Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Quantum optics

Nanotube chemistry tunes light

Room-temperature single-photon emission at several wavelengths in the near-infrared, including the telecom window, is realized by organic colour centres chemically implanted on chirality-defined single-walled carbon nanotubes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single-walled carbon nanotubes have many different structural forms as denoted by their (n, m) indices.

References

  1. Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. V. Rev. Sci. Instrum. 82, 071101 (2011).

    Article  ADS  Google Scholar 

  2. He, X. et al. Nat. Photon. 11, 577–582 (2017).

    Article  Google Scholar 

  3. Högele, A., Galland, C., Winger, M. & Imamoğlu, A. Phys. Rev. Lett. 100, 217401 (2008).

    Article  ADS  Google Scholar 

  4. Zheng, M. Top. Curr. Chem. 375, 13 (2017).

    Article  Google Scholar 

  5. Ghosh, S., Bachilo, S. M., Simonette, R. A., Beckingham, K. M. & Weisman, R. B. Science 330, 1656–1659 (2010).

    Article  ADS  Google Scholar 

  6. Piao, Y. et al. Nat. Chem. 5, 840–845 (2013).

    Article  Google Scholar 

  7. Ma, X., Hartmann, N. F., Baldwin, J. K. S., Doorn, S. K. & Htoon, H. Nat. Nanotech. 10, 671–675 (2015).

    Article  ADS  Google Scholar 

  8. Khasminskaya, S. et al. Nat. Photon. 10, 727–732 (2016).

    Article  ADS  Google Scholar 

  9. Jeantet, A. et al. Phys. Rev. Lett. 116, 247402 (2016).

    Article  ADS  Google Scholar 

  10. Aharonovich, I., Englund, D. & Toth, M. Nat. Photon. 10, 631–641 (2016).

    Article  ADS  Google Scholar 

  11. Michler, P. et al. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  12. Somaschi, N. et al. Nat. Photon. 10, 340–345 (2016).

    Article  ADS  Google Scholar 

  13. Ding, X. et al. Phys. Rev. Lett. 116, 020401 (2016).

    Article  ADS  Google Scholar 

  14. Unsleber, S. et al. Opt. Express 24, 8539–8546 (2016).

    Article  ADS  Google Scholar 

  15. Miyazawa, T. et al. Jpn. J. Appl. Phys. 44, L620 (2005).

    Article  Google Scholar 

  16. Li, Q., Davanço, M. & Srinivasan, K. Nat. Photon. 10, 406–414 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kartik Srinivasan or Ming Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivasan, K., Zheng, M. Nanotube chemistry tunes light. Nature Photon 11, 535–537 (2017). https://doi.org/10.1038/nphoton.2017.143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2017.143

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing