An Automata Toolbox

Version of February 6, 2018

Mikotaj Bojariczyk and Wojciech Czerwiriski

Preface

THESE are lecture notes for a course on advanced automata theory, that we
gave at the University of Warsaw in the years 2015-2018. The material was
chosen to highlight interesting constructions; with a smaller emphasis on the
theoretical and bibliographical context. The first part of the book — the lectures
— is written by the first author, and the second part — the exercise solutions — is
written by the second author. Nevertheless, we consulted each other extensively
in the process of both teaching and writing.

Mikotaj Bojariczyk and Wojciech Czerwiriski

Contents

1 Determinisation of w-automata 3

1.1 Automata models for w-words 3
1.2 Pruning the graph of runs to a tree 12

1.3 Finding an accepting path in a tree graph 17

2 Infinite duration games 25

2.1 Games 25

2.2 Memoryless determinacy of parity games 31

3 Parity games in quasipolynomial time 41
3.1 Reduction to reachability games 41

3.2 A small reachability automaton for loop parity 44

Distance automata 55

Monadic second-order logic 63

5.1 Monadic second-order logic 63
5.2 Finite trees 65

5.3 Infinite trees 70

Treewidth 79

6.1 Treewidth and how to compute it 79

6.2 Courcelle’s Theorem 88

Tree-walking automata 99

7.1 Tree-walking automata cannot be determinised

7.2 Proof of the rotation lemma 112

Weighted automata over a field 127

8.1 Minimisation of weighted automata 134
8.2 Algorithms for equivalence and minimisation

8.3 Undecidable emptiness 141

102

138

10

11

12

13

14

Vector addition systems 151

Polynomial grammars 159

10.1 Application to equivalence of register automata 168

Parsing in matrix multiplication time 177

Two-way transducers 185

12.1 Sequential functions 186
12.2 Rational functions 187

12.3 Deterministic two-way transducers 193

Streaming string transducers 207

13.1 Equivalence after rational preprocessing 211

13.2 Lookahead removal 215

Learning automata 229

1
Determinisation of w-automata

In this chapter, we discuss automata for w-words, i.e. infinite words of the form
a1a2a3 DY

We write ¢ for the set of w words over alphabet X. The topic of this chapter is
McNaughton’s Theorem, which shows that automata over w-words can be
determinised. A more in depth account of automata (and logic) for w words
can be found in [56].

1.1 Automata models for w-words

A nondeterministic Biichi automaton is a type of automaton for w-words. Its
syntax is typically defined to be the same as that of a nondeterministic finite
automaton: a set of states, an input alphabet, initial and accepting subsets of
states, and a set of transitions. For our presentation it is more convenient to use
accepting transitions, i.e. the accepting set is a set of transitions, not a set of
states. An infinite word is accepted by the automaton if there exists a run which
begins in one of the initial states, and visits some accepting transition infinitely
often.

Example 1. Consider the set of words over alphabet {4, b} where the letter a
appears finitely often. This language is recognised by a nondeterministic Biichi

4 DETERMINISATION OF w-AUTOMATA

automaton like this (we adopt the convention that accepting transitions are red
edges):

a,b b
0, O
>Q >Q

O

This chapter is about determinising Biichi automata. One simple idea would be
to use the standard powerset construction, and accept an input word if
infinitely often one sees a subset (i.e. a state of the powerset automaton) which
contains at least one accepting transition. This idea does not work, as witnessed
by the following picture describing a run of the automaton from Example 1:

the
automaton the runs of the automaton over (bba)"
b b a b b a b b a b b a
[}
°o-

an accepting transition is seen infinitely often

In fact, Biichi automata cannot be determinised using any construction.

Fact 1.1. Nondeterministic Biichi automata recognise strictly more languages than
deterministic Biichi automata.

Proof. Take the automaton from Example 1. Suppose that there is a
deterministic Biichi automaton that is equivalent, i.e. recognises the same
language. Let us view the set of all possible inputs as an infinite tree, where the

AUTOMATA MODELS FOR w-WORDS 5

vertices are prefixes {a,b}*. Since the automaton is deterministic, to each edge
of this tree one can uniquely assign a transition of the automaton. Every vertex
v € {a,b}* of this tree has an accepting transition in its subtree, because the
word vb“ should have an accepting run. Therefore, we can find an infinite path
in this tree which has a infinitely often and uses accepting transitions infinitely
often. n

The above fact shows that if we want to determinse automata for w-words, we
need something more powerful than the Biichi condition. One solution is called
the Muller condition, and is described below. Later we will see another
(equivalent) solution, which is called the parity condition.

Muller automata. The syntax of a Muller automaton is the same as for a
Biichi automaton, except that the accepting set is different. Suppose that A is
the set of transitions. Instead of being a set F C A of transitions, the accepting
set in a Muller automaton is a family ¥ C P(A) of sets of transitions. A run is
defined to be accepting if the set of transitions visited infinitely often belongs to
the family J.

Example 2. Consider this automaton

a b
Q0 . 0
;. ;O

a

|

Suppose that we set I to be all subsets which contain only transitions that enter
the blue state, as in the following picture.

6 DETERMINISATION OF w-AUTOMATA
a a
@ ®@e—— O, —O0O
7

In this case, the automaton will accept words which contain infinitely many a’s
and finitely many b’s. If we set J to be all subsets which contain at least one
transition that enters the blue state, then the automaton will accept words
which contain infinitely many a’s. [

Deterministic Muller automata are clearly closed under complement — it
suffices to replace the accepting family by P(A) — F. This lecture is devoted to
proving the following determinisation result.

Theorem 1.2 (McNaughton’s Theorem). For every nondeterministic Biichi
automaton there exists an equivalent (accepting the same w-words) deterministic
Muller automaton.

The converse of the theorem, namely that deterministic Muller (even
nondeterministic) automata can be transformed into equivalent
nondeterministic Biichi automata is more straightforward, see Exercise 7. It
follows from the above discussion that

. nondeterministic Biichi automata
« nondeterministic Muller automata
. deterministic Muller automata

have the same expressive power, but deterministic Biichi automata are weaker.
Theorem 1.2 was first proved by McNaughton in [37]. The proof here is similar

AUTOMATA MODELS FOR w-WORDS 7

to one by Muller and Schupp [40]. An alternative proof method is the Safra
Construction, see e.g. [56].

The proof strategy is as follows. We first define a family of languages, called
universal Biichi languages, and show that the McNaughton’s theorem boils
down to recognising these languages with deterministic Muller automata. Then
we do that.

The universal Biichi language. For n € IN, define a width n dag to be a
directed acyclic graph where the nodes are pairs {1,...,n} x {1,2,...} and
every edge is of the form

(q,1) = (p,i+1) for some p,g € {1,...,n} and i € {1,2,...}.

Furthermore, every edge is either red or black, with red meaning “accepting”.
We assume that there are no multiple edges (i.e. there is at most one edge
connecting a given source and target). Here is a picture of a width 3 dag:

In the pictures, we adopt the convention that the i-th column stands for the set
of vertices {1,...,n} x {i}. The top left corner of the picture, namely the vertex
(1,1) is called the initial vertex.

The essence of McNaughton’s theorem is showing that for every #, there is a
deterministic Muller automaton which inputs a width n dag and says if it
contains a path that begins in the initial vertex and visits infinitely many red
(accepting) edges. In order to write such an automaton, we need to encode as a
width n dag as an w-word over some finite alphabet. This is done using an
alphabet, which we denote by [n], where the letters look like this:

N

8 DETERMINISATION OF w-AUTOMATA

Formally speaking, [n] is the set of functions

{1,...,n} x{1,...,n} — {no edge, non-accepting edge, accepting edge}.

Define the universal n state Biichi language to be the set of words w € [n]*“ which,
when treated as a width n dag, contain a path that starts in the initial vertex
and visits accepting edges infinitely often. The key to McNaughton’s theorem is
the following proposition.

Proposition 1.3. For every n € IN there is a deterministic Muller automaton
recognising the universal n state Biichi language.

Before proving the proposition, let us show how it implies McNaughton’s
theorem. To make this and other proofs more transparent, it will be convenient
to use transducers. Define a sequential transducer to be a deterministic finite
automaton, without accepting states, where each transition is additionally
labelled by a word over some output alphabet. In this section, we only care
about the special case when the output words have exactly one letter; this is
sometimes called a letter-to-letter transducer. The name “transducer” refers to
an automaton which outputs more than just yes/no; later in this book we will
see other (and more powerful) types of transducers, with names like rational
transducer or regular transducer. If the input alphabet is 2 and the output
alphabet is I', then a sequential transducer defines a function

f:XY —>Tv.

Example 3. Here is a picture of a sequential transducer which inputs a word
over {a,b} and replaces letters on even-numbered positions by a.

AUTOMATA MODELS FOR w-WORDS 9

a transition 4/b means that
letter a is input, and letter & is output

ala
b/b

O

Lemma 1.4. Languages recognised by deterministic Muller automata are closed under
inverse images of sequential letter-to-letter transducers, i.e. if A in the diagram below is
a deterministic Muller automaton and f is a sequential transducer, there is a
deterministic Muller automaton B which makes the following diagram commute:

f

XY ——T¢

Ny

{yes, no}

Proof. A straightforward product construction. The states of automaton B are
pairs (state of the transducer f, state of the automaton A). If the automaton is
in state (p,q) and reads letter a € ¥, then it does the following. Suppose that
the transition of f when in state p and when reading letter 4 is

Py,

i.e. the output produced is b € T and the new state is p’. Suppose that the
transition of A when in state 4 and when reading letter b is

b
qg—4q.
Then the automaton ‘B has a transition of the form

(p.a) = (P q).

10 DETERMINISATION OF w-AUTOMATA

Note how each transition in B corresponds to two transitions, one in f and one
in A. The Muller condition is inherited from the automaton A, i.e. a set of
transitions in B is accepting if the corresponding set of transitions in A is
accepting.

(The assumption that the transducer is letter-to-letter is not necessary, but then
defining the Muller condition for B becomes a bit more complicated, because
each transition of B corresponds to several transitions in A.) n

Let us continue with the proof of McNaughton’s theorem. We claim that every
language recognised by a nondeterministic Biichi automaton reduces to a
universal Biichi language via some transducer. Let A be a nondeterministic
Biichi automaton with input alphabet ~. We assume without loss of generality
that the states are numbers {1,...,n} and the initial state is 1. By simply
copying the transitions of the automaton, one obtains a sequential transducer

Fix@ o)@

such that a word w € X is accepted by A if and only if f(w) contains a path
from the initial vertex with infinitely many accepting edges. Here is a picture:

The sequential transducer does even need states, i.e. one state is enough:

AUTOMATA MODELS FOR w-WORDS 11

N
\ e
= OOO@/ =

Using Lemma 1.4, we compose the transducer with the automaton from
Proposition 1.3, getting a deterministic Muller automaton equivalent to A.

It now remains to show the proposition, i.e. that the n state universal Biichi
language can be recognised by a Muller automaton. The proof has two steps.
The first step is stated in Lemma 1.5 and says that a deterministic transducer
can replace an arbitrary width n dag by an equivalent tree. Here we use the
name free for a width n dag, where every non-isolated node other than (1,1) has
exactly one incoming edge. Here is a picture of such a tree, with the isolated
nodes not drawn:

Lemma 1.5. There is a sequential transducer

fon] = [n]?

which outputs only trees and is invariant with respect to the universal Biichi language,
i.e. if the input contains a path with infinitely many accepting edges, then so does the
output and vice versa.

The second step is showing that a deterministic Muller automaton can test if a
tree contains an accepting path.

Lemma 1.6. There exists a deterministic Muller automaton with input alphabet [n]
such that for every w € [n]“ that is a tree, the automaton accepts w if and only if w
contains a path from the root with infinitely many accepting edges.

12 DETERMINISATION OF w-AUTOMATA

Combining the two lemmas using Lemma 1.4, we get Proposition 1.3, and thus
finish the proof of McNaughton’s theorem. Lemma 1.5 is proved in Section 1.2
and Lemma 1.6 is proved in Section 1.3.

1.2 Pruning the graph of runs to a tree

We begin by proving Lemma 1.5, which says that a sequential transducer can
convert a width n dag into a tree, while preserving the existence of a path from
the initial vertex with infinitely many accepting edges. The transducer is simply
going to remove edges.

