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Abstract

We investigate how syntactic properties of Thue-Morse words are related to special
type of automata/graphs. The directed acyclic subword graph (dawg, in short) is
a useful deterministic automaton accepting all su�xes of the word. Its compacted
version (resulted by compressing chains of states) is denoted by cdawg. The cdawgs
of Thue-Morse words have regular and very simple structure, in particular they
o�er a powerful (exponential) compression of the set of all subwords in case of
�nite Thue-Morse words. Using the special structure of cdawgs we present several
unknown properties of Thue-Morse words as well as new (graph-based) proofs of
some well-known properties. In particular we show a simple algorithm that checks,
for a given string w, if w is a subword of a Thue-Morse word and computes its
number of occurrences in nth Thue-Morse word in O(|w| + log n) time and O(1)
space. Additionally, a slight modi�cation of the compact dawg of the in�nite Thue-
Morse word yields an in�nite graph with 2-counting property.

Keywords: Thue-Morse word, compacted subword graph, graph counting property.

1 Introduction

Thue-Morse words (TM words, in short) form a famous family of words, due to many
interesting properties related not only to text algorithms and combinatorics on words, but
also to other disciplines, see [1]. In particular they do not contain factors of type axaxa,
where a is a single letter (overlaps), consequently they do not contain cubes. A very good
source for properties of these words is for example the book [4]. We rediscover/discover
several known/unknown properties of TM words in a novel way: analyzing the compacted
subword graphs (cdawgs) of �nite and in�nite TM words. This approach was already
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successfully applied by one of the authors to another well-known family of words, the
Fibonacci words [15]. We also study how the cdawg of the in�nite TM word is related
to an in�nite graph with 2-counting property, similar analysis for Fibonacci words and,
in general, Sturmian words can be found in [13].

The structure of cdawg of a word w is closely related to right special factors of w
(de�ned later on in the text). Such factors of TM words were already studied thoroughly
in relation to the subword complexity function of the in�nite TM word (i.e., the number
of distinct factors of the word of a given length), see [6, 12, 16]. On the other hand,
the vertices of cdawg of w can be seen as bispecial factors of w; bispecial factors of the
in�nite TM word are characterized in [3, 11].

Let x̄ be the sequence resulting by negating the bits of x. The �nite TM words are
de�ned as follows:

τ0 = 0; τn = τn−1τ̄n−1 for n > 0. (1)

We say that τn is of rank n. The in�nite TM word τ is the limit of τn words, the limit
in the sense that each τn is a pre�x of τ .

Let ϕ be the TM morphism, de�ned as:

ϕ(0) = 01, ϕ(1) = 10.

A well known property (alternative de�nition) of TM words is:

τn = ϕn(τ0).

We have:
τ0 = 0, τ1 = 01, τ2 = 0110, τ3 = 01101001, . . .

τ = 0110100110010110100101100110 . . . . . .

We consider words u over the alphabet {0, 1}, u ∈ {0, 1}∗. The positions are num-
bered from 0 to |u| − 1. By P = {p0, p1, . . . , p|u|−2} we denote the set of inter-positions
that are located between pairs of consecutive letters of u. The empty word is denoted by
ε. If u, v ∈ {0, 1}∗ then by u · v = uv we denote the concatenation of words u and v.

For u = u0u1 . . . um−1, denote by u[i. . j] a factor (subword) of u equal to ui . . . uj (in
particular u[i] = u[i. . i]). Words u[0. . i] are called pre�xes of u, and words u[i. .m−1] �
su�xes of u. Similarly, one can de�ne factors, pre�xes and su�xes (resulting by cutting
o� an initial pre�x) of an in�nite word u0u1u2 . . . By #occ(x, u) we denote the number
of occurrences of a factor x in u.

Denote by Sub(u) the set of all �nite subwords (factors) of u. We say that the word
v ∈ {0, 1}∗ is a right special factor of the word u i� v0, v1 ∈ Sub(u).
v ∈ {0, 1}∗ is a left special factor of the word u i� 0v, 1v ∈ Sub(u).
The word is a bispecial factor i� it is both left and right special. In particular, for each
word containing at least 2 di�erent letters, the empty word is one of its bispecial factors.

We say that an integer i is an end-occurrence of the word u in the (�nite or in�nite)
word w if u = w[i− |u|+ 1. . i]. Let Fin(u) be the set of end-occurrences of the word u
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in τ . From the point of view of the dawg two words u1, u2 correspond to the same vertex
if and only if Fin(u1) = Fin(u2).

