to various server and switch
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and link failures, which are inevitable in large data cen-
ters. Failures cause network topology change which
then impacts both signaling and bandwidth reservation.
VDC manager must be notified when failures occur, and
routing paths of the affected VDCs must be adjusted.
In SecondNet, we build a robust, in-band spanning tree
(SPT) rooted at the VDC manager as our signaling
channel.
The spanning tree is built as follows. Every device

exchanges a SPT message with all its physical neigh-
bors. The message contains the parent and the level of
the device. When a device does not know its level, its
level is set to NULL. The level of VDC manager is 0.
Then direct neighbors of VDC manager then get level
1, and so on. A device always chooses the neighbor
with the lowest level as its parent. When a device finds
that its parent becomes unavailable or the level of its
parent becomes NULL, it tries to get a new level from
its available neighbor other than its children. As long
as the network is connected, the spanning tree can be
maintained. Since the spanning tree maintenance mes-
sage contains parent information, a parent node there-
fore knows all its children.
VDC manager uses the spanning tree for all VDC

management tasks. Devices use the spanning tree to
deliver failure messages to VDC manager. VDC man-
ager then adjusts routing paths or reallocate VMs for
the affected VDCs if needed. VDC manager also broad-
casts the topology changing information to all devices
via the spanning tree. Certainly when a link in the
spanning tree breaks, the link failure message can only
be delivered after the spanning tree has been restored.
The signaling message needs to be reliable. The details
are omitted due to space limitation.
We note that the spanning tree is only for signaling

purpose hence the traffic volume in the spanning tree is
small. We set the priority of the signaling traffic to be
the highest. And we can reserve a small amount of the
link bandwidth for the spanning tree. Section 6 further
shows that the spanning tree converges very quickly
even when the link failure rate is 5%.

4. PORT-SWITCHING BASED SOURCE
ROUTING

4.1 Source Routing
Since servers know network topology and various fail-

ures via the spanning tree, we can remove switches from
making routing decisions. This leads us to use source
routing for a scalable data plane.
For type-0 traffic, source routing paths are decided by

VDC manager. Server hypervisors directly use those
paths for routing. For type-1 and best-effort traffic,
all the existing DCN routing designs can be easily im-
plemented using source routing at source hypervisors.

Both VL2 [11] and BCube [13] use source routing at the
server side, hence they can be directly incorporated into
the SecondNet framework. In PortLand [16], switches
use destination physical MAC (PMAC) hashing to de-
cide the next hop. The source servers can easily calcu-
late the routing path on behalf of the switches in this
case. Similarly, the source servers can calculate routing
paths for DCell [12], since DCell routing path is derived
from DCell IDs.
For source routing to work correctly, source servers

need to know the network topology. This is not a prob-
lem for SecondNet, since we maintain a in-band span-
ning tree for this purpose. The overhead of source rout-
ing is the routing path carried in the header of every
packet. We pay the overhead willingly for a scalable
data plane and a flexible routing framework, since the
maximum path length of a typical data center network
is small (typically 6-8 hops).

4.2 Port-switching
We introduce port-switching to simplify switch func-

tionalities. Traditionally, packet switching is based on
destination address. In layer-2 Ethernet switches and
layer-3 IP routers, packet switching is based on desti-
nation MAC and IP addresses, respectively. Fig. 3(a)
shows how layer-2 switching works. When a packet ar-
rives at a port, the forwarding process of the switch
extracts the destination MAC address from the packet
header (step 1 in Fig. 3(a)) and uses it as the key to
lookup the MAC table (step 2). The MAC table con-
tains MAC address in one column and the output port
number in another. By querying the MAC table, the
forwarding process gets the output port (step 3) and for-
wards the packet to that port (step 4). The MAC table
is stored in SRAM or TCAM, and its size must increase
accordingly when the network size grows. Further, in
order to maintain the MAC table, the switches must
run a Spanning Tree Protocol. IP forwarding works
similarly.
Port-switching is much simpler. Instead of carry-

ing MAC or IP addresses, we directly carry the output
port numbers of the intermediate switches in the packet
header. The forwarding process directly gets the for-
warding port from the packet header.
Physical port numbers work well for point-to-point

links. But a server may have multiple neighbors via
a single physical port in topologies such as DCell [12]
and BCube [13]. In order to handle this case, we intro-
duce virtual port. A physical port can map to multiple
virtual ports depending on the number of neighboring
servers this physical port connects to. A server main-
tains a virtual-port table, in which every row repre-
sents a neighboring server. The row id corresponds to
the virtual port number and each row contains fields in-
cluding the physical port number and the MAC address
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Figure 3: (a) MAC address-based switching. (b)
Port-switching.

of the neighboring server. The size of the virtual-port
table is the total number of neighboring servers. The
virtual-port table is static in nature unless the neighbor-
ing servers change their NICs (which is very unlikely).
Port-switching can be naturally integrated with source

routing to form a port-switching based source routing
(PSSR), in which a source routing path contains port
numbers instead of addresses. Fig. 3(b) shows how
PSSR works. Now every packet carries a source routing
path identified by output port numbers in its packet
header. There is a pointer in the header that points to
the next output port number (step 1). The forward-
ing process uses the next port number to lookup the
virtual-port table (step 2), gets the physical port num-
ber (step 3), and updates the pointer and forwards the
packet through that port (step 4).
PSSR significantly simplifies switch functionalities.