Profiles. For a path 7t in a width n dag, define its profile to be the word of
same length over the alphabet “accepting” and "non-accepting” which is
obtained by replacing each edge with its appropriate type. We order profiles
lexicographically, with “accepting” smaller than “non-accepting”.

*—o—0—0—© *—o—0—0—0

*—o—0—0—© o —o—0—0—90

o< o <o

*—o—0o—0—0 —o—0—0—0

A finite path 7t in a width n dag is called profile optimal if it begins in the initial
vertex, and its profile is lexicographically least among profiles of paths in w
that begin in the initial vertex and have the same target as 7.

Lemma 1.7. There is a sequential transducer
fo] = [n]?

such that if the input is w, then f(w) is a tree with the same reachable (from the initial
vertex) vertices as in w, and such that every finite path in f(w) that begins in the root
is a profile optimal path in w.

PRUNING THE GRAPH OF RUNS TO A TREE 13

Proof. The key observation is that the prefix of a profile optimal path is also
profile optimal. Therefore, if we want to do find a profile optimal path that
leads to a vertex (g,i), we need to do the following. Consider all paths from the
initial vertex to (g,7), decomposed as 7T - e where e is the last edge of the path
and 7t is the remaining part of the path from the initial vertex to column i — 1.
Because profile optimal paths are closed under prefixes, if we want 7 - e to be
profile optimal, then 7t should be profile optimal. Since profiles are sorted
lexicographically, then the profile of 7t should be optimal among profiles of
paths that go from the initial vertex to some neighbour of (g, i) in the previous
column 7 — 1. If there are several candidates for 77 - e with the same profile of 7,
then we should use those that have a smaller profile for e (i.e. is it “accepting”
is preferred over “non-accepting”). In the end there might be several paths 77 - e
that meet all of these criteria, and all of them are profile optimal.

Based on the discussion above, we describe a sequential transducer as in the
statement of the lemma. After reading the first i letters, the automaton keeps in
its memory the following information:

1. which vertices of the form (i, q) are targets of profile optimal paths,
i.e. which ones are reachable from the initial vertex;

2. if both (i,9) and (i, p) are targets of profile optimal paths, then how are
these profiles ordered.

The above information can be kept in the finite state space of the sequential
transducer, since it consists of a subset of {1,...,n} together with an ordering
on it (a total, transitive, reflexive but not necessarily antisymmetric relation).
The information can be maintained by the automaton (i.e. it is enough to know
the old information and the new letter to get the new information), and it is
also enough to produce the output tree. Here is a picture of the construction:

14 DETERMINISATION OF w-AUTOMATA

input

The state of the tranducer is
this information:

The reachable vertices are

and the least profiles for
reaching them are ordered as

0-0<0

Lemma 1.8. Let f be the sequential transducer from Lemma 1.7. If the input to f
contains a path with infinitely many accepting edges, then so does the output.

Proof. Assume that the input w to f contains a path with infinitely many
accepting edges. Define a sequence 7y, 71, . . . of finite paths in f(w) as follows
by induction. In the definition, we preserve the invariant that each path in the
sequence 71, 771, . . . can be extended to an accepting path in the graph w. We
begin with 7y being the edgeless path that begins and ends in the root of the
tree f(w). This path 7 satisfies the invariant, by the assumption that the input
w contains a path with infinitely many accepting edges. Suppose that 7, has
been defined. By the invariant, we can extend 7, to an infinite accepting path
in the graph w, and therefore we can extend 7, to a finite path (call it 0,) in w
that contains at least one more accepting edge. Define 7,1 to be the unique
path in the tree f(w) which begins in the root of the tree f(w) and has the same
target as the new path that extends 7r,, with at least one accepting edge.

PRUNING THE GRAPH OF RUNS TO A TREE 15

e—@ 0—o cdgesin the tree flw)

e o edges in w
s the path

i its extension with more accepting edges

the path 71

The path 71,1 satisfies the invariant, because its target is the same as the target
of 0y, and 0y, is a finite prefix of some accepting path. Define P, to be the
profile of the path 7. By definition, the paths 71y, 71y, . . ., and therefore also the
corresponding profiles, get longer and longer. Furthermore, if profiles P, and
P, 11 have both length at least i, then the first i positions of P, give a word that
is lexicographically smaller than the first i positions of P, 1, this is because the
path 77,1 was taken from the tree f(w) which had profile optimal paths. We
claim that the sequence of profiles Py, P;, P,, . .. has a well defined limit

lim P, = P € {accepting, non-accepting }*.
n—oo

More precisely, we claim that for every position i, the i-th letter of the profiles
Py, P,, ... eventually stabilises. The limit P is defined to be the sequence of these
stable values. The limit exists because for every i, if we look at the prefixes of
Py, Py, ... of length i, then they get lexicographically smaller and smaller; and
therefore they must eventually stabilise, as in the following picture:

16 DETERMINISATION OF w-AUTOMATA

Po @

PP e—e—e

P e—e—e—e—=0

P &—0—0—0—0—0—0

Pi &H—0—0—0—0—0—0—0—0

Ps e—0—0—0—0—0—0—0—0—0—0

Ps @—0—0—0—0—0—0—0—0—0—0—

Claim 1.9. The limit P contains the letter “accepting” infinitely often.

Proof. Toward a contradiction, suppose that P has the letter “accepting” finitely
often, i.e. there is some i such that after i, only the letter “non-accepting”
appears in P. Choose n so that 7r,, 71,11, . .. have profile consistent with P on
the first i letters. By construction, the profile P, 1 has an accepting letter on
some position after i, and this property remains true for all subsequent profiles
Py42, Pyy3 ... and therefore is also true in the limit, contradicting our
assumption that P has only “non-accepting” letters after position i. u

Consider the set of finite paths in the tree f(w) which have profile that is a
prefix of P. This set of paths forms a tree (because it is prefix-closed). This tree
has bounded degree (assuming the parent of a path is obtained by removing
the last edge) and it contain paths of arbitrary finite length (suitable prefixes of
the paths 711, 713, . ..). The Konig lemma says that every finitely branching tree

FINDING AN ACCEPTING PATH IN A TREE GRAPH 17

with arbitrarily long paths contains an infinite path. Applying the Konig
lemma to the paths in f(w) with profile P, we get an infinite path with profile
P. By Claim 1.9 this path has infinitely many accepting edges. n

1.3 Finding an accepting path in a tree graph

We now show Lemma 1.6, which says that a deterministic Muller automaton
can check if a width 7 tree contains a path with infinitely many accepting edges.
Consider a tree t € [n]“, and let d € IN be some depth. Define an important node
for depth d to be a node which is either: the root, a node at depth 4, or a node
which is a closest common ancestor of two nodes at depth d. This definition is
illustrated below (with red lines representing accepting edges, and black lines
representing non-accepting edges):

p ydop

N

® important node for depth d

path connecting important
nodes for depth d

Definition of the Muller automaton. We now describe the Muller automaton
for Lemma 1.6. After reading the first d letters of an input tree (i.e. after
reading the input tree up to depth d), the automaton keeps in its state a tree,
where the nodes correspond to nodes of the input tree that are important for
depth d, and the edges correspond to paths in the input tree that connect these
nodes. This tree stored by the automaton is a tree with at most n leaves, and

18 DETERMINISATION OF w-AUTOMATA

therefore it has less than 21 edges. The automaton also keeps track of a
colouring of the edges, with each edge being marked as accepting or not, where
“accepting” means that the corresponding path in the input tree contains at
least one accepting edge. Finally, the automaton remembers for each edge an
identifiers from the set {1,...,2n — 1}, with the identifier policy being
described below. A typical memory state looks like this:

identifier of the edge non-accepting edge

0\1 ./3—<§:
\
accepting edge

important node

The big black dots correspond to important nodes for the current depth, red
edges are accepting, black edges are non-accepting, while the numbers are the
identifiers. All identifiers are distinct, i.e. different edges get different
identifiers. It might be the case (which is not true for the picture above), that the
identifiers used at a given moment have gaps, e.g. identifier 4 is used but not 3.
The initial state of the automaton is a tree which has one node, which is the
root and a leaf at the same time, and no edges. We now explain how the state is

updated. Suppose the automaton reads a new letter, which looks something
like this:

N

To define the new state, perform the following steps.

1. Append the new letter to the tree in the state of the automaton. In the
example of the tree and letter illustrated above, the result looks like this:

FINDING AN ACCEPTING PATH IN A TREE GRAPH 19

2. Eliminate paths that die out before reaching the new maximal depth. In
the above picture, this means eliminating the path with identifier 4:

3. Eliminate unary nodes, thus joining several edges into a single edge. This
means that a path which only passes through nodes of degree one gets
collapsed to a single edge, the identifier for such a path is inherited from
the first edge on the path. In the above picture, this means eliminating
the unary nodes that are the targets of edges with identifiers 1 and 5:

1 2 ®
5

4. Finally, if there are edges that do not have identifiers, these edges get
assigned arbitrary identifiers that are not currently used. In the above
picture, there are two such edges, and the final result looks like this:

38}
U

This completes the definition of the state update function. We now define the
acceptance condition.

20 DETERMINISATION OF w-AUTOMATA

The acceptance condition. When executing a transition, the automaton
described above goes from one tree with edges labelled by identifiers to another
tree with edges labelled by identifiers. For each identifier, a transition can have
three possible effects, described below:

1. Delete. An edge can be deleted in step 2 or in step 3 (by being merged
with an edge closer to the root). The identifier of such an edge is said to
be deleted in the transition. Since we reuse identifiers, an identifier can
still be present after a transition that deletes it, because it has been added
again in step 4, e.g. this happens to identifier 4 in the above example.

2. Refresh. In step 3, a whole path eje; - - - e, can be folded into its first edge
ep. If the part e, - - - e, contains at least one accepting edge, then we say
that the identifier of edge e; is refreshed. This happens to identifiers 1
and 5 in the above example.

3. Nothing. An identifier might be neither deleted nor refreshed, e.g. this is
the case for identifier 2 in the example.

The following lemma describes the key property of the above data structure.
Lemma 1.10. For every tree in [n]*, the following are equivalent:
(a) the tree contains a path from the root with infinitely many accepting edges;
(b) some identifier is deleted finitely often but refreshed infinitely often.

Before proving the above fact, we show how it completes the proof of
Lemma 1.6. We claim that condition (a) can be expressed as a Muller condition
on transitions. The accepting family of subsets of transitions is

Uz
i

where i ranges over possible identifiers, and the family J; contains a set X of
transitions if

. some transition in X refreshes identifier i; and

FINDING AN ACCEPTING PATH IN A TREE GRAPH 21

« none of the transitions in X delete identifier i.

Identifier i is deleted finitely often but refreshed infinitely often if and only if
the set of transitions seen infinitely often belongs to F;, and therefore, thanks to
the fact above, the automaton defined above recognises the language in the
statement of Lemma 1.6.

Proof of Lemma 1.10. The implication from (b) to (a) is straightforward. An
identifier in the state of the automaton corresponds to a finite path in the input
tree. If the identifier is not deleted, then this path stays the same or grows to
the right (i.e. something is appended to the path). When the identifier is
refreshed, the path grows by at least one accepting edge. Therefore, if the
identifier is deleted finitely often and refreshed infinitely often, there is some
path that keeps on growing with more and more accepting states, and its limit
is a path with infinitely many accepting edges.

Let us now focus on the implication from (a) to (b). Suppose that the tree ¢
contains some infinite path 7r that begins in the root and has infinitely many
accepting edges. Call an identifier active in step d if the path described by this
identifier in the d-th state of the run corresponds to an infix of the path 7. Let I
be the set of identifiers that are active in all but finitely many steps, and which
are deleted finitely often. This set is nonempty, e.g. the first edge of the path 7
always has the same identifier. In particular, there is some step d, such that
identifiers from I are not deleted after step n. Let i € I be the identifier that is
last on the path 77, i.e. all other identifiers in I describe finite paths that are
earlier on 7. It is not difficult to see that the identifier i must be refreshed
infinitely often by prefixes of the path . |

Problem 1. Are the following languages w-regular (i.e. recognised by
nondeterministic Biichi automata)?

1. w-words which have infinitely many prefixes in a fixed regular language
of finite words L C X*;

2. w-words with infinitely many infixes of the form abPa, where p is prime;

22 DETERMINISATION OF w-AUTOMATA

3. w-words with infinitely many infixes of the form ab"a, where n is even.