A dawg (directed acyclic subword graph) of a �nite word u (notation: dawg(u)) is the
minimal automaton accepting all su�xes of u [8, 9]. In this paper we deal with compacted
dawgs (cdawgs). Cdawgs were �rst introduced by Blumer et al [5], for references on
cdawgs see also [7, 10, 14]. The cdawg for τ3 is illustrated in Fig. 1.
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Figure 1: The cdawg for τ3 = 01101001. The set of vertices is the set of bispecial
factors and the sink. cdawg(τ3) does not show a regular structure of general case, such
a regular structure starts from τ4. Labels of edges outgoing from the same vertex start
with di�erent symbols, these labels also have compact representations as factors of τ .

A cdawg of a word u, denoted as cdawg(u), represents all (�nite or in�nite) su�xes of
u. In the �nite case let Gn = cdawg(τn), the set V (Gn) of vertices is the set of bispecial
factors of τn including τn as a sink node. For the in�nite word, G = cdawg(τ), the only
di�erence is lack of a sink node, in case of TM words this simpli�es the construction
considerably.

De�ne a family of operations, DelQuarti, which remove from the word w the i-th
quarter, assuming |w| is divisible by 4:

w = w1w2w3w4 & |w1| = |w2| = |w3| = |w4|

⇒ DelQuart1(w) = w2w3w4 & DelQuart3(w) = w1w2w4.

We introduce special factors of rank n:

σn = DelQuart3(τn), τ ′n = DelQuart1(τn).

Example 1.

DelQuart3 : τ3 = 0110 10 01 ⇒ 011001 = σ3

DelQuart1 : τ3 = 01 101001 ⇒ 101001 = τ ′3
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Equivalently
σn = ϕn−2(σ2), where σ2 = 010.

We also have:
σn = τn−2τ̄n−1 = τn−1τn−2, τ ′n = τ̄n−2τ̄n−1.

2 Useful Syntactic-Combinatorial Properties of TM Words

In this section we recall several already known facts about TM words and use them to
prove new properties which we will use to classify vertices and edges of cdawgs of �nite
and in�nite TM words.

The next two (already known) lemmas show that the words σn de�ned in the previous
section are strongly related to special factors of τ .

Lemma 2. [Proposition 2.15 in [4]]
A word u ∈ Sub(τ) starting with the letter 0 is a left special factor of the in�nite Thue-
Morse word if and only if it is a pre�x of ϕn(σ2) for some n.

Lemma 3. [3, 11]
A word u ∈ Sub(τ), |u| > 4, is a bispecial factor of the in�nite Thue-Morse word if and
only if ϕ−1(u) is a (shorter) bispecial word. Moreover, τ0, τ1, σ2 and their negations are
bispecial factors of τ .

Let us also recall the following observation, its proof can be found in [4].

Observation 4.

(a) If u is a factor of τ such that |u| ≥ 4 then all positions in Fin(u) are even or all of
them are odd.

(b) For any n ≥ 2, 2n − 1 ∈ Fin(τn) and 2n+1 − 1 ∈ Fin(τ̄n).

The technical Observation 5 provides a characterization of bispecial factors of τn for
n ≥ 4 and also a useful tool for the analysis of edges of Gn and G.

Observation 5. For n ≥ 2, the word τn+2 contains:

(1) three end-occurrences of the factor τn: an = 2n − 1 followed by the letter 1, bn =
2n+1 + 2n−1 − 1 preceded by letter x and followed by the letter 0, and tn = 2n+2 − 1
preceded by the letter x̄, where x ∈ {0, 1}

(2) two end-occurrences of the factor τ̄n: cn = 2n+1− 1 preceded by letter y and followed
by the letter 1, and dn = 2n+1 + 2n − 1 preceded by the letter ȳ and followed by the
letter 0, where y ∈ {0, 1}
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(3) two end-occurrences of the factor σn: en = 2n + 2n−1 − 1 preceded by letter z and
followed by the letter 0, and fn = 2n+1 + 2n + 2n−2 − 1 preceded by the letter z̄ and
followed by the letter 1, where z ∈ {0, 1}

(4) two end-occurrences of the factor σ̄n: gn = 2n + 2n−2 − 1 preceded by letter w and
followed by the letter 0, and hn = 2n+1 + 2n + 2n−1 − 1 preceded by the letter w̄ and
followed by the letter 1, where w ∈ {0, 1}.

Moreover, the words τ0, τ1 and their negations are bispecial factors of τ3.

Proof. The proof goes by induction on n. The inductive basis (n = 2) can be veri�ed by
hand for the words

τ2 = 0110, τ̄2 = 1001, σ2 = 010, σ̄2 = 101

within τ4 = 0110100110010110.
As for the inductive step (n > 2), let us note that τn (or τ̄n) has an end-occurrence in τ

at position j if and only if τn−1 (τ̄n−1 resp.) has an end-occurrence at position (j−1)/2 in
τ . Indeed, this is due to Observation 4 and the fact that τ is a �xed point of the morphism
ϕ. In such a case, the letters immediately following the considered occurrences of τn (τ̄n
resp.) and τn−1 (τ̄n−1 resp.) are the same, while the letters preceding them are bitwise
negations of each other (in both cases, if the considered letters exist).

A similar condition can be stated for the factors σn and σ̄n: end-occurrence of one of
them in τ at position j corresponds to an end-occurrence of σn−1 (σ̄n−1 resp.) at position
(j − 1)/2 in τ . This is, again, due to Observation 4, since τ̄n−1 (τn−1) is a su�x of σn
(σ̄n resp.).

Hence, to conclude this part of the proof, it su�ces to note that (an − 1)/2 = an−1

and same conditions hold for bn, cn, . . . , hn, tn.
The �moreover� part of the observation can easily be veri�ed by hand.

The following observation provides an analogical result regarding the words σn.

Observation 6. The word σn+1 (for n ≥ 2) contains only a single occurrence of the
factor τ̄n−1, which is followed by the letter 0, and two occurrences of τn−1, one followed
by the letter 1 and the other being a su�x of σn+1.

Proof. We prove the observation by induction on n. For n = 2 the veri�cation of the
conclusion of the observation (τ1 = 01, τ̄1 = 10, σ3 = 011001) is trivial.

Now let n > 2. Note that we can use a similar machinery as in the proof of Obser-
vation 5. Indeed, σn+1 is a factor of τ of even length having the su�x τ̄n. Therefore, by
Observation 4, all its end-occurrences in τ are odd. This concludes, by the same Obser-
vation, that any end-occurrence of τn−1 (or τ̄n−1) in σn+1 is odd and thus corresponds to
an end-occurrence of τn−2 (τ̄n−2 resp.) in σn. Note that the letters immediately following
the considered factors in σn+1 and in σn are the same (provided that they exist). Using
the inductive hypothesis, we conclude the proof.
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3 Structure of Cdawg of In�nite TM Word

We start the description of cdawg(τ) by showing the structure of its vertices. The fol-
lowing fact is a simple consequence of previous work related to combinatorics of TM
words.

Fact 7. The vertices of G are all words τi, σi and their bitwise negations for i = 0, 1, . . .,
together with the source vertex corresponding to ε.

Proof. The vertices of G correspond to bispecial factors of τ . According to Lemma 3 and
[3, 11], the (non-empty) bispecial factors of τ are exactly τi, σi and their negations.

ε

τ0 τ1 τ2 τ3 τ4 τ5 . . .

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄5
. . .

τ0

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4

τ̄0

τ0 τ1 τ2 τ3 τ4

σ2 σ3 σ4 σ5 . . .

σ̄2 σ̄3 σ̄4 σ̄5
. . .

τ1

τ̄1

τ0 τ1 τ2 τ3

τ1 τ2 τ3

τ
′

2
τ
′

3
τ
′

4

τ̄0 τ̄1 τ̄2 τ̄3

τ̄1 τ̄2 τ̄3

τ̄
′

2
τ̄
′

3
τ̄
′

4

Figure 2: The cdawg for τ � an initial part.

We know the vertices of G, however the main component of the structure of this
graph is characterization of its edges. Now we proceed to the analysis of the set of edges
E(G), since we wish to represent the labels of edges in a compact way using the factors
σn, τn, τ

′
n and their bitwise negations.

Each vertex v ∈ V (G) has exactly two outgoing edges, one with label starting with
the letter 0 and the other with the letter 1. It is a well known fact that:

Observation 8. The ending vertex of an edge outgoing from u in a (�nite or in�nite)
cdawg H with the label starting with the letter c ∈ {0, 1} is the shortest v ∈ V (H) such
that uc ∈ Sub(v). Then the label of this edge is cα, such that ucα is a su�x of v.

Using this observation, we can provide the characterization of edges of cdawg(τ).

Theorem 9. The edges of G are as follows (other edges are symmetric copies by bitwise
negation):

ε
τ0−→ τ0, τ0

τ1−→ τ̄2, (2)

τi
τ̄i−→ τi+1 for i ≥ 0, τi

τi−1−→ σi+1 for i ≥ 1, (3)

σi
τi−1−→ τi+1, σi

τ ′i−→ τ̄i+1 for i ≥ 2. (4)
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Proof. The edges of the form (2) can simply be veri�ed by hand, we omit the details.
All the remaining edges can be determined using Observation 8, i.e., for each u ∈

V (G) and c ∈ {0, 1}∗ we need to �nd the shortest v ∈ V (G) such that uc ∈ Sub(v).
The edges (3) are obtained using recursive de�nitions of τi+1 and σi+1:

τi+1 = τi︸︷︷︸ ·τ̄i, σi+1 = τi︸︷︷︸ ·τi−1.

In the latter case, σi+1 is the shortest bispecial factor longer than τi, however for the
former case we need to prove that τi1 is not a factor of any shorter bispecial factor,
namely not a factor of σi+1 and σ̄i+1. This is, however, a consequence of Observation 6.
Thus in both cases the decompositions correspond to the shortest bispecial factor of τ
containing τi0 and τi1 as a factor.

The analysis of edges (4) is similar. The corresponding decompositions are as follows:

τi+1 = DelQuart4(τi) · σi︸︷︷︸ ·τi−1, τ̄i+1 = τ̄i−1 · σi︸︷︷︸ ·DelQuart4(τi),

see also Fig. 3. Here we need to verify that σi is not a factor of any of the shorter bispecial
factors of τ : τi, τ̄i, σi+1, σ̄i+1. As for the �rst two, it is a consequence of Observation
5 (note that σi is a factor of τ̄i i� σ̄i is a factor of τi). The last two cases are, again,
consequences of Observation 6.

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 . . .

σ3 τ2τ4

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 00 1 1 0 0 1

σ3 0 1 1 0

τ2

τ4

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 0 1 1 . . .

σ3 τ̄1 τ̄2τ̄4

1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 10 1 1 0 0 1

σ3 1 0 1 0 0 1

τ̄1 τ̄2

τ̄4

Figure 3: The edges σ3
τ2−→ τ4 and σ3

τ̄1τ̄2−→ τ̄4.

4 Structure of Cdawgs of Finite TM Words

The description of vertices of Gn is obtained using the vertices of G.

Fact 10. The vertices of cdawg(τn) are all words τi, σi and their bitwise negations for
i = 0, 1, . . . , n− 2, together with the source vertex corresponding to ε and the sink vertex
corresponding to τn.

Proof. The proof follows from Fact 7 and Observation 5.

The structure of E(Gn) di�ers from E(G) only by the introduction of edges pointing to
the sink.

7



ε

τ0 τ1 τ2 τ3 τ4 τ5
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τ1

τ̄1

τ0 τ1 τ2 τ3
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3
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7τ ′

5 , τ
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τ̄4
, τ̄
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5
τ̄6

τ̄6
,
τ5

Figure 4: The cdawg for τ7. Note the power of compaction: |τ7| = 128 and it contains
6 232 di�erent factors (see Table 1), however |V (G7)| = 22 and |E(G7)| = 42.

Theorem 11. The edges of Gn (for n ≥ 4) are of the form (2), (3), (4) for i ≤ n − 2
(and their negations), and additionally the following edges pointing to the sink:

τn−2

τ̄ ′n−1, τ
′
n−→ τn, τ̄n−2

τ̄n−1, τn−2−→ τn, (5)

σn−2

τ ′n−2, τn−3τ̄n−1−→ τn, σ̄n−2

τ̄n−3, τ̄ ′n−2τ̄n−1−→ τn. (6)

Proof. Most of the edges of Gn are also edges of G. The only di�erence are edges outgoing
from vertices τn−2, σn−2 and their bitwise negations. Indeed, for τn−2 and τ̄n−2 there are
no bispecial factors in V (Gn) that would be longer than them (this is due to Fact 10),
and for σn−2 and σ̄n−2 the only longer bispecial factors are τn−2 and τ̄n−2, which, by
Observation 5, do not contain them as factors. Hence, the edges outgoing from these four
vertices can lead only to the sink. The labels on these edges are uniquely determined by
Observations 5 and 8 as su�xes of τn starting at positions an−2 + 1, bn−2 + 1, . . . , hn−2 +
1. More precisely, the labels match the following decompositions of τn, obtained by
repetively using the recursive de�nition of τn and τ̄n:

τn = τn−2︸︷︷︸ ·DelQuart1(τn) = DelQuart4(τn−1) · τn−2︸︷︷︸ ·DelQuart1(τ̄n−1),

τn = τn−2 · τ̄n−2︸︷︷︸ ·τ̄n−1 = τn−1 · τ̄n−2︸︷︷︸ ·τn−2,

τn = τn−1τ̄n−3 · σn−2︸ ︷︷ ︸ ·DelQuart1(τn−2) = DelQuart4(τn−2) · σn−2︸ ︷︷ ︸ ·τn−3τ̄n−1,

τn = τn−3 · σ̄n−2︸ ︷︷ ︸ ·DelQuart1(τ̄n−2)τ̄n−1 = τn−1DelQuart4(τ̄n−2) · σ̄n−2︸ ︷︷ ︸ ·τ̄n−3.

The following theorem is a corollary of Fact 10 and Theorem 11.

Theorem 12. |cdawg(τn)| = O(n) = O(log |τn|).
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The following observation provides a classi�cation of accepting nodes in Gn, which is
useful in some applications of the cdawg (Theorem 16). These nodes are also highlighted
in Fig. 5 below.

Observation 13. The accepting nodes of Gn are τn, τn−2, τ̄n−3, τn−4, τ̄n−5, . . .

Proof. A node of Gn is accepting if and only if the corresponding word is a su�x of τn.
Note that τn−2 is a su�x of τn and that each word on the above list is a su�x of the
previous word on the list, hence all these words are accepting nodes. It remains to show
that there are no more accepting nodes in the cdawg.

Clearly, none of the nodes τ̄n−2, τn−3, τ̄n−4, . . . is accepting, since it is not possible
for both τi and τ̄i to be a su�x of τn.

If any of the words σi was a su�x of τn, then its su�x τ̄i−1 would also be a su�x of
τn. Thus i ∈ {n − 2, n − 4, . . .}. We already proved that for these values of i, the word
τi is a su�x of τn. However, it is not possible for both of the words τi, σi to be su�xes
of τn, since τi = τi−2τ̄i−2τ̄i−1 and σi = τi−2τ̄i−1.

The proof for σ̄i is completely analogical.
Finally, none of the implicit nodes could be an accepting node since end-occurrences

of any implicit node are the same as end-occurrences of one or two explicit nodes.

5 Applications of Cdawgs of TM Words

In this section we show several bene�ts of knowing the exact structure of the cdawgs of
TM words. We consider both algorithmic and combinatorial applications of the cdawgs.

Theorem 14. The number of di�erent factors of τn for n ≥ 4 equals 73
192 |τn|

2 + 8
3 .

Proof. Denote by mult(v) the multiplicity of vertex v ∈ V (Gn), i.e. the number of paths
from ε to v. Note that

mult(ε) = mult(τ0) = mult(τ̄0) = mult(τ1) = mult(τ̄1) = 1.

For 2 ≤ i ≤ n− 2, by simple induction we obtain

mult(τi) = mult(τ̄i) = 2i−1 and mult(σi) = mult(σ̄i) = 2i−2.

Indeed, the inductive step follows from the equalities:

mult(τi) = mult(τi−1) + mult(σi−1) + mult(σ̄i−1) = 2i−2 + 2i−3 + 2i−3 = 2i−1

mult(σi) = mult(τi−1) = 2i−2

and their symmetric copies for mult(τ̄i) and mult(σ̄i). Finally, mult(τn) = 3 · 2n−2.
The total number of di�erent factors of τn equals

S(τn) =
∑

e=(u,v)∈E(Gn)

mult(u) · |e|.
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n 1 2 3 4 5 6 7 8 9 10

S(τn) 3 8 27 100 392 1 560 6 232 24 920 99 672 398 680

Table 1: The number of di�erent factors of τn for n ≤ 10.

We compute S(τn) layer by layer, using the fact that

|τi| = |τ̄i| = 2i and |τ ′i | = |τ̄ ′i | = 3 · 2i−2.

For the zeroth layer (edges from ε) the sum is S0 = 2, for the �rst (edges from τ0 and
τ̄0) it equals S1 = 6, and for the second (edges from τ1 and τ̄1) it also equals S2 = 6. For
the (i + 1)-th layer (2 ≤ i ≤ n − 3), that is for the edges going from τi, τ̄i, σi, σ̄i, the
corresponding part of the sum equals

Si+1 = 2 · 2i−1 · (2i−1 + 2i) + 2 · 2i−2 · (2i−1 + 3 · 2i−2) = 3 · 22i−1 + 5 · 22i−3 = 17 · 22i−3.