Switches are not involved in routing. The virtual-port
table is static in nature. The size of virtual-port table is
small, since a node typically has at most tens of neigh-
bors. As a comparison, the MAC table (or IP-lookup
table) needs at least several thousands entries and its
size increases as the network expands.

4.3 MPLS for PSSR
PSSR is easy to implement conceptually - servers en-

code path and priority information into packet head-
ers, and switches simply perform priority queueing and
forward packets based on port-switching. Commodity
switches, which are increasingly popular in data centers
due to technology advances and the rule of economics
of scale [6], can still support PSSR as long as it has
MPLS, a commonly available switching technology.
In MPLS, switches perform forwarding based on la-

bels carried in packet headers. Labels only have lo-
cal meaning between two adjacent switches. Switches
rewrite the label of a packet hop-by-hop. Labels can
also be stacked together to form label stack for MPLS
tunneling. In MPLS, labels are established by using a

LDP (label distribution protocol) signaling protocol.
In SecondNet, we re-interpret MPLS label as port.

Consequently, the MPLS label table is interpreted as
our virtual-port table. We further implement source
routing with MPLS label stack. Since the virtual-port
table is static and is pre-configured, signaling proto-
col like LDP is eliminated. An MPLS label is 20-bits,
which is more than enough to describe the number of
neighbors a switch or server has (typically less than one
hundred). MPLS label also has 3 Exp bits for packet
priority. We therefore can implement both PSSR and
priority queueing using commodity MPLS switches.

5. VDC ALLOCATION

5.1 Problem Definition
We introduce the notations we will use in Table 1.

We denote the physical network as G(S,X,E) where S
is the set of servers, X is the set of switches, E is the set
of links. Each link has a corresponding link capacity. A
server si has ki (ki ≥ 1) ports {portjsi |j ∈ [0, ki − 1]}.
We denote the ingress and egress residual bandwidths
of portjsi as ibjsi and ebjsi , respectively. We call ibsi =
maxj ib

j
si and ebsi = maxj eb

j
si the residual ingress and

egress bandwidths, respectively.
For type-0 VDC, we have m virtual machines and the

associated m × m bandwidth requirement matrix Rg,
where rgi,j denotes the bandwidth requirement of the
(vmi,vmj) virtual edge. The required egress and ingress

bandwidths of vmg
i are therefore ergi =

∑m−1
j=0 rgi,j and

irgi =
∑m−1

j=0 rgj,i, respectively. For type-1 VDC, we have
m virtual machines and the associated egress/ingress
bandwidth requirement vectorERg = {(erg0 , ir

g
0), (er

g
1 , ir

g
1),

· · · , (ergm−1, ir
g
m−1)}.

We can treat best-effort VDC as a special case of
type-1 VDC by setting the egress/ingress bandwidth re-
quirement vector to zero. Similarly, we can treat type-1
VDC a special case for type-0 VDC. We therefore focus
on type-0 VDC allocation in the rest of this section.
We assume one VM maps to one physical server. When
a user prefers to allocate several VMs to one physical
server, we treat all these VMs as one large VM by sum-
ming up their computation, storage, and bandwidth re-
quirements.
The problem of allocation for type-0 VDC is to al-

locate the VMs {vmi|i ∈ [0,m − 1]} to servers sπi

(i ∈ [0,m − 1]) selected from the server set S, in a
way that the computation requirements (CPU, memory,
and disk) of vmi are satisfied and there exists a path
path(sπi

, sπj
) whose residual bandwidth is no smaller

than rgi,j for every VM-pair. In this paper, we use
single-path to avoid the out-of-order arrival problem of
multi-path.
The VDC allocation problem has two parts: if an al-

location exists (decision problem) and if the allocation
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G(S,X,E) The physical network infrastructure
Ck Server cluster k
si Physical server i
ibsi Residual ingress bandwidth of si
ebsi Residual egress bandwidth of si
path(si, sj) A routing path from server si to sj
VDCg Virtual data center with ID g
vmg

i Virtual machine i in VDCg

rgi,j Requested bandwidth from vmi to vmj

in VDCg for type-0 service
ergi , ir

g
i Requested egress, ingress bandwidth for vmi

in VDCg for type-1 service

Table 1: Notations.

uses minimal aggregate network bandwidth (optimiza-
tion problem). The less network bandwidth an alloca-
tion uses, the more VDCs we can accept. Both problems
are NP-hard. We have proved the NP-hardness by re-
ducing the single-source unsplittable flow [22] to VDC
allocation. See Appendix A for the proof.
In the rest of this section, we focus on heuristic de-

sign. There are several challenges. First, the algo-
rithm has to be fast even when a VDC has thousands
of VMs and the infrastructure has tens to hundreds of
thousands servers and switches. Second, the algorithm
should well utilize the network bandwidth, and accom-
modate as many VDCs as possible. Third, the algo-
rithm needs to offer elasticity when tenants’ require-
ment change and timely performs resource reallocation
when various failures happen.
Related problems have been studied in virtual net-

work embedding and testbed mapping [7, 37, 31]. The
previous solutions cannot be applied to VDC allocation
due to the scale of our problem and the VDC elasticity
requirement. See Section 8 for detailed discussion.
To the best of our knowledge, our VDC allocation al-

gorithm is the first attempt that addresses allocations
for VDCs with thousands of VMs in data centers with
hundreds of thousands servers and switches. Further-
more, by taking advantage of VM migration, our al-
gorithm is able to perform bandwidth defragmentation
when the total residual bandwidth becomes fragmented.