Problem 2. Call an w-word ultimately periodic if it is of the form uv® for some
finite words u, v. Show that if an w-regular langauge is nonempty, then it
contains an ultimately periodic word.

Problem 3. Let UP be the set of ultimately periodic words. Let K and L be
w-regular languages. Show that if LN UP = KN UP then K = L.

Problem 4. Are the following languages w-regular?

1. w-words with arbitrarily long infixes belonging to a fixed regular
language of finite words L;

2. w-words which have infinitely many prefixes in a fixed language of finite
words L C X* (not necessarily regular).

Problem 5. Show that the language of words “there exists a letter b” cannot be
accepted by a nondeterministic automaton with the Biichi acceptance condition,
where all the states are accepting (but possibly transitions over some letters in
some states are missing).

Problem 6. Show that the language “finitely many occurrences of letter a”
cannot be accepted by a deterministic automaton with the Biichi acceptance
condition.

Problem 7. Show that every language accepted by a nondeterministic
automaton with the Muller acceptance condition is also accepted by some
nondeterministic automaton with the Biichi acceptance condition.

Problem 8. Show that nonemptiness is decidable for automata with the Muller
acceptance condition.

Problem 9. Define a metric on w-words by

1
d(u,v) = diff(1,0) ’

FINDING AN ACCEPTING PATH IN A TREE GRAPH 23

where diff(u,v) is the smallest position where u and v have different labels. A
language L is called open (in this metric) if for every w € L there exists some
open ball centered in w that is included in L (standard definition). Prove that
the following conditions are equivalent for an w-regular language L:

1. is open;
2. is of the form KX% for some K C ¥*;
3. is of the form KX for some regular K C X*.

Problem 10. Which of the following candidates for a Myhill-Nerode
congruence inded have the property: ~| has finite index if and only if L is
w-regular

1. an equivalence relation ~j on X* where u ~| v is defined by

uw € L& ovw €L for all w € X%

2. an equivalence relation ~ on X“ where u ~| v is defined by
wueleswrvel forallweX”
3. an equivalence relation ~; on 2* where u ~| v is defined by

uw e L < owe L forall w € X%
s(ut)¥ e L< s(vt)? € L forall s, t € £*

and

2
Infinite duration games

In this chapter, we prove the Biichi-Landweber Theorem [15, Theorem 1], see
also [56, Theorem 6.5], which shows how to solve games with w-regular
winning conditions. These are games where two players move a token around a
graph, yielding an infinite path, and the winner is decided based on some
property of this path that is recognised by an automaton on w-words. The
Biichi-Landweber Theorem gives an algorithm for deciding the winner in such
games, thus answering a question posed in [18] and sometimes called
“Church’s Problem”.

2.1 Games

In this chapter, we consider games played by two players (called o and 1),
which are zero-sum, perfect information, and most importantly, of potentially
infinite duration.

Definition 2.1 (Game). A game consists of
a directed graph, not necessarily finite, whose vertices are called positions;
a distinguished initial position;

a partition of the positions into positions controlled by player o and positions
controlled by player 1;

26 INFINITE DURATION GAMES

a labelling of edges by a finite alphabet Y., and a winning condition, which is a
function from % to the set of players {0,1}.

Intuitively speaking, the winning condition inputs a sequence of labels
produced in an infinite play, and says which player wins. The definition is
written in a way which highlights the symmetry between the two players; this
symmetry will play an important role in the analysis. Here is a picture.

initial position . position controlled by player 0

. position controlled by player 1

a
a g Winning condition for infinite plays:
al\\p 4 b player 0 wins if label a appears
) infinitely often, otherwise 1 wins

dead end

The game is played as follows. The game begins in the initial position. The
player who controls the initial position chooses an outgoing edge, leading to a
new position. The player who controls the new position chooses an outgoing
edge, leading to a new position, and so on. If the play reaches a position with
no outgoing edges (called a dead end), then the player who controls the dead
end loses immediately. Otherwise, the play continues forever, and yields an
infinite path and the winner is given by applying the winning condition to the
sequence of edge labels seen in the play.

To formalise the notions in the above paragraph, one uses the concept of a
strategy. A strategy for player i € {0,1} is a function which inputs a history of
the play so far (a path, possibly with repetitions, from the initial position to
some position controlled by player i), and outputs the new position (consistent
with the edge relation in the graph). Given strategies for both players, call these
0p and ¢y, a unique play (a path in the graph from the initial position) is

GAMES 27

obtained, which is either a finite path ending in a dead end, or an infinite path.
This play is called winning for player i if it is finite and ends in a dead end
controlled by the opposing player; or if it is infinite and winning for player i
according to the winning condition. A strategy for player i is defined to be
winning if for every every strategy of the opponent, the resulting play is
winning for player i.

Example 4. In the game from the picture above, player 0 has a winning strategy,
which is to always select the fat arrows in the following picture.

/ moves chosen by player 0

»
>

g

Determinacy. A game is called determined if one of the players has a winning
strategy. Clearly it cannot be the case that both players have winning strategies.
One could be tempted to think that, because of the perfect information, one of
the players must have a winning strategy. However, because of the infinite
duration, one can use the axiom of choice to come up with strange games
where neither of the players has a winning strategy.

The goal of this chapter is to show a theorem by Biichi and Landweber: if the
winning condition of the game is recognised by an automaton, then the game is
determined, and furthermore the winning player has a finite memory winning
strategy, in the following sense.

Definition 2.2 (Finite memory strategy). Comnsider a game where the positions are
V. Let i be one of the players. A strategy for player i with memory M is given by:

28 INFINITE DURATION GAMES

a deterministic automaton with states M and input alphabet V; and

« for every position v € V controlled by i, a function f, from M to the neighbours
of v.

The two ingredients above define a strategy for player i in the following way: the next
move chosen by player i in a position v is obtained by applying the function f, to the
state of the automaton after reading the history of the play, including v.

We will apply the above definition to games with possibly infinitely many
positions, but we only care about finite memory sets M. An important special
case is when the set M has only one element, in which case the strategy is
called memoryless. For a memoryless strategy, the new position chosen by the
player only depends on the current position, and not on the history of the game
before that. The strategy in Example 4 is memoryless.

Theorem 2.3 (Biichi-Landweber Theorem). Let X be finite and let
Win : £ — {0,1}

be w-reqular, i.e. the inverse image of 0 (and therefore also of 1) is recognised by a
deterministic Muller automaton. Then there exists a finite set M such that for every
game with winning condition Win, one of the players has a winning strategy that uses
memory M.

The proof of the above theorem has two parts. The first part is to identify a
special case of games with w-regular winning conditions, called parity
conditions, which map a sequence of numbers to the parity € {0,1} of the
smallest number seen infinitely often.

Definition 2.4 (Parity condition). A parity condition is any function of the form

c R 0 if the smallest number appearing infinitely often in w is even
w
1 otherwise

for some finite set I C IN. A parity game is a game where the winning condition is a
parity condition.

GAMES 29

Parity games are important because not only can they be won using finite
memory strategies, but even memoryless strategies are enough.

Theorem 2.5 (Memoryless determinacy of parity games). For every parity game,
one of the players has a memoryless winning strategy.

In fact, for edge labelled games (which is our choice) the parity condition is the
only condition that admits memoryless winning strategies regardless of the
graph structure of the game, among conditions that are prefix independent,
see [20, Theorem 4].

The above theorem is proved in Section 2.2. The second step of the
Biichi-Landweber theorem is a reduction to parity games. This essentially boils
down to transforming deterministic Muller automata into deterministic parity
automata, which are defined as follows: a parity automaton has a ranking
function from states to numbers, and a run is considered accepting if the
smallest rank appearing infinitely often is even. This is a special case of the
Muller condition, but it turns out to be expressively complete in the following
sense:

Lemma 2.6. For every deterministic Muller automaton, there is an equivalent
deterministic parity automaton.

Proof. The lemma can be proved in two ways. One way is to show that, by
taking more care in the determinisation construction in McNaughton's
Theorem, we can actually produce a parity automaton. Another way is to use a
data structure called the later appearance record [31]. The construction is
presented in the following claim.

Claim 2.7. For every finite alphabet ¥, there exists a deterministic automaton with
input alphabet %, a totally ordered state space Q, and a function

§:Q—P(X)

with the following property. For every input word, the set of letters appearing infinitely
often in the input is obtained by applying g to the smallest state that appears infinitely
often in the run.

30 INFINITE DURATION GAMES

Proof. The state space Q consists of data structures that look like this:

ORGN N

More precisely, a state is a (possibly empty) sequence of distinct letters from X,
with distinguished blue suffix. The initial state is the empty sequence. After
reading the first letter g, the state of the automaton is

When that automaton reads an input letter, it moves the input letter to the end
of the sequence (if it was not previously in the sequence, then it is added), and
marks as blue all those positions in the sequence which were changed, as in the
following picture:

previous state
input letter
e (+) @ @ @

Consider a run of this automaton over some infinite input w € ~¢. Take some
blue suffix of maximal size that appears infinitely often in the run. Then the
letters in this suffix are exactly those that appear in w infinitely often.
Therefore, to get the statement of the claim, we order Q first by the number of
white (not blue) positions, and in case of the same number of white positions,
we use some arbitrary total ordering. The function g returns the set of blue
positions. This completes the proof of the claim. n

The conversion of Muller to parity is a straightforward corollary of the above
lemma: one applies the above lemma to the state space of the Muller
automaton, and defines the ranks according to the Muller condition. n

MEMORYLESS DETERMINACY OF PARITY GAMES 31

Let us now finish the proof of the Biichi-Landweber theorem. Consider a game
with an w-regular winning condition. By Lemma 2.6, there is a deterministic
parity automaton which accepts exactly those sequences of edge labels where
player 0 wins. Consider a new game, call it the product game, where the
positions are pairs (position of the original game, state of the deterministic
parity automaton). Edges in the product game are of the form

(0,9) % (w,p)

such that v = w is an edge of the original game (the label of the edge is on top
of the arrow), the deterministic parity automaton goes from state g to state p
when reading label a, and b is the number assigned to state g by the parity
condition. It is not difficult to see that the following conditions are equivalent
for every position v of the original game and every player i € {0,1}:

1. player i wins from position v in the original game;

2. player i wins from position (v, q) in the product game, where g is the
initial state of the deterministic parity automaton recognising L.

The implication from 1 to 2 crucially uses determinism of the automaton and
would fail if a nondeterministic automaton were used (under an appropriate
definition of a product game). Since the product game is a parity game,
Theorem 2.5 says that for every position v, condition 2 must hold for one of the
players; furthermore, a positional strategy in the product game corresponds to
a finite memory strategy in the original game, where the memory is the states
of the deterministic parity automaton.

This completes the proof of the Biichi-Landweber Theorem. It remains to show
memoryless determinacy of parity games, which is done below.

2.2 Memoryless determinacy of parity games

In this section, we prove Theorem 2.5 on memoryless determinacy of parity
games. The proof we use is based in [61] and [56]. Recall that in a parity game,

32 INFINITE DURATION GAMES

the positions are assigned numbers (called ranks from now on) from a finite set
of natural numbers, and the goal of player i is to ensure that for infinite plays,
the minimal number appearing infinitely often has parity i. Our goal is to show
that one of the players has a winning strategy, and furthermore this strategy is
memoryless. The proof of the theorem is by induction on the number ranks
used in the game. We choose the induction base to be the case when there are
no ranks at all, and hence the theorem is vacuously true. For the induction step,
we use the notion of attractors, which is defined below.

Attractors. Consider a set of edges X in a parity game (actually the winning
condition and labelling of edges are irrelevant for the definition). For a player
i € {0,1}, we define below the i-attractor of X, which intuitively represents
positions where player i can force a visit to an edge from X. The attractor is
approximated using ordinal numbers. (For a reader unfamiliar with ordinal
numbers, just think of natural numbers, which are enough to treat the case of
games with finitely many positions.) Define X/ to be empty. For an ordinal
number « > 0, define X, to be all positions which satisfy one of the conditions
(A), (B) or (C) depicted below:

(C) is owned by opponent of player i and
every outgoing edge is in X
or goes to a position

C
satisfying (A)

(A) belongs to X3
for some 3 < «

(B) is owned by player i and
some outgoing edge is in X
or goes to a position satisfying (A)

MEMORYLESS DETERMINACY OF PARITY GAMES 33

The set X, grows as the ordinal number a grows, and therefore at some point it
stabilises. If the game has finitely many positions — or, more generally, finite
outdegree — then it stabilises after a finite number of steps and ordinals are not
needed. This stable set is called the i-attractor of X. Over positions in the
i-attractor, player i has a memoryless strategy which guarantees that after a
finite number of steps, the game will use an edge from X, or end up in a dead
end owned by the opponent of player i. This strategy, called the attractor
strategy, is to choose the neighbour that belongs to X, with the smallest
possible index a.