Finally, for the last, (n− 1)-th layer, the sum equals

Sn−1 = 2n−3 · (3 · 2n−3 + 3 · 2n−2) + 2n−4 · (3 · 2n−4 + 2n−3 + 2n−1)+

+2n−4 · (2n−3 + 3 · 2n−4 + 2n−1) + 2n−3 · (2n−1 + 2n−2) = 43 · 22n−7.

Thus, we obtain the following formula:

S(τn) =
n−1∑
i=0

Si = 14 +
n−3∑
i=2

(17 · 22i−3) + 43 · 22n−7 = 14 + 17 · 2 ·
n−5∑
i=0

4i + 43 · 22n−7 =

= 14 +
34
3

(4n−4 − 1) + 86 · 4n−4 =
73 · 4n−3 + 8

3
.

The following two theorems are related to e�cient factor indexing of Thue-Morse words.

Theorem 15. We can test if a word w is a factor of a given TM word τn in O(|w|) time
and O(1) space.

Moreover, if w is a factor of τn then we can point out the (implicit or explicit) node
of Gn corresponding to w within the same time and space complexity.

Proof. First note that we can test if a speci�ed factor of w is a TM word in linear time
and constant space (using de�nition (1) of TM words).

We can traverse cdawg(τn) without remembering it explicitly, just keeping track of the
current position within w and the current vertex of the cdawg, represented in constant
space as its type (τ , τ̄ , σ, σ̄) and its index. Traversing an edge of the cdawg reduces to
one or several tests if a given factor of w is a TM word, which take O(|w|) time and O(1)
space in total.
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The result from Theorem 15 can be further extended, as shown in the following theorem.
Its proof utilizes cdawgs and is of graph-theoretic nature.

Theorem 16. The number of occurrences of a word w in the TM word τn can be found
in O(|w|+ log n) time and O(1) space.

Proof. A well known property of cdawgs is that the number of occurrences of w in τn
equals the number of paths from the (implicit or explicit) node corresponding to w to
accepting node in Gn. Clearly, in the case of an implicit node, the number of such paths
equals the number of such paths from the closest explicit node to accepting node. By
Theorem 15, the aforementioned explicit node can be identi�ed (as its type and index)
in O(|w|) time and O(1) space.

ε

τ0 τ1 τ2 τ3 τ4 τ5

64 43 21 11 5 3

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄5

64 42 21 10 5 2

τ0

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4

τ̄0

τ0 τ1 τ2 τ3 τ4

σ2 σ3 σ4 σ5

21 10 5 2

σ̄2 σ̄3 σ̄4 σ̄5

21 10 5 2

τ1

τ̄1

τ0 τ1 τ2 τ3

τ1 τ2 τ3

τ
′

2
τ
′

3
τ
′

4

τ̄0 τ̄1 τ̄2 τ̄3

τ̄1 τ̄2 τ̄3

τ̄
′

2
τ̄
′

3
τ̄
′

4

τ7

τ̄ ′
6 ,

τ ′
7τ ′

5 , τ
4 τ̄

6

τ̄4
, τ̄

′

5
τ̄6

τ̄6
,
τ5

Figure 5: The cdawg G7 with accepting vertices highlighted (bold circles). The number
in bold font next to each node denotes the number of paths from this node to accepting
node.

Recall the classi�cation of accepting nodes in Gn from Observation 13. Using it we
can create simple formulas for the number of accepting paths of explicit vertices of Gn.
Denote as the ith layer Ii the nodes τi, σi, σ̄i, τ̄i provided that the respective nodes
exist. Denote

gi =
2i − (−1)i

3
.

Then for any v ∈ Ii, i ≥ 1, we have:

#occ(v, τn) =

{
gn−i+1 if 2 - (n− i) or v = τi

gn−i+1 − 1 otherwise

and additionally #occ(v, τn) = 2n−1 for any v ∈ I0, see Fig. 5. The inductive proof of
these formulas goes layer by layer by the following recursive formulas, for 1 ≤ i ≤ n− 3,
provided that the respective nodes exist:
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#occ(τi, τn) = #occ(τi+1, τn) + #occ(σi+1, τn) + ((n− i+ 1) mod 2)
#occ(σi, τn) = #occ(τi+1, τn) + #occ(τ̄i+1, τn)
#occ(σ̄i, τn) = #occ(τi+1, τn) + #occ(τ̄i+1, τn)
#occ(τ̄i, τn) = #occ(σ̄i+1, τn) + #occ(τ̄i+1, τn) + ((n− i) mod 2)

This concludes the proof, since the value gn−i+1 can be computed in O(log n) time
and O(1) space.