5.2 VDC Allocation
We pre-configure servers into clusters before any VDC

allocation takes place. This is to reduce the problem
size and to take server locality into account. There
are clusters of different diameters (and hence different
sizes). For example, in fat-tree, servers within the same
ToR switch form a ToR cluster, servers within the same
aggregate switch form a Pod cluster, etc.
Formally, we use server hop-count, which is the num-

ber of hops from one server to another, as the metric to
group servers into clusters. A server can belong to mul-
tiple clusters, e.g., a 2-hop cluster, a 4-hop cluster, and
certainly the whole server set.When the size of a cluster
is much larger than that of its belonging small clusters,

/*VDCg has m VMs and an m×m bandwidth matrix Rg .*/
VDCAlloc(VDCg):
1 for (k = 0;k < t;k ++)/*t is the clusters number*/
2 if (|Ck| < m) continue;
3 if ib(Ck)<ib(VDCg) or eb(Ck)<eb(VDCg)
4 continue;
bipartite: /*build weighted bipartite graph*/
5 for (0 ≤ i < m)
6 for (0 ≤ j < |Ck|)
7 if (sj ∈ Ck is a feasible candidate for vmi)
8 add edge (vmi, sj) to the bipartite;
node matching:
9 res=MinCostMatching( )
10 if (res== false) continue;
11 for each (i ∈ [0,m− 1]) vmi → sπi ;
path alloc:
12 fail flag=0;
13 for each (rgi,j ̸= 0)

14 if (FindPath(sπi , sπj , ri,j)==false)
15 fail flag=1; break;
16 if (fail flag==0) return succeed;
17 return false; /*fail after trying all the clusters*/

Figure 4: The VDC allocation algorithm.

we combine several smaller ones to form middle size
clusters. We denote the clusters as C0, C1, · · · , Ct−1. A
cluster Ck has |Ck| servers. The clusters are sorted in
ascending order such that |Ci| ≤ |Cj | for i < j.
In certain scenarios, users may prefer to allocate VMs

to separate locations for reliability reason. In this case,
we may use servers at different racks or pods to form
clusters. The detail depends on the reliability require-
ments and are out of the scope of this paper. Though
clusters may be formed differently, the VDC allocation
procedure is the same.
Fig. 4 shows the VDCAlloc algorithm. The input

VDCg has an m × m bandwidth requirement matrix
Rg. The output is m physical servers that will host
the virtual machines and the paths set corresponding
to Rg. In the first step, we select a cluster Ck. The
number of servers of Ck should be larger than the VM
numbers in VDCg (line 2). The aggregate ingress and
egress bandwidths of Ck should be larger than those of
VDCg (line 3).
In the second step, we build a bipartite graph with

the VMs at the left side and the physical servers of
Ck at the right side. We say that a physical machine
si ∈ Ck is a feasible candidate to a virtual machine
vmg

j if the residual CPU, memory, and disk space of si
meet the requirement, and the egress and ingress resid-
ual bandwidths of si are no smaller than ergj and irgj ,

respectively. If server si is a feasible candidate to vmg
j ,

we draw an edge from vmg
j to si (lines 7-8).

We then use the min-cost network flow [1] to get a
matching (line 9). We add a source node src at the left
side of the VMs and a dst node at the right side of the
physical servers. We add edges from src to the VMs and
from the servers to dst. We assign weight of an edge as
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the used bandwidth of the corresponding server. The
bipartite matching problem then transforms to the min-
cost flow from src to dst with capacity m. If we cannot
find a matching, we continue by choosing another clus-
ter. Otherwise, we go to the third step.
One might assume that different weight assignment

policies may result in different mapping result. For ex-
ample, our weight assignment policy may result in bet-
ter network utilization, since our mapping favors servers
with higher residual bandwidth hence more balanced
mapping and higher utilization. Our experiment, how-
ever, showed that different weight assignment policies
have little effect on network utilization. The major rea-
son is because of the clustering heuristic, VDCs will
be assigned to appropriate cluster. After that, weight
assignment policies cannot significantly affect mapping
results and network utilization. In this paper, we simply
adhere to our weight assignment policy.
In the third step, we allocate paths for all the VM-

pairs that have non-zero reserved bandwidths (lines 13-
14). We sort the requested bandwidth in descending
order and allocate paths sequentially. This is because
paths with higher bandwidth request is more difficult
to allocate. In the case we cannot allocate path for a
VM-pair, we can fail faster and hence switch to another
cluster faster.
We use FindPath to allocate path from sπi

and sπj

with bandwidth requirement rgi,j . In G(S,X,E), we
remove the links whose residual bandwidth is smaller
than rgi,j , and use shortest-path to get a path from sπi