Induction step. Consider a parity game. By symmetry, we assume that the
minimal rank used in the game is an even number. By shifting the ranks, we
assume that the minimal rank is 0. For i € {0, 1} define W; to be the set of
positions v such that if the initial position is replaced by v, then player i has a
memoryless winning strategy. Define U to be the vertices that are in neither W
nor in Wj. Our goal is to prove that U is empty. Here is the picture:

W 144

1

player 0 player 1

wins with wins with
a memoryless a memoryless
strategy strategy

By definition, for every position in w € W;, player i has a memoryless winning
strategy that wins when starting in position w. In principle, the memoryless
strategy might depend on the choice of w, but the following lemma shows that
this is not the case.

34 INFINITE DURATION GAMES

Lemma 2.8. Let i € {0, 1} be one of the players. There is a memoryless strategy o; for
player i, such that if the game starts in W;, then player i wins by playing o;.

Proof. By definition, for every position w € W; there is a memoryless winning
strategy, which we call the strategy of w. We want to consolidate these strategies
into a single one that does not depend on w. Choose some well-ordering of the
vertices from W;, i.e. a total ordering which is well-founded. Such a
well-ordering exists by the axiom of choice. For a position w € W;, define its
companion to be the least position v such that the strategy of v wins when
starting in w. The companion is well defined because we take the least element,
under a well-founded ordering, of some set that is nonempty (because it
contains w). Define a consolidated strategy as follows: when in position w, play
according to the strategy of the companion of w. The key observation is that for
every play using this consolidated strategy, the sequence of companions is
non-increasing in the well-ordering, and therefore it must stabilise at some
companion v; and therefore the play must be winning for player i, since from
some point on it is consistent with the strategy of v. n

Define the game restricted to U to be the same as the original game, except that
we only keep positions from U. In general restricting a game to a subset of
positions might create new dead ends. However, in this particular case, no new
dead ends will be created: if a position controlled by player i has all of its
outgoing edges to Wy U Wy, then a short analysis shows that the position is
already in either Wy U Wj. Define A to be the 0-attractor, inside the game
limited to U, of the rank 0 edges in U (i.e. both endpoints are in U). Here is a
picture of the game restricted to U:

MEMORYLESS DETERMINACY OF PARITY GAMES 35

Seen attract toward rank

\ ff’ /

rank () rank 0

rank 0

Consider a position in A that is controlled by player 1. In the original game, all
outgoing edges from the position go to A U Wp; because if there would be an
edge to W then the position would also be in Wj. It follows that:

(1) In the original game, if the play begins in a position from A and player 0
plays the attractor strategy on the set A, then the play is bound to either
use an edge inside U that has minimal rank 0, or in the set W.

Consider the following game H: we restrict the original game to positions from
U — A, and remove all edges which have minimal rank 0 (these edges
necessarily originate in positions controlled by player 1, since otherwise they
would be in A). Since this game does not use rank 0, the induction assumption
can be applied to get a partition of U — A into two sets of positions Uy and U,
such that on each U; player i has a memoryless winning strategy in the game H:

u | U

36 INFINITE DURATION GAMES

Here is how the sets Uy, U; can be interpreted in terms of the bigger original
game.

(2) In the original game, for every i € {0, 1}, if the play begins in a position
from U; and player i uses the memoryless winning strategy
corresponding to U;, then either (a) the play eventually visits a position
from A U Wy U Wj or an edge with rank 0; or (b) player i wins.

Here is a picture of the original game with all sets:

W,

144

player 0 player 1
wins with wins with
can attract toward rank
a memoryless S a memoryless

strategy strategy

A

fank 0 rank0

rank 0

Lemma 2.9. Uj is empty.
Proof. Consider this memoryless strategy for player 1 in the original game:

« in Uy use the winning memoryless strategy inherited from the game
restricted to U — A;

+ in Wj use the winning memoryless strategy from Lemma 2.8;
- in other positions do whatever.

We claim that the above memoryless strategy is winning for all positions from
Uy, and therefore U; must be empty by assumption on W being all positions

MEMORYLESS DETERMINACY OF PARITY GAMES 37

where player 1 can win in a memoryless way. Suppose player 1 plays the above
strategy, and the play begins in Uj. If the play uses only edges that are in the

game H, then player 1 wins by assumption on the strategy. The play cannot use
an edge of rank 0 that has both endpoints in U, because these were removed in
the game H. The play cannot enter the sets Wy or A, because this would have to
be a choice of player 0, and positions with such a choice already belong to Wy

or A. Therefore, if the play leaves U — A, then it enters Wi, where player 1 wins
as well. n

In the original game, consider the following memoryless strategy for player 0:
in Uy use the winning memoryless strategy from the game H;
in Wy use the winning memoryless strategy from Lemma 2.8;
in A use the attractor strategy to reach a rank 0 edge inside U;
on other positions, i.e. on W, do whatever.

We claim that the above strategy wins on all positions except for Wy, and
therefore the theorem is proved. We first observe that the play can never enter
W1, because this would have to be a choice of player 1, and such choices are
only possible in Wj. If the play enters Wy, then player 0 wins by assumption on
Wy. Other plays will reach positions of rank 0 infinitely often, or will stay in Uy
from some point on. In the first case, player 0 will win by the assumption on 0
being the minimal rank. In the second case, player 0 will win by the
assumption on Uy being winning for the game restricted to U — A.

This completes the proof of memoryless determinacy for parity games, and also
of the Biichi-Landweber Theorem.

Problem 11. We say that a game is finite if it has no infinite plays, i.e. every play
eventually reaches a dead end. Prove that every finite game is determined,
i.e. exactly one of the players has a winning strategy.

Problem 12. Show that reachability games played on finite game graphs can be
solved in time proportional to the number of edges.

38 INFINITE DURATION GAMES

Problem 13. Show one player parity games can be solved in PTIME.
Problem 14. Show that solving parity games is in NP N coNP.

Problem 15. Consider the following game on a finite game graph V together
with function rank : V' — IN. At every moment of the play, the owner of the
current vertex chooses a next vertex among current vertex successors. This
continues until some vertex repeats on the play; i.e. till the first loop is closed.
Then depending on the parity of the smallest rank on the loop the winning
player is determined. Prove that player i in the described game wins iff player i
wins in the parity game on the same arena.

Problem 16. Are Muller games positionally determined?

Problem 17. Show that Biichi games are positionally determined without direct
use of the same result for parity games.

Problem 18. Show that the winning condition Muller games is a Borel set, and
therefore Muller games are determined by Martin’s theorem. (Most of this
problem is looking up what Borel sets and Martin’s theorem are.)

Problem 19. Show that Muller games on finite arenas are not positionally
determined.

Problem 20. Construct an infinite game played on a finite game graph, in
which player o has a winning strategy, but not a winning finite memory
strategy. Remark: Notice that by Biichi-Landweber theorem the winning
condition in that game cannot be w-regular.

Problem 21. Consider the following riddle. There are infinitely many dwarfs
(countably many). Every dwarf is given a hat, which is either red or green.
Every dwarf sees the color of every hat beside his own one. Every dwarf is
supposed to tell what is the color of his hat, such that only finitely many
dwarfs make a mistake. They can fix a strategy in advance, before getting their
hats, but they cannot communicate after getting their hats. Find a winning
strategy for dwarfs. Remark: Problems 21, 22 and 23 serve as a preparation for
the Problem 24.

MEMORYLESS DETERMINACY OF PARITY GAMES 39

Problem 22. Show that there is a function inf-xor : {0,1}* — {0,1}, such that
changing one bit of an argument always changes the result. (The solution uses
the axiom of choice.)

Problem 23. Consider the following two player game, called Chomp. There is a
rectangular chocolate in a shape of n x k grid. The right upper corner piece is
rotten. Players move in an alternating manner, the first one moves first. Any
player in his move picks square of the chocolate that is not yet eaten, and eats
all pieces that are to the left and to the bottom from the picked piece. The
player who eats the rotten piece loses. Determine who has a winning strategy.

Problem 24. Show a game that is not determined.

Problem 25. Consider the following bisimilarity game played on a finite game
graph with vertices V equipped with a function rank : V. — IN. Two players,
Spoiler and Duplicator start from a position (u,v) € V x V. The play proceeds in
rounds. If at the beginning of a round rank(u) # rank(v) or u and v belong to
different players then Spoiler immediately wins. Otherwise Spoiler makes a
move to (#/,v) or (u,v") such that u — u’ or v — v/, respectively. Then
Duplicator makes a move to (u’,v’) such that v — v’ or u — 1/, respectively.
Next round starts from (u’,v"). If play continues infinitely long then Duplicator
wins. Show that if Duplicator has a winning strategy from position (u,v) then
the same player has a winning strategy in the parity game starting from u and
in the parity game starting in v.

3
Parity games in quasipolynomial time

In this chapter, we show the following result.

Theorem 3.1. Parity games with n positions and d ranks can be solved in time
O(logd)
n .

The time in the above theorem is a special case of quasipolynomial time
mentioned in the title of the chapter. Whether or not parity games can be
solved in time which is polynomial in both n and 4 is an important open
problem. The presentation here is based on the original paper [16], with some
new terminology (notably, the use of separation).

Define a reachability game to be a game where the objective of player 0 is to visit
an edge from a designated subset. (We assume that the designated subset
contains all edges pointing to dead ends of player 1, so that winning by
reaching a dead end is subsumed by reaching designated edges.) Reachability
games can be solved in time linear in the number of edges, as is shown in
Exercise 11. Our proof strategy for Theorem 3.1 is to reduce parity games to
reachability games of appropriate size.

3.1 Reduction to reachability games

The syntax of a reachability automaton is exactly the same as the syntax of an
NFA. The semantics, however, is different: the automaton inputs an infinite

42 PARITY GAMES IN QUASIPOLYNOMIAL TIME

word, and accepts if a final state can be reached (in other words, there is a
prefix which is accepted by the automaton when viewed as an N¥a). For
example, the following reachability automaton

p——o——¢

accepts all w-words over alphabet {a, b} which contain two consecutive a’s. A

reachability automaton is called deterministic if its transition relation is a
function.

Consider an infinite word over an alphabet {1,...,n} x {1,...,d}. We view this
word as an infinite path in a game, where the positions are {1,...,n} and each
edge is labelled by a rank from {1,...,d}. Each letter describes a position and
the rank of an outgoing edge. An infix of such a path is called an even loop if it
begins and ends in the same vertex from {1,...,n} and the maximal rank in the
infix is even. Likewise we define odd loops. Here is a picture:

a letter
{1,...,.n}

odd loop, max is 5 even loop, max is 4

The following lemma shows that to quickly solve parity games, it suffices to
find a small deterministic reachability automaton which separates the
properties “all loops are even” and “all loops are odd”.

REDUCTION TO REACHABILITY GAMES 43

Lemma 3.2. Let n,d € {1,2,...}. Assume that one can compute a deterministic
reachability automaton D with input alphabet {1,...,n} x{1,...,d} that accepts
every w-word where all loops are even, and rejects every w-word where all loops are
odd, as in the following picture:

({1,...n} x {1,...,4})

words accepted by the
reachability automaton

Then a parity game G with n positions and d ranks can be solved in time
O((number of edges in G) x (number of states in D)) + time to compute D

Proof. Let G be a parity game with vertices {1,...,n} and edges labelled by
parity ranks {1,...,d}. Let D be an automaton as in the assumption of the
lemma. Consider a product game G x D, as defined on page 31, i.e. the
positions are pairs (position of v, state of A) and the structure of the game is
inherited from G with only the states being updated according to the parity
ranks on edges. Player 0 wins the product game G x D if a dead end of player 1
is reached, or if the play is infinite and accepted by D (in the latter case, by the
assumption that D is a reachability automaton, this is done by reaching an
accepting state of D at some point during the play).