Now we investigate the structure of binary representations of occurrences (as natural
numbers) of a pattern in the in�nite TM word τ . Applying some combinatorics of the
Thue-Morse word and the properties of its cdawg we obtain a neat characterization of
the set of all occurrences of any factor in τ .

De�ne the predicate even(α) ≡ �α has even number of ones in binary representation�.
Let Xk be the set of natural numbers with binary representation of the form α01j0k−1,
where even(α) and j is even (possibly j = 0), and let Yk be the set of numbers with
binary representation α01j0k−1, where not even(α) and j is even (again, possibly j = 0).
De�ne also

X ⊕ c = {x+ c : x ∈ X}.

Lemma 17.

1. For k ≥ 1 the pattern τk (τ̄k) starts an occurrence at position i in τ if and only if
i ∈ Xk (i ∈ Yk).

2. For each pattern w of length at least 2 the set of its occurrences in τ is a single
set Xk ⊕ c, Yk ⊕ c or the union of two sets of the form Xk ⊕ c or Yk ⊕ c for some
constants k, c.

Moreover, the constants k, c can be computed in O(|w|) time and O(1) space.

Proof. The word τ1 = 01 occurs in τ at position i if and only if the representation of i
has even number of ones and the representation of i+ 1 has odd number of ones (adding
one changes the parity of ones), this can happen exactly when the last block of the same
digits is a sequence of ones of even length.

On the other hand, each τk occurs as a morphic image of τ1, we iterate the morphism
(k − 1) times and this corresponds to adding additional k − 1 zeros in the end of the
binary representation. This proves point (1), the proof for τ̄k is analogical.

The point (2) follows from our previous results, since each pattern w has the same
occurrences (shifted by a constant) as the explicit node following the implicit node cor-
responding to w in cdawg(τ). We obtain a single set or a sum of two sets depending on
whether the explicit node is of the form τi or τ̄i or of the form σi or σ̄i � in the latter
case we obtain a sum of sets corresponding to τi+1 and τ̄i+1 shifted by some constants,
which is due to the structure of the cdawg G.
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Finally, the algorithm computing the constants k and c in point (2) follows from
Theorem 15.

Example 18. The factor 0011 occurs in τ at positions with binary representation α01j101
and β01j111, where 2 | j, even(α) and not even(β).

On the other hand, the factor 1011 occurs at positions of the form α01j11, where 2 | j
and not even(α).

Observe that the binary representation of the constant c from the last lemma has at most
k − 1 bits. We can consider the complexity of the sequence of occurrences of w in τ as
an automatic sequence (in the sense of [2]).

Let BinOcc(w, τ) be the set of binary representations of all starting occurrences of w
in τ (the representations are words starting from the least signi�cant binary digit). Due
to the very simple structure of representations we have the following fact.

Observation 19. We can compute in linear time the minimal deterministic automaton
accepting BinOcc(w, τ), this automaton has O(log |w|) states.

The �nal application of the cdawg which we present is related to periodicity of τn. Let
us start with recalling several notions.

Let u = u0u1 . . . um−1. A positive integer q is the (shortest) period of u (notation:
q = per(u)) if q is the smallest number such that ui = ui+q holds for all 0 ≤ i ≤ m−q−1.
We say that a square vv is centered at inter-position pi of u if both of the following
conditions hold, for x = u[0. . i] and y = u[i+ 1. .m− 1]:

• v is a su�x of x or x is a su�x of v

• v is a pre�x of y or y is a pre�x of v.

We de�ne the local period at inter-position pi as |v|, where vv is the shortest square
centered at this inter-position. Finally, the critical factorization point of a word u is
de�ned as the inter-position of u for which the local period equals the (global) period of
u.

Theorem 20. The critical factorization point of the TM word τn, for n ≥ 4, is the
inter-position pi for i = 2n−1.

Proof. It is a known fact [9] that the critical factorization point of a word u corresponds
to the �rst letter of the shorter of the following two su�xes:

(1) the lexicographically largest su�x of u under the standard order of letters: 0 < 1

(2) the lexicographically largest su�x of u under the reversed order of letters: 1 ≺ 0.

To �nd the su�x (1), we traverse Gn, starting from ε, along the lexicographically
largest path, shown by bold straight edges in Fig. 6. The length of this path is |τn| − 1.