to sπj . Since all the links have unit length, we use
Breadth First Search (BFS) as the shortest-path algo-
rithm. After we assign a path for a VM-pair, we need to
update the residual bandwidths of the links along the
path. If we fail to allocate a path for a VM-pair, we go
back to get another cluster and start again. If we do
allocate paths for all rgi,j ̸= 0, we succeed and return
the assigned physical servers and paths. If we cannot
find an allocation after searching all the clusters, we fail
and reject the VDC allocation request.
VDCAlloc naturally supports VDCs that have mul-

tiple service types. For example, when a VM has both
type-0 and type-1 requests, a bipartite edge between
this VM and a server is feasible only when the egress
and ingress residual bandwidths of the server meet the
sum of the two requests. After the bipartite is con-
structed, the rest allocation procedure is the same.
VMs in a VDC may need to communicate with exter-

nal computers. As we have discussed in Section 2, we
introduce gateways for this purpose. Our VDCAlloc can
be directly applied to this case since the traffic to/from
the external computers are mapped to the gateways.
The major components, min-cost flow and path allo-

cation, are of low time-complexity. Since all the edges in
the bipartite graph have unit capacity, MinCostMatch-

ing can be solved in O(n3 log(n + m)), where n is the
number of VMs and m is the number of servers in the
current cluster. The worst-case time-complexity for
path allocation is O(n2|E|), where |E| is the number
of edges of the physical network. The complexity of
VDCAlloc certainly depends on how many clusters we
need to try before a matching is found. Our calculation
shows that even for VDCs with 5000 VMs in data cen-
ters with 100k servers, VDCAlloc only needs hundreds
of seconds. See Section 6 for detailed evaluation.

5.3 VDC Adjustment
VDC has the advantage of dynamic expansion and

shrinking as tenants’ needs change. VDC shrinking can
be trivially performed by releasing the unneeded VMs
and bandwidths. VDC expansion, however, is not that
easy. There are two expansion cases: increasing band-
width reservations for existing VM-pairs, or adding new
VMs. A naive approach is to first release the old VDC
and then allocate a new one according to the expanded
request. But this solution needs to migrate all the ex-
isting VMs from the old host servers to the new ones,
hence increasing both service interruption time and net-
work overhead.
Also we need to perform VDC reallocation when fail-

ures happen. When server failures happen, the hosted
VMs disappear. Hence server failures need to be han-
dled by user applications using for example replica which
is out of the scope of this paper. But for link or switch
failures, SecondNet can perform path reallocation or
VM migration for the affected VDCs. Of course, it is
possible that VDC reallocation may fail. But as we
demonstrate in Section 6, VDC reallocation can suc-
ceed when there the network utilization is not high.
In this work, we handle incremental expansion and

failures with the same algorithm based on VDCAlloc.
Our goal is to minimize reallocations of existing VMs.
Moreover, we try to reuse existing routing paths. When
we increase bandwidth reservation of a VM-pair, we
try to increase bandwidth reservation along its exist-
ing path. When the existing path cannot meet the re-
quirement (due to link or switch failure, or insufficient
bandwidth along that path), we try to allocate a new
path for that VM-pair. When path reallocation is not
possible, VM migration needs to be performed.
We then maintain a to-be-allocated VM set, which

includes the newly added VMs and the VMs that need
reallocation. We then try to allocate these VMs within
the same cluster of the existing VMs using the bipartite
matching of Fig. 4. If we find a matching, we allocate
paths (step 3 of Fig. 4, with existing paths unchanged).
Once we cannot allocate a path between an existing VM
and a to-be-allocated VM, we add that existing VM into
the to-be-allocated VM set and iterate. If a matching
cannot be found, VDC expansion or reallocation within
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this cluster is not possible. We choose a larger cluster
which contains this existing cluster and iterate.

5.4 Bandwidth Defragmentation
An advantage of server virtualization is that VMs can

be migrated from one server to another. VM migration
can be used for not only server upgrade and mainte-
nance, but also for better network utilization. We use
an example to illustrate the idea. Suppose a small num-
ber of VMs of VDC0 are mapped to servers in a cluster
C0 and most of the other VMs are mapped to a cluster
C1. When VMs of some other VDCs in C1 are released,
it is possible to migrate VMs of VDC0 in C0 to C1. The
migration not only increases the residual capacity of the
physical infrastructure (due to the fact that the inter
C0-C1 bandwidth of VDC0 is released), but also im-
proves the performance of VDC0 by reducing the path
lengths among its VMs.
Based on the above observation, we design a VDC

defragmentation algorithm as follows. When a VDC is
released from a cluster, we check if we get chance to
migrate VMs of some VDCs to this cluster. To accel-
erate VDC selection, we mark VDCs that have VMs
scattered in different clusters as defragmentation can-
didates. A defragmentation is carried out only when
the following two conditions are met: 1) the bandwidth
reservation of the reallocated VDCs can still be met;
2) the total residual bandwidth of the physical infras-
tructure is increased. VDC defragmentation is a back-
ground process and can be performed when the activ-
ity of the to-be-migrated VM is low. In Section 6, we
show VDC defragmentation significantly improves the
network utilization.