Claim 3.3. If player i € {0, 1} wins G, then player i also wins G x D.

44 PARITY GAMES IN QUASIPOLYNOMIAL TIME

Proof. By symmetry, take i = 0. Let 0y be a winning strategy for player i in the
game G. By memoryless determinacy of parity games, we assume that oy is
memoryless. Let Gy be the graph obtained from the graph underlying the game
G by fixing the memoryless strategy oy, i.e. by removing every edge that
originates in a position owned by player 0 and is not used by the strategy oy.
Paths in the graph Gy correspond to plays in the game G that are consistent
with strategy 0p. Because 0y was winning in the game G, all infinite paths in G
satisfy the parity condition. In particular, every loop in Gy that is accessible
from the initial vertex has even maximum. This means that every infinite path
in Gy is accepted by the automaton D. Therefore, the same strategy oy also wins
in the game G x D. n

Because D is a reachability automaton, the product game G x D can be solved
in time proportional to the number of its edges, which is consistent with the
bound in the lemma. n

3.2 A small reachability automaton for loop parity

By Lemma 3.2, to prove Theorem 3.1, it suffices to find a deterministic
automaton which separates “all loops even” from “all loops odd”, and which
has a quasipolynomial state space (and time to compute the automaton). As a

a/2

warm-up, we present a simpler construction which has n%/~ states.

Fact 3.4. Let n,d € {1,2,...}. There is a deterministic reachability automaton with
n/2 states which satisfies the properties in Lemma 3.2.

Proof. Consider a finite word over the alphabet {1,...,n} x {1,...,d}. For a
rank a € {1,...,d}, a position in the word is called a-visible if its letter has rank
exactly 4, and all later positions have ranks < g, as in the following picture

A SMALL REACHABILITY AUTOMATON FOR LOOP PARITY 45

a letter

{1,...,n} 4-visible position

\ / ranks <4
{1,...,d}

rank 4

After reading a word, for each even rank 4, the automaton stores the number of
a-visible positions up to threshold n — 1, i.e. the state space is a function

even numbers in {1,...,d} — {0,1,...,n}.

Whenever the threshold is exceeded, i.e. the number of a-visible positions
exceeds n for some a, the automaton accepts. If this happens, then the
pigeonhole principle says that the input word contains two a-visible positions
with the same label in {1,...,n}, and therefore the infix connecting these
positions forms an even loop with maximum exactly a. Therefore, if the
automaton accepts, then there is an even loop. Contrapositively: if there are
only odd loops, then the automaton rejects. On the other hand, if the input
word satisfies the parity condition, i.e. the maximal rank seen infinitely often is
an even number 4, then at some point there will be at least n positions that are
a-visible. Therefore if the input satisfies the parity condition (in particular, if the
input has all loops even), then the automaton must accept. n

Note that in the above construction, the automaton satisfies a stronger property
than required by Lemma 3.2, namely it accepts all words satisfying the parity
condition (instead of only those where all loops are even).

Lemma 3.5. Let n,d € {1,2,...}. There is deterministic reachability automaton with
n90084) states which satisfies the assumptions of Lemma 3.2.

The rest of Section 3.2 is devoted to proving the above lemma. Like in the

a/2

construction with n/~ states, the automaton will reject all words which violate

46 PARITY GAMES IN QUASIPOLYNOMIAL TIME

the parity condition, and not just those where all loops are odd. This stronger
property, however, is not used in the proof of Theorem 3.1.

We begin with a nondeterministic reachability automaton A which satisfies the
properties in the lemma in the following sense: if all loops are even, then at
least one run reaches an accepting state, and if all loops are odd, then all runs
avoid accepting states.

Choose the smallest k so that 7 < 2F. The nondeterministic automaton uses k
registers with names {0,...,k — 1}. Each register stores a number from
{1,...,d}, or it is undefined. A state of the automaton is a valuation of these
registers or an accepting sink state, i.e. the number of states is at most
(1+d)¥ + 1. By choice of k, we have

(d+ 1)k <
(d—|— 1)10g(n+1) _
210g(n+1)~log(d+1)

(n + 1)log(d+1)

and therefore the number of states in A is at most n°1°84) Our final
automaton D will be obtained by keeping the same states as A and removing
transitions so as to make the automaton deterministic, and hence the size of D
will be as required to make Theorem 3.1 true.

Here is a picture of a state of the automaton A:

© ® O @ ®

We design the transition relation to respect following invariant.

A SMALL REACHABILITY AUTOMATON FOR LOOP PARITY 47

(*) Suppose that the automaton has read a finite word, and has not accepted
yet. Then the register valuation is nondecreasing on nonempty registers.
Furthermore, one can associate to each register r a word w, so that:

1. if r is empty then w, is empty; and
2. the word wy_qwg_p - - - wiwy is a suffix of the input read so far; and
3. if a register r is nonempty and stores i € {1,...,d}, then:
(a) all words associated to nonempty registers < r use ranks < i;
(b) the word w, associated to r is a concatenation of two words:
« TAIL: 2" — 1 words with even maximal rank;

- HEAD: a word with maximal rank exactly i.

Here is a picture of the invariant. In the picture, we only draw the ranks of the
input letters, and not their labels in {1,...,n}. One reason is that the
automaton completely ignores the labels in its transition relation.

© ®) O @ ®)

ti2ssfis21fenafafs21fseofofs 142 a2 1]a o1 2pp2 1|6214|21-|1421|6|1 aefs2 1|42z|24-|1 42151 1--
r——
head

max 5

In the initial state, all registers are empty; this state clearly satisfies the
invariant. Before giving the state update function, we explain two properties of
the invariant.

Lemma 3.6. Assume that the invariant is satisfied, all registers are nonempty and store
even ranks, and the input letter has even rank. Then the input contains an even loop.

48 PARITY GAMES IN QUASIPOLYNOMIAL TIME

Proof. If register r stores an even rank, then the associated word w;, is a
concatenation of 2" words with even maximal rank: one for the head, and 2" — 1
for the tail. Therefore, if all registers are nonempty and store even ranks, and a
letter of even rank appears in the input, then a suffix of the input — including
the new input letter — can be factorised as a concatenation of

21 k2. 00 1, =2>n
L A +
the registers the input letter

words with even maximal rank. For each of these words, choose the position
which achieves the maximal rank. The pigeonhole principle says that two
positions achieving the maximal rank must have the same label. The infix
connecting these two positions is an even loop. [|

The above lemma justifies the following acceptance criterion of the automaton:
if all of its registers are nonempty and store even ranks, and it reads an even
rank, then it accepts.

Lemma 3.7. Emptying any subset of the registers preserves the invariant.

Proof. It is enough to show that emptying any single register r preserves the
invariant. If r is the most significant nonempty register, then the word
associated to r is put into the prefix of the input that is not assigned to any
register. Otherwise, the word associated to r is appended to the head of the
closest more significant register. n

Transitions of the automaton. We now describe the transitions of the
automaton and justify that they preserve the invariant. Suppose that the
automaton reads a letter with rank a € {1,...,d}. Then the automaton allows
three types of transitions A, B and C, as described below.

A. Assume that in the current state, all registers store values > a, which
includes the special case when all registers are empty. Under this
assumption, the automaton is allowed to do nothing, i.e. not change the
state when reading a.

A SMALL REACHABILITY AUTOMATON FOR LOOP PARITY 49

Why the invariant is preserved. If all registers are empty, then the new input
letter 2 becomes part of the input that is not associated to any register.
Otherwise, a is appended to the head of the least significant nonempty

register.

B. Let r be any register which satisfies conditions written in grey below:

o ©® ® ® O @

Then the automaton can do the following update (the picture uses a = 4):

O © ® ® O O

Why the invariant is preserved. We view this transition as a two-step
process. First, all registers < r are made empty, which preserves the
invariant by Lemma 3.7. Next, the input letter a is appended to the head
of the register r (which is now the least significant nonempty register),
and therefore becomes the new maximum in this head.

C. Let r be any register which satisfies the conditions written in grey below:

50 PARITY GAMES IN QUASIPOLYNOMIAL TIME

@ © O O © @

Under these conditions, and assuming that a is even, the automaton can
do the same update as in transitions of type B., i.e. it put a into register r
and empty all registers < r. Apart from the assumption that a is even,
there is no assumption that 4 is bigger than the contents of registers < r,
e.g. in the above picture a could be 2 or 4.

Why the invariant is preserved. We also view this transition as a two-step
process. First, we empty register r (but not the smaller ones), which
preserves the invariant by Lemma 3.7. Next, all of the words associated
to registers < r are concatenated and put into the tail of register r. As
explained in the proof of Lemma 3.6, after the update the tail of register r
consists of

27‘71_{_21’72_{__“20:27‘_1

words with even maximum, as required by the invariant. Finally, the
head of register r is set to the one letter word consisting of the new input
letter a. Here is a picture:

A SMALL REACHABILITY AUTOMATON FOR LOOP PARITY 51

© O O O, @

o [e e o R v e e

4 2 1
words words word

when reading an
input letter with rank 2

© @ O O O

7

words

Since every transition of A preserves the invariant, we can use Lemma 3.6 to
conclude that if the invariant is preserved and the automaton accepts (which
happens when all registers store even ranks and a new even rank is read), then
the input contains at least one even loop. This gives the following inclusion:

words accepted by the
nondeterministic
reachability automaton A

Define D to be the deterministic reachability automaton which is obtained from
A as follows: if there are several applicable transitions, then choose any
transition that maximises the most significant register that is modified. The
automaton D has fewer accepting runs than A, and therefore it still rejects all

52 PARITY GAMES IN QUASIPOLYNOMIAL TIME

words that have only odd loops. Therefore, the proof of Lemma 3.5 is
completed by the following lemma.

Lemma 3.8. If the input has only even loops, then D accepts.

Proof. Fori € {1,2,...}, define D; to be a variant of the automaton D where the
number of registers is i instead of k. In particular, D = D;. By induction on i,
we prove the following generalisation (*) of the lemma. The generalisation is
twofold: we allow any number of registers, and we weaken the assumption
from “only even loops” to “satisfies the parity condition”.

(*) Suppose that D; is initialised in an arbitrary state (not necessarily the
initial state with all registers empty). If the input satisfies the parity
condition, then D; accepts, i.e. it reaches a configuration where all
registers store even ranks and the input letter has even rank.

Suppose that we have already proved (*) for i — 1, or i = 1 and there is nothing
to prove. We now prove (*) for i. Consider a run of D; on an input which
satisfies the parity condition, i.e. the maximal rank that appears infinitely often
is some even a € {1,...,d}. By the induction assumption, the most significant
register i must eventually become nonempty, because transitions that do not
affect the most significant register are transitions of the automaton D;_1. Once
the most significant register becomes nonempty, then it stays nonempty. Wait
until the most significant rank a is seen again; either the automaton accepts
before this time, or otherwise it puts a into the most significant register. Once
the most significant register stores a, and the input contains only values with
rank < g, then the most significant register will keep on containing 2. Again by
induction assumption, the automaton will eventually fill all registers < i with
even ranks and read an even letter, thus accepting. n

Problem 26. Consider the following variant of the automaton from Lemma 3.5.
Only odd numbers are kept in the registers, and the update function is the
same as in Lemma 3.5 when reading an odd number. When reading an even
number a, the automaton erases all registers, which store values < a. Show that
this automaton does not satisfy the properties required in Lemma 3.5.

A SMALL REACHABILITY AUTOMATON FOR LOOP PARITY 53

Problem 27. Show that there is no safety automaton which:
- accepts all ultimately periodic words that satisfy the parity condition;
- rejects all ultimately periodic words that violate the parity condition.

Problem 28. Show that there is no safety automaton with < |n/2]| states which
satisfies the properties required in Lemma 3.5.

Problem 29. A probabilistic reachability automaton is defined like a finite
automaton, except that each transition is assigned a probability — a number in
the unit interval — such that for every state, the sum of probabilities for
outgoing transitions is 1. The value assigned by such an automaton to an
w-word is the probability that an accepting state is seen at least once. Show that
there is a probabilistic reachability automaton over the alphabet {1,...,n}%,

with state space polynomial in 7, that:
- assigns value 1 to words that have only even loops;

- assigns value o to words that have only odd loops.

4
Distance automata

The syntax of a distance automaton is the same as for a nondeterministic finite
automaton, except that it has a distinguished subset of transitions, called the
costly transitions. The cost of a run is defined to be the number of costly
transitions that it uses.

