Abstract
Neutrophils are one of the main types of effector cell in the innate immune system and were first shown to effectively kill microorganisms by phagocytosis more than 100 years ago. Recently, however, it has been found that stimulated neutrophils can also produce extracellular structures called neutrophil extracellular traps (NETs) that capture and kill microorganisms. This Progress article gives an overview of the structure, function and generation of NETs, and their role in infections.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Bainton, D. F., Ullyot, J. L. & Farquhar, M. G. The development of neutrophilic polymorphonuclear leukocytes in human bone marrow: origin and content of azurophil and specific granules. J. Exp. Med. 134, 907â934 (1971).
Nathan, C. Neutrophils and immunity: challenges and opportunities. Nature Rev. Immunol. 6, 173â182 (2006).
Borregaard, N., Sehested, M., Nielsen, B. S., Sengelov, H. & Kjeldsen, L. Biosynthesis of granule proteins in normal human bone-marrow cells â gelatinase is a marker of terminal neutrophil differentiation. Blood 85, 812â817 (1995).
Borregaard, N. & Cowland, J. B. Granules of the human neutrophilic polymorphonuclear leukocyte. Blood 89, 3503â3521 (1997).
Delves, P. J. & Roitt, I. M. The immune systemâ first of two parts. New Engl. J. Med. 343, 37â49 (2000).
Metchnikoff, E. LIimmunité Dans Les Maladies Infectieuses (Masson and Cie, Paris, 1901).
Coxon, A. et al. A novel role for the βâ2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation. Immunity 5, 653â666 (1996).
Zhang, B., Hirahashi, J., Cullere, X. & Mayadas, T. N. Elucidation of molecular events leading to neutrophil apoptosis following phagocytosis: cross-talk between caspase 8, reactive oxygen species, and MAPK/ERK activation. J. Biol. Chem. 278, 28443â28454 (2003).
Serhan, C. N. & Savill, J. Resolution of inflammation: the beginning programs the end. Nature Immunol. 6, 1191â1197 (2005).
Haslett, C. Granulocyte apoptosis and inflammatory disease. Br. Med. Bull. 53, 669â683 (1997).
Lehrer, R. I. & Ganz, T. Antimicrobial peptides in mammalian and insect host defence. Curr. Opin. Immunol. 11, 23â27 (1999).
Hampton, M. B., Kettle, A. J. & Winterbourn, C. C. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing. Blood 92, 3007â3017 (1998).
Heyworth, P. G., Cross, A. R. & Curnutte, J. T. Chronic granulomatous disease. Curr. Opin. Immunol. 15, 578â584 (2003).
Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532â1535 (2004).
Clark, S. R. et al. Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nature Med. 13, 463â469 (2007).
Fuchs, T. A. et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176, 231â241 (2007).
Droge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47â95 (2002).
Tonks, N. K. Redox redux: revisiting PTPs and the control of cell signaling. Cell 121, 667â670 (2005).
Steinberg, B. E. & Grienstein, S. Unconventional roles of the NADPH oxidase: signaling, ion homeostasis, and cell death. Sci. STKE pe11 (2007).
Buchanan, J. T. et al. DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. Curr. Biol. 16, 396â400 (2006).
Beiter, K. et al. An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. Curr. Biol. 16, 401â407 (2006).
Wartha, F. et al. Capsule and D-alanylated lipoteichoic acids protect Streptococcus pneumoniae against neutrophil extracellular traps. Cell. Microbiol. 9, 1162â1171 (2007).
Urban, C. F., Reichard, U., Brinkmann, V. & Zychlinsky, A. Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell. Microbiol. 8, 668â676 (2006).
Hirsch, J. G. Bactericidal action of histone. J. Exp. Med. 108, 925â944 (1958).
Cho, J. H. et al. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J. 16, 429â431 (2002).
Kim, H. S., Park, C. B., Kim, M. S. & Kim, S. C. cDNA cloning and characterization of buforin I, an antimicrobial peptide: a cleavage product of histone H2A. Biochem. Biophys. Res. Commun. 229, 381â387 (1996).
Kim, H. S. et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J. Immunol. 165, 3268â3274 (2000).
Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S. & Kim, S. C. Structureâactivity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245â8250 (2000).
Patat, S. A. et al. Antimicrobial activity of histones from hemocytes of the Pacific white shrimp. Eur. J. Biochem. 271, 4825â4833 (2004).
Sumby, P. et al. Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. Proc. Natl Acad. Sci. USA 102, 1679â1684 (2005).
Gupta, A. K., Hasler, P., Holzgreve, W., Gebhardt, S. & Hahn, S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum. Immunol. 66, 1146â1154 (2005).
Alghamdi, A. S. & Foster, D. N. Seminal DNase frees spermatozoa entangled in neutrophil extracellular traps. Biol. Reprod. 73, 1174â1181 (2005).
Lippolis, J. D., Reinhardt, T. A., Goff, J. P. & Horst, R. L. Neutrophil extracellular trap formation by bovine neutrophils is not inhibited by milk. Vet. Immunol. Immunopathol. 113, 248â255 (2006).
Palic, D., Andreasen, C. B., Ostojic, J., Tell, R. M. & Roth, J. A. Zebrafish (Danio rerio) whole kidney assays to measure neutrophil extracellular trap release and degranulation of primary granules. J. Immunol. Meth. 319, 87â97 (2007).
Fairhurst, A. M., Wandstrat, A. E. & Wakeland, E. K. Systemic lupus erythematosus: multiple immunological phenotypes in a complex genetic disease. Adv. Immunol. 92, 1â69 (2006).
Duranton, J. et al. Effect of DNase on the activity of neutrophil elastase, cathepsin G and proteinase 3 in the presence of DNA. FEBS Lett. 473, 154â156 (2000).
McCauley, T. C., Zhang, H. M., Bellin, M. E. & Ax, R. L. Purification and characterization of fertility-associated antigen (FAA) in bovine seminal fluid. Mol. Reprod. Dev. 54, 145â153 (1999).
Zhong, X. Y. et al. Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am. J. Obst. Gynecol. 184, 414â419 (2001).
Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science 308, 1592â1594 (2005).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Related links
Related links
DATABASES
Entrez Genome Project
Entrez Protein
lymphocyte-function-associated antigen 1
FURTHER INFORMATION
Rights and permissions
About this article
Cite this article
Brinkmann, V., Zychlinsky, A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5, 577â582 (2007). https://doi.org/10.1038/nrmicro1710
Issue Date:
DOI: https://doi.org/10.1038/nrmicro1710
This article is cited by
-
Silenced-C5ar1 improved multiple organ injury in sepsis rats via inhibiting neutrophil extracellular trap
Journal of Molecular Histology (2024)
-
Neutrophil extracellular traps aggravate neuronal endoplasmic reticulum stress and apoptosis via TLR9 after traumatic brain injury
Cell Death & Disease (2023)
-
Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation
Cellular and Molecular Life Sciences (2023)
-
The predictive value of the neutrophil/platelet ratio on in-hospital adverse events and long-term prognosis in patients with coronary artery disease after percutaneous coronary intervention and its possible internal mechanism
Molecular and Cellular Biochemistry (2023)
-
Biomarkers of cell damage, neutrophil and macrophage activation associated with in-hospital mortality in geriatric COVID-19 patients
Immunity & Ageing (2022)