6. SIMULATIONS
Setup. We use simulation to study the performance

of our VDC allocation algorithm. All the experiments
are performed on a Dell PE2950 server with 32G mem-
ory and 2 quad-core 2.8GHZ Xeon CPUs. We use three
typical structures BCube [13], fat-tree [2], and VL2 [11],
which represent data center networks of different types
and sizes. We did consider tree, but found tree is not
suitable for VDC bandwidth guarantee due to its in-
herent low capacity. For a two-level, 4000 servers tree
structure with each ToR gigabit switch connecting 20
servers and an aggregation gigabit switch connecting
200 ToR switches, the aggregation links soon become
bottlenecks when we try to allocate several VDCs with
200 VMs.
We also tried to compare our algorithm with several

related virtual network embedding algorithms [7, 24].
But the time complexities of the algorithms turned out
to be very high. For example, the algorithm in [24]
needs 12 seconds to allocate a VDC with 8 VMs in an
empty small BCube2 network with 512 servers. And
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Figure 5: Network and server utilizations for
different structures.

the algorithm in [7] has even higher time complexity.
The BCube network is a BCube3 with 4096 servers

and 4 layers of 8-port mini-switches (Fig.1 of [13]). The
fat-tree has 27,648 servers and three-layers of 48-port
switches (Fig.3 of [2]). Links in BCube and fat-tree are
1Gb/s. The VL2 structure (Fig.5 of [11]) has three lay-
ers of switches and 103,680 servers. Each ToR switch
connects 20 servers with their 1Gb/s ports. A ToR
switch connects two aggregate switches with two 10Gb/s
ports. The aggregate switches and a layer of intermedi-
ate switches form a complete bipartite graph. The ag-
gregate and intermediate switches have 144 10G-ports.
Using the hop-count metric, we divide the servers of

the three networks into different clusters. For fat-tree
and VL2, these clusters are just the ToR and Pod clus-
ters. For BCube, we get 2048 2-hop clusters, 384 4-hop
clusters, 32 6-hop clusters, and one 8-hop clusters.
We define network utilization (n util for abbrevia-

tion) as the total bandwidth allocated to VDCs divided
by the total link capacity. Similarly, server bandwidth
utilization (or s util) is the total server bandwidth allo-
cated to VDCs divided by the total server link capacity.
We use the Google cluster dataset [21] for VDC size

distribution. This dataset gives a normalized job size
distribution extracted from Google product workloads.
The distribution shows more than 51% jobs are the
smallest one. But middle size jobs use most of the re-
sources. For example, the 20% middle sized jobs use
65% of the total resources. The probability of large
jobs are rare. But they use negligible resources. For ex-
ample, the 0.4% percent largest jobs use 5% resources.
We use this dataset to generate synthetic VDC size dis-
tribution [L,H], where L and H denote the min and
max VDC size.
Utilization. Fig. 5 shows the maximum network

and server bandwidth utilizations for the three struc-
tures. The VDC size distribution is [10,200]. We add
a sequence of randomly generated VDCs into the net-
works, and get the utilizations when we meet the first
rejected VDC. The reported results are mean values for
1000 measurements. We have tested all the three bi-
partite weight assignment strategies (Section 5.2) and
get the same result. The result shows that our VDC
allocation algorithm achieves high resource utilization.
For fat-tree and VL2, we achieve high server bandwidth
utilization (93%) and 49% network utilization. BCube
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Figure 6: The min, mean, and max VDC allocation times. (a) BCube. (b) fat-tree. (c) VL2.

Link failure Time slot PDF (%)
rate (%) 0 1 2 3 4 5

1 62.02 34.14 3.62 0.13 0.09 0
2 61.72 34.74 3.18 0.17 0.12 0.05
3 61.78 34.58 3.38 0.14 0.06 0.04
4 60.38 35.93 3.39 0.17 0.08 0.03
5 59.96 36.22 3.34 0.26 0.18 0.03

Table 2: The distribution of the spanning tree
convergence time under different link failure
rate for the BCube network.

achieves 95% utilization for both s util and n util since
all its links directly connect to servers. The reason that
BCube achieves better network utilization is because all
its links are equal, which is not the case for fat-tree and
VL2. The average number of VMs on a server is 20 for
BCube, 9.9 for fat-tree and 9.6 for VL2. This is be-
cause BCube has larger server bandwidth, which is the
bottleneck for fat-tree and VL2. The result indicates
that the high inter-switch capacity of VL2 and fat-tree
cannot be fully utilized, and BCube is better for VDC
allocation.
Allocation time. Fig. 6 shows the VDC allocation

time for the three structures. The VDC size parame-
ters for the three structures are [10,200], [10,1000], and
[10,5000], respectively. The results are gotten when the
server bandwidth utilizations are 80% (which are close
to their max utilizations). The VDC allocation is quite
fast even when the server bandwidth utilization is high.
For a VDC with 100 VMs in BCube, we only need 2.8
seconds in average. For a VDC with 1000 VMs in fat-
tree, we can perform allocation in 20-90 seconds. Even
for VDCs with 5000 VMs, we can carry out the allo-
cation within 23 minutes in the worst case. The result
shows that the allocation time only grows quadraticly
with the VDC size, which shows the scalability of our
allocation algorithm.
Failure handling. We study the convergence time

of the VDC manager rooted spanning tree. Table 2
shows the convergence time of the spanning tree under
different link failure rate for BCube. A time slot is the

time needed to transmit a SPT message (around 1us
for 1Gb/s links). We can see that the convergence time
is not sensitive to failure rate and the SPT converges
very quickly. In most of the cases (95%+), it converges
instantaneously. SPT therefore builds an efficient sig-
naling channel for SecondNet.
Incremental expansion. In this experiment, we

expand a VDC under fat-tree when s util=80%. The
VDC size distribution is also [10,1000]. When we ex-
pand a VDC, we add 5% new VMs. The bandwidth re-
quests of the new VMs are generated the same as that of
the existing VMs. Fig. 7(a) shows the execution time for
VDC expansion in fat-tree. Incremental expansion can
be performed in less than 5% time compared to VDC
allocation from scratch, since the majority of the exist-
ing VMs and paths do not need reallocation (Fig. 7(a)).
Fig. 7(b) shows the number of existing VMs that need
migration. The average number of VM migrations is
small (e.g., 4 for a VDC with 1000VMs). There is al-
most no VM migration when the original VDC size is
small. But we do observe a significant amount of VM
migrations when the VDC size is larger than 570 (which
is about the size of a fat-tree pod cluster). When we try
to expand a large VDC at a highly utilized pod cluster,
we need to migrate a large number of VMs. Nonethe-
less, all our expansion succeed. We also note that when
s util is smaller than 70%, VM migration is not needed
for VDC expansion.
VDC adjustment. We use BCube for this exper-

iment. We drive the server bandwidth utilization uti-
lization to 60%. We randomly remove a number of links
to emulate link failure. We can well handle failures. For
example, even when the link failure rate is as high as
10% ( and 99.6%, or 2434 VDCs are affected), we can
re-meet the bandwidth reservations of all the VDCs by
adjusting paths for 10.1% affected virtual links and mi-
grating VMs in 64 VDCs. [add experiments on how our
spanning tree protocol converges]
VDC defragmentation. Finally, we study the ef-

fect of our bandwidth defragmentation optimization.
Defragmentation improves network utilization signifi-
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Figure 7: The min, mean, and max values. (a)
VDC expansion time (b) Number of VM migra-
tions.

cantly. For example, without defragmentation, BCube
can only allocate 18 VMs on a server in average. De-
fragmentation therefore improves the server utilization.
To summarize, the simulation results show that our

VDC allocation algorithm achieves high resource uti-
lization with low time complexity. It’s incremental ex-
pansion and failure handling are light-weighted. Its
VDC defragmentation further improves network utiliza-
tion.

7. IMPLEMENTATION AND EXPERIMENTS
We have designed and implemented a SecondNet pro-

tocol stack in Windows Server 2008 R2, which inte-
grates Hyper-V as its VM hypervisor. Fig. 8 shows the
implementation structure. In Hyper-V, there is a host
OS in the root partition, and VMs are in child parti-
tions. VMs are connected to a kernel virtual switch via
a VMBus. In our implementation, VDCs have different
VDC IDs and VMs of different VDCs can have the same
private IP address space.
We implement the SecondNet stack as an NDIS (Net-

work Driver Interface Specification) intermediate driver
below the virtual switch. The driver maintains a virtual-
to-physical table for every VDC, with each entry con-
tains local/peer VM IP, the physical server IP of the
peer VM, the reserved bandwidth and PSSR path, and
the service rule set. The driver uses a policy manager
to map packets into different service types as defined
by the SLA rules. The driver uses an SPT module for
in-band signaling.
When a VM sends a packet, the sending module uses

the VDC ID and source and destination IP to get the
corresponding V2P entry. It also decides the service
type of the packet by querying the policy manager. If
it fails to find the V2P entry from local cache and VDC
manager, the packet is dropped. For type-1 and best-
effort, the driver needs to get a routing path and caches
the path in the table for later use. The type-0 and
type-1 packets go through a traffic shaper, which is im-
plemented as a leaky bucket. After that, the driver

Figure 8: The SecondNet driver implementation
structure at server hypervisor.

adds a VDC header, which includes the MPLS stack,
source and destination server IP addresses, and VDC
ID, and forwards the packet to the port-switching mod-
ule for priority queueing and port-switching. In our im-
plementation, we encode priority into both MPLS tags
and 802.1P Ethernet header.
When the port-switching module receives a packet

from the underlying physical driver, it first checks if it
is the destination. If yes, it handles the packet to the
receiving module; if not, it forwards the packet using
port-switching. In the receiving module, we check if
the packet obeys the bandwidth reservation for type-0
and type-1 services. If yes, we remove the VDC header
from the packet and deliver the packet to the virtual
switch. If not, the packet is dropped.
The driver is implemented in C and has 35k lines of

code. We have prototyped VDC manager using 2k lines
of C# and 3k lines of C++ code.

7.1 Testbed
We have built a testbed with 64 servers (40 Dell PE

R610 and 24 Dell PE2950), numbered from s0 to s63.
All the servers have four Broadcom Gigabit Ethernet
ports and install Windows Server 2008 R2 and our Sec-
ondNet driver. We use the first two ports to construct
a BCube1 network with 16 8-port DLink DGS-1008D
gigabit mini-switches. The BCube network contains 8
BCube0s, and each BCube0 contains 8 servers. See [13]
for BCube construction. We use the third port of the
servers and 9 Broadcom BCM956334K MPLS switches
(each has 24 GE ports) to form a 2-level fat-tree. The
first-level 6 switches use 12 ports to connect to servers
and the rest 12 ports to connect to the 3 second-level
switches. Each second-level switch acts as 4 6-port vir-
tual switches. Our testbed therefore supports both fat-
tree and BCube.