Example 5. Here is a cost automaton, with the costly transitions (one
transition, in this particular example) depicted in red.

x
N
ey
x
N
oy

b

O
O—s
T

l b

—0OJ
— 00

The nondeterminism of the automaton consists of: choosing the initial state
(first or second), and in case the first state was chosen as initial, then choosing
the moment when the second horizontal transition is used. This
nondeterminism corresponds to selecting a block of a letters, and the cost of a
run is the length of such a block, as in the following picture:

56 DISTANCE AUTOMATA

—00- 6 @ 6 6 6 06 06 &0 o o o

O

In this chapter, we prove the following theorem, originally proved by
Hashiguchi in [32]. The theorem was part of Hashiguchi’s solution [33] to the
star height problem, i.e. the problem of determining what is the least number of
nested Kleene stars that is needed to define a given regular language.

Theorem 4.1. The following problem is decidable:
Input. A distance automaton.

Question. Is the automaton bounded in the following sense: there is some
m € IN such that every input word admits an accepting run of cost < m.

The problem in the above theorem was called limitedness in [32]. The algorithm
we use, based on [10], uses the Biichi-Landweber Theorem [15] discussed in
Chapter 2. The algorithm leads to an ExpTIME upper bound on the limitedness
problem; the optimal complexity is PSpacg, which follows as a special case

of [35, Theorem 2.2].

The limitedness game. Fix a distance automaton. For a number

m e {1,2,...,w}, consider the following game, call it the limitedness game with
bound m. The game is played in infinitely many rounds 1,2, 3, ..., by two
players called Input and Automaton. In each round:

player Input chooses a letter of the input alphabet;

57

- player Automaton responds with a set of transitions over this letter.

A move of player Automaton in a given round, which is a set of transitions, can
be visualised as a bipartite graph, which says how the letter can take a state to a
new state, with costly transitions being red and non-costly transitions being
black, like below:

p p
q q
r r

For the definition of the game, it is important that player Automaton does not
need to choose all possible transitions over the letter played by player Input,
only a subset. Actually, as we will later see, in order to win, player Automaton
need only use tree-shaped sets like this:

p p . .

° q every vertex in the right column
1 has at most one incoming edge
" O—@7T

After all rounds have been played, the situation looks like this:
letters played by Input a4 a4 a b a b ¢ b

sets of transitions ° eoe

played by Automaton °

The winning condition for player Automaton is the following:

1. In every column, at least one accepting state must be reachable from
some initial state in the first column; and

2. Every path contains < m costly edges. In case of m = w, this means that
every path contains finitely many costly edges.

58 DISTANCE AUTOMATA

If either of the conditions above is violated, then player Input wins. The
following lemma implies the decidability of the limitedness problem.

Lemma 4.2. For a distance automaton, the following conditions are equivalent, and
furthermore one can decide if they hold:

1. the automaton is limited;

2. there is some m € {1,2,...} such that player Automaton wins the limitedness
game with bound m;

3. player Automaton wins the limitedness game with bound m = w

Proof. The implications from 2 to 1 and from 2 to 3 are immediate. For the other
implications and the decidability part, the key is the observation that for every
choice of m € {1,2,...,w}, the limitedness game is a special case of a game
with a finite arena and an w-regular condition. In particular, one can apply the
Biichi-Landweber theorem, yielding that a) the winner can be decided; b) the
winner needs finite memory. Condition a) shows that item 3 in the lemma is
decidable, while condition b) will be used in the implication from 3 to 2.

Implication from 1 to 2. We want to prove that if the automaton is limited,
then player Automaton has a winning strategy for some finite m, which will
turn out to be the same m as in the definition of limitedness. Define a run p of
the distance automaton over an input word w to be optimal if it has minimal
cost among runs that have the same input word, same source state and same
target state. The strategy of player Automaton is as follows. Suppose that
player Input has played a sequence of letters. Then the sets of transitions
chosen by Automaton are so that the transitions form a forest, consisting only
of optimal runs, where all reachable configurations (i.e. reachable by some run
from an initial state) are covered, as in the following picture:

a a b a a a a

optimal cost 4

m optimal cost 6
optimal cost 5

59

When player Input gives a new letter, player Automaton responds with a set of
transitions which connect the new configurations to the previous ones in a
cost-minimising way.

Implication from 3 to 2. Suppose that player Automaton wins the limitedness
game with bound w. We will prove that player Automaton can also win the
limitedness game with a finite bound.

By the Biichi-Landweber theorem, if player Automaton can win the game with
bound w, then he can also win the game with a finite memory strategy. We will
show that this finite memory strategy is actually winning for a finite bound.

Suppose that the input alphabet of the original distance automaton is X. A finite
memory strategy of player Automaton in the limitedness game is a function

o X* — sets of transitions

which is recognised by a finite automaton, i.e. there is a deterministic finite
automaton such that o(w) depends only on the state of the automaton after
reading w. We claim that this same winning strategy produces runs where the
cost is at most (number of states in the distance automaton) times (number of
states in the automaton recognising the strategy), thus proving the implication
from 3 to 2 in the lemma. To prove the claim, suppose that the strategy ¢ loses
in the game with the above described finite bound. Using a pumping argument
we find a loop that can be exploited by player Input to force player Automaton
into a path that has infinitely many costly edges, contradicting the assumption
that o wins in the game with bound w, as in the following picture:

60 DISTANCE AUTOMATA

if player Input keeps iterating
this word, then he wins
in the game with bound w

— —

letters played by Input a a a b a b a b e
states of the automaton . ‘ e
recognising the strategy P q P q p P4

sets of transitions
played by Automaton

- has at least one costly edge
- begins and ends in the same state for the distance automataon

Problem 30. Show that limitedness remains decidable when distance automata
are equipped with a reset operation. (The cost of a run is the biggest number of
costly transitions between some two consecutive resets.)

Problem 31. Let A be a distance automaton with input alphabet . The
problem of limitedness of A on reqular language L C ¥* asks whether there exists
n € IN such that for every word w € L the cost of w with respect to A is not
bigger than n. Show that this problem is decidable.

Problem 32. We say that a regular language L has the finite power property if
there exists n € IN such that L* = LU L U...UL". Show that one can decide
if a regular language has the finite power property. is decidable.

Problem 33. We say that languages K C X* and L C X* are separated by
language S CX*if KC Sand LNS = @. For u,v € ¥* we say that u = ay - - - a
is a subsequence of v, denoted u < v,if v € L*mX* ... X*gX*. A language L is
called upward closed if for every u € L and u < v also v € L. Show that deciding

61

whether two given regular languages K and L are separated by some upward
closed language is decidable.

Problem 34. Let J be the class of finite unions of languages of the form
ZrunX* . XrweX*, where all w; are words from X*. Show that for given
regular languages K and L it is decidable whether they are separated by a set
from J.

Remark: Note that J contains all upward closed languages defined in the
Problem 33. To see this recall that Higman’s Lemma implies that there is no
infinite antichain in the < order. Therefore every upward closed language has
finitely many minimal elements. Thus every upward closed language is a finite
union of languages of the form ¥*a;2* ... 2*q; 2", where all 4; € Z.

Problem 35. Show that it is decidable if a regular language is of star height
one, i.e. it can be defined by a regular expression that uses Kleene star, maybe
multiple times, but does not nest it.

5
Monadic second-order logic

In this section we discuss the connection between monadic second-order logic
(Mso) and automata, specifically tree automata. The presentation here is largely
based on [56]. One of the crowning achievements of logic in computer science
is Rabin’s Theorem [45], which says that Mso on infinite trees is decidable, and
has the same expressive power as automata. We prove Rabin’s Theorem in this
chapter.

Actually, we already have the tools to prove Rabin’s Theorem®, namely
McNaughton’s Theorem on determinisation of w-automata from Chapter 1,
and memoryless determinacy of parity games from Chapter 2. It remains only
to deploy the appropriate definitions and put the tools to work.

5.1 Monadic second-order logic

Monadic second-order logic (Mso0) is a logic with two types of quantifiers:
quantifiers with lowercase variables Jx quantify over elements, and quantifiers
with uppercase variables X quantify over sets of elements. The term
“monadic” means that one cannot quantify over sets of pairs, or over sets

"Biichi says this in [14, page 2]: “Given the statement of this lemma [the complementation lemma
for automata on infinite trees], and given McNaughton’s handling of sup-conditions by order vectors,
and given time, everybody can prove Rabin’s theorem.”

64 MONADIC SECOND-ORDER LOGIC

triples, etc. The syntax and semantics of the Mso are explained in the following
example.

Example 6. Suppose that we view an directed graph as relational structure (i.e.
a model as in logic), where the universe is the vertices and there is one binary
relation E(x,y) for the edges; this relation is not necessarily symmetric because
the graph is directed. The formula

VxVy E(x,y)

says that the graph is a directed clique. The formula only quantifies over
vertices, i.e. it uses only first-order quantification. Now consider a formula
which uses also set quantification, which says that the input graph is not
strongly connected:

é},g (VaVyx e XANE(x,y) =y e X)AN(Exx e X) A (Ix x € X)

X is closed under outgoing edges X is neither empty nor full

exists a set

The above formula illustrates all syntactic constructs in Mso: one can quantify
over elements, over sets of elements, one can test membership of elements in
sets, and one can use the relations available in the input model (in the case of
directed graphs, only one binary relation).

Here is another example for graphs. The following mso formula says that the
input graph is three colourable (in the formula, the direction of the edges plays
no role):

dX;3X,3X5 Vx\/xGXi A VxVy E(x,y) :>/\x ¢ XiVy & X;
%,_/ ~ ‘lr <
every vertex is coloured no edge has both endpoints with the same colour

O

We say that a property of relational structures over some vocabulary

(e.g. graphs as in the above example) is Mso definable if there is a formula of
Mso which is true exactly in those structures which have the property. In this
chapter, we use Mso to describe properties of trees (finite and infinite). In the
next chapter, we talk about finite graphs.

FINITE TREES 05

5.2 Finite trees

Define a ranked alphabet to be a finite set & where every element a € ¥ has an
associated arity in {0,1,...}. Here is a picture of a ranked alphabet:

letters of arity 0 arity 1 arity 2

oe & 2

A tree over a ranked alphabet X is defined as in the following picture:

every node gets a label from the alphabet

if a node has a label of arity 7,
then it has exactly n children

children are ordered, so one can
speak of the first child, second child, etc.

In this section, Section 5.2, we will be interested only in finite trees. Trees as
defined above are sometimes called ranked and ordered. One can consider other
variants, where the label does not determine the number of children (unranked)
or where the siblings are not ordered (unordered). The goal of this section is to
show that, over finite trees, automata have the same expressive power as Mso.

Tree automata. We begin by defining automata for finite trees.
Definition 5.1. A nondeterministic tree automaton consists of:
« an input alphabet ¥, which is a ranked alphabet;

« a finite set of states Q with a distinguished subset of root states R C Q

66 MONADIC SECOND-ORDER LOGIC

- for every letter a € X of rank n, a transition relation 5, C Q" x Q.

A tree automaton is called bottom-up deterministic if every transition relation is a
function Q" — Q. An automaton is called top-down deterministic if it has one root
state and the transition relation is a partial function Q" <— Q. A tree is accepted by the
automaton if there exists an accepting run, as explained in the following picture:

the state in the root
is in the designated
set of root states

if a node has state g,
and children with
states ¢;,.,.,4,, then
(4,9, » q) belongs

to the transition
relation corresponding
to the label of the node

every node is
labelled by a state

there is no need for
initial states, because
leaves have transition
relations of arity 0

Lemma 5.2. Languages recognised by nondeterministic tree automata are closed under
union, intersection and complementation.

Proof. For union, take the disjoint union of two nondeterministic tree automata.
Intersection can be done using a cartesian product, or by using union and
complementation. For complementation, we use determinisation: the same
proof as for automata on words — the subset construction — shows that for every
nondeterministic tree automata there is an equivalent one that is bottom-up
deterministic (top-down deterministic automata are strictly weaker, see
Exercise ??.). Since bottom-up deterministic automata can be complemented by
complementing the root states, we get the lemma. n

MsO on finite trees. We now define how mMso can be used to define a tree
language, and show that tree languages defined this way are exactly those that
are recognised by tree automata.