On the other hand, the su�x (2) corresponds to the maximal path starting from ε
that always prefers 0 over 1, shown by bold snaked edges in Fig. 6. Its length equals
|τn−1| − 1.

Thus the su�x (2) is always shorter than (1) and using it we obtain the critical
factorization point as speci�ed in the conclusion of the theorem.
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ε

τ0 τ1 τ2 τ3 τ4 τn−2

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄n−2

τ0

τ̄0 τ̄1 τ̄2 τ̄3 . . .

τ̄0

τ0 τ1 τ2 τ3

. . .

τ1

τ̄1

τn

τ̄
n
−

2 τ̄
n
−

1

τn
−

2

Figure 6: The lexicographically largest path (bold, straight edges) and the lexicographi-
cally smallest maximal path (bold, snaked edges) in the cdawg Gn

6 2-Counting Property of Weighted Pseudo-Cdawg of τ

The main result of this section is Theorem 21, in which we show that a slight modi�cation
of the cdawg of the in�nite TM word has 2-counting property. This is related to previous
results on counting properties of Sturmian graphs [13].

Let G′ be an in�nite labeled graph obtained from G by removing all vertices σn, σ̄n
and replacing pairs of edges traversing them with single edges with concatenated labels,
see Fig. 7. We call G′ the pseudo-cdawg of τ . Let H be a directed weighted graph
obtained from G′ by replacing labels of edges with their lengths, see Fig. 8. Note that
the edges of H can be divided into three groups: the backbone (two series of edges
1, 1, 2, 4, 8, . . .), in-branch edges (two series 3, 6, 12, 24, . . .) and inter-branch edges (two
series 2, 4, 8, 16, . . .).

ε

τ0 τ1 τ2 τ3 τ4 τ5 τ6 . . .

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄5 τ̄6
. . .

τ0

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄5

τ̄0

τ0 τ1 τ2 τ3 τ4 τ5

τ1 τ2 τ3 τ4 τ5

τ̄
′

2
τ̄
′

3
τ̄
′

4
τ̄
′

5

τ̄1 τ̄2 τ̄3 τ̄4 τ̄5

τ
′

2
τ
′

3
τ
′

4
τ
′

5

Figure 7: The pseudo-cdawg for τ � an initial part.
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ε

τ0 τ1 τ2 τ3 τ4 τ5 τ6 . . .

τ̄0 τ̄1 τ̄2 τ̄3 τ̄4 τ̄5 τ̄6
. . .

1

1 2 4 8 16 32

1

1 2 4 8 16 32

2 4 8 16 32

3 6 12 24

2 4 8 16 32

3 6 12 24

Figure 8: The initial part of the weighted graph H obtained from G′ by replacing labels
with their lengths. This graph has 2-counting property.

We say that a weighted directed graph with a designated source vertex has k-counting
property if there are exactly k di�erent paths for each length n > 0 starting from the
source and ending in some arbitrary vertex.

Theorem 21. Graph H with source vertex ε has 2-counting property.

Proof. Clearly, in H there are exactly two paths from ε of length 1, ending in τ0 and
τ̄0 respectively. To prove the theorem, it su�ces to show that for i ≥ 1, for every
` ∈ [2i−1 + 1, 2i] there exists exactly one path from ε to τi of length ` (the same claim
can be proved for τ̄i, since the graph is symmetric). We show this by induction on i.

The base i ≤ 2 is trivial. Let i > 2 and assume the inductive hypothesis for all i′ < i.
There are exactly three edges ending in τi in H; for each of these edges we determine the
set of lengths of paths from ε that end with that edge e. Note that this set is exactly the
interval of lengths of paths ending in the starting vertex of e shifted by the weight of e.

For the edge of type τi−2
3·2i−3

−→ τi we obtain

3 · 2i−3 + [2i−3 + 1, 2i−2] = [2i−1 + 1, 2i−1 + 2i−3], (7)

for the edge τ̄i−2
2i−1

−→ τi:

2i−1 + [2i−3 + 1, 2i−2] = [2i−1 + 2i−3 + 1, 2i−1 + 2i−2], (8)

�nally for the edge τi−1
2i−1

−→ τi the set of lengths of paths equals

2i−1 + [2i−2 + 1, 2i−1] = [2i−1 + 2i−2 + 1, 2i]. (9)

The intervals (7)-(9) are pairwise disjoint and the set of integers contained in any of them
is [2i−1 + 1, 2i]. This concludes the inductive proof.
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