7.2 Experiments
In the first experiment, we use a three-tier Web ap-
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Figure 9: SecondNet provides service differenti-
ation and bandwidth guarantee.

plication to show that SecondNet provides service dif-
ferentiation and bandwidth guarantee. We use fat-tree
for this experiment. We have performed the same ex-
periment using BCube and gotten similar result. We
create two VDCs, VDC1 and VDC2, both have 24 VMs
divided into frontend, middle, and backend. Each tier
has 8 VMs. We map the frontend to s0-s7, middle tier
to s8-s15, and backend to s16-s23, and let one server
host one VM for each of the VDCs. For each VDC, ev-
ery VM in the frontend has a TCP connection to every
VM in the middle. Similarly, every VM in the middle
has one connection to every backend VM. The frontend
servers send data to the middle tier, and the middle
tier servers send data to the backend. All the routing
paths are calculated by our VDC manager to maximize
throughput. The two VDCs share the same path set.
Fig. 9 shows the result. In the beginning, only VDC1

has best-effort traffic and achieves around 14Gb/s to-
tal throughput. VDC2 starts to generates best-effort
traffic at time 127 seconds. Both VDCs get around
7Gb/s. At time 250, we set the traffic of VDC1 to
type-0, and set the bandwidth allocation for each TCP
connection to 80Mb/s. After that, the total throughput
of VDC1 jumps to 10Gb/s, and the average through-
put of TCP connections is 75Mb/s with standard de-
viation 0.78Mb/s. SecondNet therefore provides band-
width guarantee for VDC1 and service differentiation
between the two VDCs.
In the second experiment, we show SecondNet well

handles link failure and incremental expansion. This
experiment uses the BCube network. We create a VDC
with two VMs vm0 and vm1, which are hosted at s0
(BCubeID=00) and s3 (03). There is a 600Mb/s type-0
bandwidth reservation for (vm1,vm0) via path {03,00}.
Fig. 10 shows vm1’s aggregate sending rate. At time 62,
the level-0 link of s3 fails. When VDC manager is noti-
fied, it immediately adjusts the path to {03,13,10,00}.
We can see that interruption time due to link failure is
only four seconds.
At time 114, we expand the VDC by adding a new
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Figure 10: Failure handling and VDC expansion.

vm2, and request a 600Mb/s type-0 bandwidth from
vm1 to vm2. In this case, s3 cannot meet this new re-
quirement since it has only one link with 400Mb/s avail-
able bandwidth. Using the expansion algorithm in Sec
5.3, VDC manager first adds vm1 to the to-be-allocated
VM set, and then migrates vm1 to s4(04) and maps vm2

to s5(05), and finally allocates path {04,00} for (vm1,
vm0) and {04,14,15,05} for (vm1,vm2). The migration
traffic from s3 to s4 goes through the path {03,13,14,04}
and its throughput is also shown in Fig. 10. The migra-
tion transmission finishes in 45 seconds. Note that the
interruption time, however, is only five seconds. This
is because the VM switches to the new host server only
when all its states are synchronized. At time 199, vm1

starts sending traffic to vm2, the aggregate throughput
of vm1 becomes 1.2Gbps. This experiment shows that
SecondNet well handles both failure and VDC expan-
sion with minimal service interruption time.

8. RELATED WORK
Network virtualization. Network virtualization [30,

17] has been proposed as a way to allow multiple net-
work architectures to run on a shared infrastructure.
Geni [10] is to build a virtualizable experimental infras-
tructure in which researchers can reserve slice for their
experiments. FlowVisor [17] is built on top of Open-
flow [29]. FlowVisor enables different logical networks
with different addressing and forwarding mechanisms to
share a same physical network. The goal of SecondNet
is different from them. SecondNet is end-user oriented
and its VDC hides all the routing and forwarding details
from end users.
VLAN [35] can provide multiple virtual LANs on top

of a physical layer-2 Ethernet. Unfortunately, VLAN
is ill-suited for the data center network environment:
1) VLAN uses the Spanning Tree Protocol and cannot
utilize the high network capacity in the state-of-the-
art data center networks, such as fat-tree [2], VL2 [11],
DCell [12], and BCube [13]; 2) VLAN does not provide
bandwidth guarantees.
VL2 [11] provides a service model which gives each
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service the illusion that all the servers allocated to it,
and only those servers, are connected by a layer-2 switch.
VDC differs from VL2 service in several aspects. 1) A
VDC has its own IP address space, whereas a VL2 ser-
vice is more like an application. 2) We provide band-
width guarantee for VDCs whereas VL2 cannot. 3) VL2
service model is tightly coupled to their specific network
topology, whereas VDC is topology agnostic.
Virtual Private Cloud (VPC) [19, 3] has been pro-