FINITE TREES 67

A tree (finite or infinite) over an alphabet X is viewed as a relational structure
in the following way:

the universe is the nodes of the tree

for every label @ there is a unary
predicate @(x) which selects
node with that label.

pI 15-1

for every i (up to the maximal arity
in the alphabet) there is a binary
relation for i-th child

We say that an Mso formula is true in a tree if it is true in the relational
structure described above. This only makes sense for formulas that have no free
variables (sentences), and which use the vocabulary (relation names) described
above, i.e. unary relations for labels and binary relations for child numbers.

We say that a set of finite trees L over a ranked alphabet X is mso definable if
there is an mso formula ¢ such that

pistrueint iff te€L for every finite tree t over X

The formula does not need to check if its input is a finite tree. However, the set
of finite trees is Mso definable, as a subset of all relational structures over the
appropriate set of relation names, and therefore the definition of mso definable
languages of finite trees would not be affected by requiring the formula to
check that inputs are finite trees.

Example 7. Suppose that the ranked alphabet is

/Q\Q

68 MONADIC SECOND-ORDER LOGIC

The set of trees with an odd number of nodes is Mso definable, namely the
formula is “true”. This is because all trees over the above ranked alphabet have
an odd number of nodes. More effort is required for “odd number of leaves”.
Here the formula says that there exists a set X of nodes, which contains the
root, and such that every node belongs to X if and only if it has an even
number of children in X. [

The following theorem shows that for finite trees, tree automata have the same
expressive power as monadic second-order logic. The connection of between
automata and Mso was originally discovered simultaneously by three authors:
Biichi [13], Elgot [26] and Trakthenbrot [57], in their quest to answer a question
by Tarski: “is the mso theory of the natural numbers with successor decidable”?
We present below the version of the result for finite trees, which has essentially
the same proof as for finite words (a word can be viewed as a tree over a ranked
alphabet where all letters have arity zero or one), and was first observed in [55].

Theorem 5.3. The following conditions are equivalent for every set of finite trees over
a finite ranked alphabet:

1. definable in MSo;

2. recognised by a nondeterministic (equivalently, bottom-up deterministic) tree
automaton.

Proof.

1 < 2 Let A be a nondeterministic tree automaton. We show that Mso can
formalise the statement “there exists an accepting run of A”. Without loss
of generality, assume that the states of A are numbers {1,...,n}. Here is
the sentence that defines the language of A:

1=2

FINITE TREES 69

every node has exactly one state

[v \/ a:EXq/\/\x§ZXp

qe{1,...,n} P#q
there exists a
labelling of
nodes with states the root has a root state
X, ---3X, A Va root(z) = \/ reX;
i€R

for every node, a transition of the automaton is used

{ /\ Vo a(x) = \/ x € Xg N /\ child;(x) € X,

a€d (a15+49k,9)E€da ie{l,...,k}

Formally speaking, root(x) is a shortcut for a formula which says that x

is not a child of any node, and child;(x) € X, is a shortcut for a formula
which says that there exists a node that is the i-th child of x (because we
have children as relations and not functions) and belongs to g;.

By induction on formula size, we show that every Mso formula can be
converted into an automaton. The main issue is that when we go to
subformulas, free variables appear, and we need to say how an
automaton deals with free variables. Consider a formula ¢ of Mso whose
set of free variables is X (some of these variables are first-order, some are
second-order). To encode a tree together with a valuation of free variables
X, we use a tree over an extended alphabet like this:

70 MONADIC SECOND-ORDER LOGIC

each first-order variable
appears exactly once

the arity is inherited
from the original
alphabet

every node is labelled by:
- a label from the original alphabet
- a subset of the variables X

A tree as above is said to satisfy ¢ if ¢ is true under the valuation which
maps each first-order variable to the unique node that has it in the label,
and maps each second-order label to the set of nodes that have it in their
label. Define the language of ¢ to be the trees (over the extended alphabet
with sets of variables) that satisfy ¢. By induction on the size of an Mso
formula, we show that its language, as defined above, is recognised by a
tree automaton. For Boolean operations we use Lemma 5.2, for existential
quantification we use nondeterminism.

[?]

5.3 Infinite trees

We now move to infinite trees and Rabin’s Theorem. For simplicity of notation,
we use ranked alphabets where all letters have rank 2. For such alphabets, the
set of nodes is always the same, and can be identified with

{left child, right child}*. For arbitrary alphabets, infinite trees can have various
shapes, e.g. an infinite tree is allowed to have subtrees that are finite. To
recognise properties of infinite trees, we use parity automata.

Definition 5.4. The syntax of a nondeterministic parity tree automaton consists of

INFINITE TREES 71

« an input alphabet %, which is a finite ranked set where all letters have rank 2;
- a finite set of states Q with a distinguished root state;

« a parity ranking function Q — IN;

- for every letter a € ¥, a set of transitions 5, C Q% x Q.

The automaton accepts an infinite tree over X if there exists an accepting run as
explained in the following picture:

the state in the root
is the designated
root state

the states are consistent
with the transition
relation as for finite trees

on every infinite branch,

the maximal parity rank
o a / appearing infinitely often

is even

We now state Rabin’s Theorem. Rabin’s original proof did not use the parity
acceptance condition, but what is now called the Rabin condition, see [56].

Theorem 5.5 (Rabin’s Theorem). The following conditions are equivalent for every
set of (necessarily) infinite trees over a finite ranked alphabet where all letters have

arity 2:
1. definable in Mso;
2. recognised by a nondeterministic parity tree automaton.

The proof has the same structure as in the case of finite trees. The only
difference is that for infinite trees, closure under complementation, as stated in
the following lemma, is far from obvious.

72 MONADIC SECOND-ORDER LOGIC

Lemma 5.6 (Complementation Lemma). Languages recognised by nondeterministic
parity automata are closed under complement.

The difficulty in the Complementation Lemma is that we use only
nondeterministic automata; in fact no deterministic model for infinite trees is
known that would be equivalent to Mso. Rabin’s Theorem will follow
immediately once the Complementation Lemma is proved, so the rest of this
chapter is devoted to proving the Complementation Lemma.

A corollary of the statement of Rabin’s Theorem as in Theorem 5.5, and of
decidability of emptiness for nondeterministic parity tree automata (see
Exercise ??) is that the following logical structure has decidable mso theory: the
universe is the nodes of the complete binary tree, and there are two binary
relations for left child and right child. This corollary is the original statement of
Rabin’s Theorem, see [45, Theorem 1.1.].

Alternating parity tree automata. To show complementation of
nondeterministic tree automata, we pass through a more powerful model. The
syntax of an alternating parity tree automaton is defined the same as in

Definition 5.4 for nondeterministic automata, with the following differences: (1)
to each state we assign an owner, which is either “player 0” or “player 1”; and
(2) for each letter a, the transition relation has form

6, C Qx {01} x Q.

To define whether or not an automaton A accepts an input tree t over X, we
consider a parity game G4 (t) defined as follows. The positions of the game are
pairs (state of the automaton, node of the input tree). The initial position is
(root state, root of the tree). Suppose that the current position is (g,v), and
assume that state g is owned by player i € {0,1}. In such a position, player i
chooses some pair (x, p) such that (g, x, p) belongs to the transition relation
corresponding to the label of v. If there is no such pair, then player i loses
immediately. Otherwise, the new position is set to (p,v - x), and the play
continues. If the play continues forever, then the winner is declared using the
parity condition, i.e. player 0 wins if and only if the maximal rank of a state

INFINITE TREES 73

appearing infinitely often is even. This completes the definition of the game
GA(t). A tree t is accepted if player 0 has a winning strategy in the game.

Theorem 5.7 (Dealternation Theorem).

1. For every nondeterministic parity tree automaton, one can compute an
alternating one that recognises the same language.

2. Languages recognised by alternating parity tree automata are closed under
complement.

3. For every alternating parity tree automaton, one can compute a nondeterministic
one that recognises the same language.

Before proving the above result, we show how it completes the proof of the
Rabin’s Theorem. Recall that the only missing ingredient was the
Complementation Lemma. Using the Dealternation Theorem, we can easily
complement nondeterministic parity tree automata: (1) make the automaton
alternating, (2) complement it, (3) make it nondeterministic again.

Proof of Theorem 5.7. For item 1, let A be a nondeterministic parity tree
automaton with states Q. The simulating alternating automaton has states

Q + Q2. The initial state is the root state of A, and the transitions are explained
in the following picture:

player 0 choses a
pair (p, r) such that
the automaton
and the

has a transition
automaton moves
to one of the children
in the appropriate
p , state

player 1 choses
left or right

74 MONADIC SECOND-ORDER LOGIC

The parity condition for states from Q is inherited from the original
nondeterministic automaton, and all states from Q? are assigned the least
important rank.

For item 2, let A be an alternating parity tree automaton. Define A to be the
alternating parity tree automaton obtained from A by swapping the roles of
players 0 and 1, and incrementing the ranking function so that even ranks
become odd and vice versa, but the precedence order on ranks is maintained.
To prove that A is the complement of A, we show below that the following
conditions are equivalent for every input tree :

1. A accepts t;

2. player 0 has a winning strategy in the game G4 (t);

3. player 1 has a winning strategy in the game G (t).

4. player 1 does not have a winning strategy in the game G (t).
5. A rejects t.

The equivalences 1 < 2 and 4 < 5 are by definition of the language recognised
by an alternating automaton. The equivalence 2 < 3 is by construction of A.
The equivalence 3 < 4 is because G4 (t) is a parity game, and it is therefore
determined, i.e. one of the players has a winning strategy. The reason why this
proof works is that: (a) the parity condition is self-dual, which allows one to
define A; and (b) games with the parity condition are determined.

It remains to show the last item of the theorem, namely that alternating parity
tree automata can be made nondeterministic. Suppose that A is an alternating
parity tree automaton, with states Q and input alphabet 2. By memoryless
determinacy of parity games, it follows that a tree ¢ is accepted if and only if
player 0 has a memoryless winning strategy oy in the game G4 (t). We will find
a nondeterministic parity automaton on trees which checks this. Define I to be
an alphabet which consists of functions from states controlled by player 0 to
pairs in Q x {€,0,1}. Here is a picture of a such a letter:

INFINITE TREES 75

@ states owned by 0

{,. PY @ states owned by 1

A memoryless strategy oy for player 0 can be represented as a tree over this
alphabet as follows: the label of node v is the function which maps state g to
the pair (p, x) such that strategy oy goes from (g,v) to (p,v - x).

We will show that the language

{ (t,00) : 09 is a memoryless strategy for player 0in G4 (¢)}
‘\/J
tree over £ x T’
representing t and g

(5.1)

is recognised by a (even deterministic top-down) parity automaton on trees.
This will complete the proof of the Dealternation Theorem, because a
nondeterministic parity automaton can guess the part of the labelling that
describes 0. The key observation is the following claim. (A branch is defined
to be an inclusion-wise maximal set of nodes that are totally ordered by the
descendant relation.)

Claim 5.8. There is a nondeterministic parity automaton B over w-words over the
alphabet ¥ x T x {0, 1} such that the following conditions are equivalent for every tree
t, branch 7 and memoryless strategy oy for player O:

1. There exists a strategy of player oy such that if the players use strategies (0p, 07)
in the game G 4 (t), then the resulting play stays on the branch 7 and violates
the parity condition.

2. The automaton B accepts the w-word (t,00)|7t defined as follows: the i-th letter
is of the label of the i-th node in 7t as well as the turn that 7t takes after that
node. Here is a picture:

76 MONADIC SECOND-ORDER LOGIC

a branch =

_
o P

Ao 70 TN D

Proof. The automaton B uses nondeterminism to choose the moves of the
strategy o7. n

Apply the above claim, yielding a nondeterministic parity automaton. By
McNaughton’s Theorem, see Chapter 1, there exists an equivalent deterministic
parity automaton, call it D. It is not difficult to see that a memoryless strategy
0p wins in the game G4 (¢) if and only if every branch in the tree (f,0p) is
rejected by the automaton D. This can be checked by a (deterministic
top-down) parity automaton on trees, which runs the automaton D on every
branch (and has the acceptance condition complemented). n

Problem 36. The translation from Mso to automata in Theorem 5.3 does an
exponential blowup whenever it determinises the automaton, and therefore an
upper bound on the running time is n-fold iteration of exponential, where # is
the size of the formula. Here is a matching lower bound. Consider mso on
words, i.e. there is a successor relation and unary predicates for the labels.
Show that for every n, there is a formula of Mso (in fact, first-order logic is
enough) which has size polynomial in n and is true in a unique word which
has length

n times

INFINITE TREES 77

Problem 37. Show that the set N* equipped with the prefix relation has
decidable Mso theory.

Problem 38. Show that emptiness is polynomial time and universality is
ExpTiME-complete for nondeterministic tree automata on finite trees.

Problem 39. Show that emptiness for nondeterministic parity tree automata
reduces in polynomial time to solving parity games.

Problem go. Determine whether the following tree languages are regular:
1. trees with an even number of nodes;
2. trees with an even number of a-labelled nodes;

3. trees over leaf alphabet 0,1 and internal alphabet V, A which evaluate to
true when treated as boolean expressions;

4. balanced trees (every leaf is at the same depth).

Problem 41. Determine which of the following four variants of tree automata:
deterministic / nondeterministic, top-down / bottom-up tree automata are
equivalent.

Problem g42. Define the yield of a tree to be the word composed from labels of
its leaves written in infix order. Show that for every L C ~* the following are
equivalent

1. L is context-free;
2. L is the set of yields of some regular tree language.

Problem 43. Show that deterministic top-down tree automata cannot recognize
the language “some node has label a”.

Problem 44. Show that the language of words of even length is definable in
MSO.

78 MONADIC SECOND-ORDER LOGIC

Problem 45. Show that the following languages of infinite trees are regular
(accepted by some nondeterministic automaton):

1. on every path, the sequence of labels belongs to a given w-regular
language L;

2. some node has label g;
3. in every subtree some node has label a.

Problem 46. In Existential Second Order Logic (3SO) one can write dg, . r,¢,
where R; are any relations (possibly of arity greater than 1) and ¢ is a first
order sentence (which of course may use R;). Show that the language of words
of composite (non-prime) length is expressible in 3SO.

Problem 47. Consider the following game. There are two players Insider and
Outsider. They choose in an alternating manner bits: 0 or 1 and create in that
way an w-word w. If w belongs to a given regular language W C {0,1}% then
Insider wins a play, otherwise Outsider wins. Show that it is decidable to check
which player has a winning strategy in that game. Remark: use MSO logic.

6
Treewidth

In this chapter, by graphs, we mean finite undirected graphs. We treat a graph
as a logical structure, where the universe is the vertices and there is a binary
edge relation, which is necessarily symmetric (for a different representation, see
the exercises). We present Courcelle’s Theorem, which says that every formula
of Mso on graphs can be evaluated in linear time on graphs that have bounded
treewidth. Treewidth is a graph parameter, i.e. every graph has a some
treewidth, which is a natural number. The treewidth of a graph describes the
smallest width of a tree decomposition that can produce the graph. The general
idea is that small width tree decompositions can be obtained for graphs that are
similar to trees. Treewidth is not the only way of quantifying similarity to a
tree, alternatives include cliquewidth, see [23, Section 2.5] or treedepth [42,
Chapter 6].

6.1 Treewidth and how to compute it

Consider a graph G. Define a tree decomposition of G to be a tree, where each
node of the tree is labelled by a set of vertices in the graph, called the bag of the
node, subject to conditions (1) and (2) depicted in the following picture:

80 TREEWIDTH

a graph one of its tree decompositions

A node of the
tree decomposition

/ with its bag

i | \ N
(2) For every vertex v of the graph, ! / \ o/e /
' ’ \ ’

the set of nodes of the tree '
decomposition which have v in

their bag is connected by the child
relation in the tree decomposition

(1) Every vertex of the graph
is in at least one bag. Also,
every edge of the graph

is in at least one bag; i.e.
both of its endpoints are

in at least one bag

Example:
nodes that have @ in their bag

In the tree decomposition, we allow nodes to have unbounded arity, i.e. there is
no requirement that each node has at most two children. The tree in the tree
decomposition is unordered (i.e. there is no ordering on the siblings), but it is
rooted, i.e. it makes sense to talk about descendants and children. Define the
width of a tree decomposition to be the maximal size of a bag minus one. In the
picture above, the width is 2, because the maximal bag size is 3. The reason for
the minus one is so that trees have treewidth one. Another reason is that the
width of a tree decomposition is the intersection between neighbouring bags
(assuming the tree decomposition does not use the same bag twice, which can
be assumed without loss of generality). The treewidth of a graph is the minimal
width of a tree decomposition of it. Treewidth is a fundamental concept in
graph theory, which plays a prominent role in the graph minor project of
Robertson and Seymour.

An alternative way of drawing tree decompositions is in the following picture:

TREEWIDTH AND HOW TO COMPUTE IT 81

black vertices are in the bag
of a node or its descendants

bag of the node

TN

gray vertices
are the rest

Fact 6.1. If a graph has treewidth k, then the number of edges in the graph is at most
k- (k+1)/2 times the number of vertices.

Proof. A tree decomposition can always be modified so that the bag of a node
contains at least one vertex that is not present in the bags of its descendants.

82 TREEWIDTH

Therefore, the number of nodes in the tree decomposition is at most the

number of vertices in the underlying graph. Each edge must be present in some
node, and each node can have at most k - (k + 1) /2 edges, which proves the fact.
The bound in the fact is optimal, as witnessed by a clique over k 4 1 vertices. =

Computing a tree decomposition. We present an algorithm that computes
tree decompositions of approximately optimal width (at most four times worse,
see below for the exact statement) and which runs in quadratic time when the
treewidth is fixed. The algorithm is from Robertson and Seymour, see also [24,
Theorem 7.18].

Theorem 6.2. There is a function f : N — N and an algorithm which runs in time
f(k) - n? that approximates tree decompositions in the following sense:

Input. k and a graph with n vertices;

Output. A tree decomposition of the graph which has width < 4k, or a
certificate that the graph has treewidth > k.

The algorithm from the theorem is not optimal. The optimal algorithm, by
Bodlaender [9], runs in linear time instead of quadratic time, and computes tree
decompositions of optimal width (i.e. < k instead of < 4k). The function f(k) is
exponential, and there is little hope for improvement, because the following
problem is NP-complete [5]: given k and a graph, decide if the graph has
treewidth at most k. The theorem gives a (prototypical) example of a an
algorithm that is fixed parameter tractable, i.e. the input has two parameters k, n
and the running time is of the form:

f(k)-n®
AN

some computable function a polynomial with
degree independent of k

The algorithm uses the following lemma on computing separators. Recall that a
separator of vertex sets X and Y in a graph G is a set of vertices S disjoint from

TREEWIDTH AND HOW TO COMPUTE IT 83

X UY such that G — S does not contain any path connecting X with Y, as in the
following picture:

connected component
after removing the
separator

separator —
of Xand Y

Y

Lemma 6.3. Given a graph G and disjoint sets of vertices X, Y, one can compute a
separator of minimal size in time

O((number of edges + number of vertices) - (size of the separator)).

We do not prove the above lemma, it can be shown using the Ford-Fulkerson
algorithm for computing maximum flow, see the discussion in [24, p. 198].
When the treewidth is fixed, the number of edges is linear in the number of
vertices, and the size of the separator is bounded by a function of k (see the
proof of Lemma 6.4), and therefore the running time of the algorithm is linear.
The main step in proving Theorem 6.2 is the following lemma.

Lemma 6.4. Let k € IN. There is a linear time algorithm which does this:
« Input. k and a graph G with < 3k distinguished vertices;

« Output. A certificate that the graph has treewidth > k, or a set S of < k vertices
so that G — S has at least two connected components, and each connected
component has < 2k distinguished vertices.

84 TREEWIDTH

Proof. We begin with the algorithm, and then justify why it succeeds on graphs
of treewidth < k. We enumerate all possible partitions of the distinguished
vertices into three parts as follows

‘SlzeSk’

s tinguished v extic®

The idea is that S; is the intersection of the separator with the distinguished
vertices. The number of such partitions is exponential in k, but is a constant if k
is assumed to be fixed. For each such partition, compute a minimal size
separator S; of X and Y in the graph G — S, as depicted in the following
picture

S5—
Separator of ‘ and '

in the graph

b

S1

Report success if the size of S; U S is at most k, and return S; U S; as the
separator. This completes the algorithm. The running time is linear, because the
size of the separator is fixed, and the number of edges is linear in the number
of vertices by Fact 6.1.

TREEWIDTH AND HOW TO COMPUTE IT 85

We now justify that if G has treewidth < k then the algorithm succeeds. If the
graph has treewidth < k, then there is a tree decomposition where all bags have
size < k. Let t be this tree decomposition. Choose a node x of the tree
decomposition so that half or more of the distinguished vertices of G appear in
bags of x and its descendants, but this is no longer true for any of the children
of x. Here is a picture:

the complement of the blue subtree
has less than half of the distinguished vertices

the blue subtree has at least half

/ of the distinguished vertices

each red subtree has less than half
of the distinguished vertices

Define S to be the bag of x. The size of S is < k. By choice of x we know that
every connected component of G — S has at most half of the distinguished
vertices. In particular, there must be at least two connected components,

because
3k > k + 3k/2
~—— ~—— ~——
distinguished distinguished distinguished
vertices vertices in S vertices in each

connected component

For each connected component of G — S, we count the number of distinguished
nodes in that component; this is a number that is at most half of 3k. The
following claim, when applied to the numbers of distinguished vertices in the
connected components of G — S, shows that the connected components can be
grouped into two groups, so that each group has at most 2k distinguished
vertices, thus proving the lemma.

86 TREEWIDTH

Claim 6.5. Let ny > np > - -+ > ny be numbers in {1, ...,2k} with sum < 3k. Then

<2k <2k

A\ N\

ny+--o+n Mg+oo-+n, forsomei

Proof. Take the first i such that the sum of the first i elements is > k. u

Proof of Theorem 6.2. We use a more detailed statement of the algorithm, as
described below.

Input k and a graph with < 3k distinguished vertices;

Output. A certificate that the graph has treewidth > k, or a tree
decomposition of the graph which has width < 4k and where the root
bag consists exactly of the distinguished vertices.

Suppose that G is the graph. If there are < 3k distinguished vertices, we add
some arbitrary vertices to make the set have size exactly 3k. Apply Lemma 6.4,
computing S, X and Y. If the input graph has treewidth < k then the algorithm
from the lemma must succeed. Find all connected components of the graph

G — S, of which there are at least two. Each connected component has < 2k
distinguished vertices. Here is a picture:

e distinguished vertices

e not distinguished vertices

separator S —

connected component
of G-S

TREEWIDTH AND HOW TO COMPUTE IT 87

For each connected component U of the graph G — S, define Gy to be the graph
induced by U U S. This graph is smaller than G, because G — S has at least two
connected components. Here are are the graphs Gy; for our picture above:

For each of the graphs Gy, recursively call the algorithm, with the
distinguished vertices being S plus the original distinguished vertices from U.
We are allowed to do the recursive call, since U has < 2k distinguished vertices
and S has at < k vertices. Combine the tree decompositions yielded by the
recursive calls into a single tree as follows:

88 TREEWIDTH

distinguished vertices ®
only
[

distinguished vertices
plus separator S
(size <4k)

root bags of tree
decompositions
from recursive call

/ / AN
V \ / N\
It is not difficult to check that this is a tree decomposition of G. The size of bags
is < 4k, and therefore the width of the decomposition is < 4k (recall that the
width was size of bags plus one). The algorithm does a linear computation,

followed by recursive calls to smaller instances; and therefore its running time
is quadratic. []

6.2 Courcelle’s Theorem

In this section we prove Courcelle’s Theorem, which says that Mso can be
evaluated efficiently on graphs of bounded treewidth. The key ingredient is the
following lemma, which is proved the same way as Courcelle’s original result
that Mso definable graph properties are recognisable, see [22, Theorem 4.4].

Lemma 6.6. For every k € IN and every formula of Mso ¢ on graphs, there is a linear
time algorithm which does the following:

« Input. A graph together with a tree decomposition of width < k;

COURCELLE’S THEOREM 89

« Question. Does the graph satisfy ¢?

The proof of the lemma is essentially this: we view the tree decomposition as a
tree over a finite alphabet, convert the formula ¢ into a tree automaton, and
then run the tree automaton over the tree in linear time. If we combine the
lemma with an algorithm that computes tree