posed to connect the cloud and enterprise private net-
works. VPC does not focus on VMs within a VPC.
Amazon provides no implementation details about EC2
and their VPC. Measurement study [20] showed that
there is no bandwidth guarantee for EC2 instances.
Virtual network embedding. The virtual network

embedding [7, 37] and testbed mapping [31] are related
to the VDC allocation problem. In [31], simulated an-
nealing is used for testbed mapping. The work of [31],
however, cannot be applied to VDC allocation since it
only handles simple physical topology without multi-
path. Virtual network embedding was studied in [37, 7],
with [37] considered path splitting and path migration
and [7] used mixed integer programming. The physi-
cal networks they studied have only 50-100 nodes. As
we have shown in Section 6, the complexity of these
algorithm are high and not applicable to our problem.
Our VDC allocation algorithm differs from the pre-

vious approaches in several aspects. First, we intro-
duce server clusters for low time-complexity and effi-
cient VDC allocation. Clustering is the key that we
can handle data center networks with hundreds of thou-
sands of servers. Second, we introduce incremental ex-
pansion for VDC elasticity, which is not considered in
the previous work. Finally, we introduce VDC defrag-
mentation for better network utilization by leveraging
VM migration.
Bandwidth guarantee. In the Internet, Diff-

Serv [18] and IntServ [15] are designed to provide service
differentiation and bandwidth guarantee, respectively.
Compared to DiffServ, SecondNet provides bandwidth
guarantee. Compared to IntServ, SecondNet does not
need to maintain bandwidth reservation state in switches.
SecondNet has the advantages of both DiffServ and
IntServ without their shortcomings due to the fact that
the network structure is known in advance and data
centers are owned and operated by a single entity. Re-
cently, Seawall [34] uses a hypervisor-based framework
for bandwidth fair sharing among VM-pairs. It is not
clear how resource allocation and bandwidth guarantee
can be provided in the framework.
Others. Virtual machines may introduce new side

channels for information leakage since an adversary VM
can be co-resident with a victim VM [32]. A critical
step for this side channel attack is that the adversary
VM needs to determine if it shares the same physical

server with the victim, by sending probing packets. In
SecondNet, this kind of probing is not possible since a
VM cannot directly talk to other machines outside its
VDC.

9. CONCLUSION
We have proposed virtual data center (VDC) as the

unit of resource allocation in the cloud, and presented
the design, implementation, and evaluation of the Sec-
ondNet architecture for VDC support. SecondNet pro-
vides VDC isolation, service differentiation, and band-
width guarantee. SecondNet is scalable by distributing
all the virtualization and bandwidth reservation state
into servers and keeping switches stateless. Our VDC
allocation algorithm achieves high network utilization
and has low time complexity. It also enables elasticity
by supporting incremental VDC expansion and shrink-
ing. By introducing a port-switching based source rout-
ing (PSSR), we have prototyped SecondNet with com-
modity servers and switches.
There are other important topics such as VDC pricing

and billing models that are not explored in this paper.
We will study these topics in our future work.
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APPENDIX
A. NP-HARDNESS OF VDC ALLOCATION

Proof. We prove the NP-hardness of the decision
part of the VDC allocation problem by reducing the
NP-hard single-source unsplittable flow problem [22] to

Figure 11: The reduction of the single-source
unsplittable flow problem to our VDC allocation
problem.

it. In the single-source unsplittable problem, we have
a network G(V,E). Each edge e ∈ E has a capacity
ce. There is a source node s0 and a set of sink nodes
{si|i ∈ [1,m]}. For each s0 − si pair, there is a band-
width request ri. The minimum edge capacity is at
least maxi(ri). We seek a single-path from from s0 to
si for all the m pairs so that the bandwidth requests are
satisfied and no edge is overbooked. The single-source
unsplittable flow problem is NP-hard.
Fig. 11 shows how we construct the reduction. For

each instance of the single-source unsplittable problem,
we construct a corresponding network G

′
(V

′
, E

′
) from

the original G(V,E). For the source node s0, we add

a s
′

0 in G
′
. There is an edge (s

′

0, s0) with capacity
rmax = 1+max(maxe(ce),

∑m
i=1 ri). For each sink node

si(i ∈ [1,m]) in G, we add a node s
′

i and an edge (si, s
′

i)

with capacity (i+1)rmax in G
′
. The VDC request is as

follows. The set of the VMs is {vm0, vm
′

0, · · · , vmm,

vm
′

m}. The bandwidth requests are as follows. There

is a request from vm
′

0 to vm0 with bandwidth require-
ment rmax. There is a request from vm0 to vmi with
bandwidth requirement ri for i ∈ [1,m]. There is a

request from vmi to vm
′

i with bandwidth requirement
(i+ 1)rmax for i ∈ [1,m].
On one hand, it is easy to see that a solution to the

single-source unsplittable flow problem gives a solution
to the VDC allocation problem. On the other hand,
a solution to the VDC allocation problem also gives a
solution to the single-source unsplittable flow problem.
This is because in the reduced VDC allocation case, vm

′

i

and vmi have to be mapped to s
′

i and si, respectively,
due to the bandwidth requirement and edge capacity
constraints.
The decision problem therefore is NP-hard. The VDC

allocation optimization is also NP-hard due to the NP-
hardness of the decision problem.
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