Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Innate immune sensing of cell death in disease and therapeutics

Abstract

Innate immunity, cell death and inflammation underpin many aspects of health and disease. Upon sensing pathogens, pathogen-associated molecular patterns or damage-associated molecular patterns, the innate immune system activates lytic, inflammatory cell death, such as pyroptosis and PANoptosis. These genetically defined, regulated cell death pathways not only contribute to the host defence against infectious disease, but also promote pathological manifestations leading to cancer and inflammatory diseases. Our understanding of the underlying mechanisms has grown rapidly in recent years. However, how dying cells, cell corpses and their liberated cytokines, chemokines and inflammatory signalling molecules are further sensed by innate immune cells, and their contribution to further amplify inflammation, trigger antigen presentation and activate adaptive immunity, is less clear. Here, we discuss how pattern-recognition and PANoptosome sensors in innate immune cells recognize and respond to cell-death signatures. We also highlight molecular targets of the innate immune response for potential therapeutic development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Dying or dead cells release PAMPs, DAMPs and cytokines that contribute to innate immunity and disease pathogenesis.
Fig. 2: Necrotic cells release DAMPs that activate TLRs and inflammasomes.
Fig. 3: PAMPs, DAMPs and cytokines activate PANoptosomes.
Fig. 4: Necrotic cells release DAMPs that activate CLRs.
Fig. 5: Necrotic cells release DAMPs that activate the cytosolic DNA-sensing and RNA-sensing pathways.

Similar content being viewed by others

References

  1. Man, S. M. et al. Molecular mechanisms and functions of pyroptosis inflammatory caspases and inflammasomes in infectious diseases. Immunol. Rev. 277, 61–75 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kayagaki, N. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Shi, J. et al. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526, 660–665 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. Christgen, S. et al. Identification of the PANoptosome: a molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Front. Cell Infect. Microbiol. 10, 237 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pandeya, A. & Kanneganti, T.-D. Therapeutic potential of PANoptosis: innate sensors inflammasomes and RIPKs in PANoptosomes. Trends Mol. Med. 30, 74–88 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Cho, Y. S. et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112–1123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, S. et al. Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell 137, 1100–1111 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, D. W. et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332–336 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Sun, L. et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, J. et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc. Natl Acad. Sci. USA 109, 5322–5327 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choudhury, S. M., Sarkar, R., Karki, R. & Kanneganti, T. D. A comparative study of apoptosis, pyroptosis, necroptosis, and PANoptosis components in mouse and human cells. PLoS One 19, e0299577 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han, J. H. et al. NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress. Nat. Commun. 15, 1739 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rock, K. L. & Kono, H. The inflammatory response to cell death. Annu Rev. Pathol. 3, 99–126 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li, Y. et al. cGLRs are a diverse family of pattern recognition receptors in innate immunity. Cell 186, 3261–3276.e3220 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kuriakose, T. et al. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Sci. Immunol. 1, aag2045 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Karki, R. & Kanneganti, T. D. ADAR1 and ZBP1 in innate immunity, cell death, and disease. Trends Immunol. 44, 201–216 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gong, T., Liu, L., Jiang, W. & Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 20, 95–112 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Perregaux, D. & Gabel, C. A. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J. Biol. Chem. 269, 15195–15203 (1994).

    Article  CAS  PubMed  Google Scholar 

  20. Solle, M. et al. Altered cytokine production in mice lacking P2X(7) receptors. J. Biol. Chem. 276, 125–132 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. McDonald, B. et al. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330, 362–366 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Kataoka, H., Kono, H., Patel, Z., Kimura, Y. & Rock, K. L. Evaluation of the contribution of multiple DAMPs and DAMP receptors in cell death-induced sterile inflammatory responses. PLoS One 9, e104741 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Karki, R. et al. Synergism of TNF-alpha and IFN-gamma triggers inflammatory cell death, tissue damage, and mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell 184, 149–168.e117 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Simpson, D. S. et al. Interferon-gamma primes macrophages for pathogen ligand-induced killing via a caspase-8 and mitochondrial cell death pathway. Immunity 55, 423–441 e429 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kono, H., Karmarkar, D., Iwakura, Y. & Rock, K. L. Identification of the cellular sensor that stimulates the inflammatory response to sterile cell death. J. Immunol. 184, 4470–4478 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Place, D. E. & Kanneganti, T. D. Cell death-mediated cytokine release and its therapeutic implications. J. Exp. Med. 216, 1474–1486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanneganti, T. D. Intracellular innate immune receptors: life inside the cell. Immunol. Rev. 297, 5–12 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Man, S. M. & Jenkins, B. J. Context-dependent functions of pattern recognition receptors in cancer. Nat. Rev. Cancer 22, 397–413 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Kawai, T., Ikegawa, M., Ori, D. & Akira, S. Decoding Toll-like receptors: recent insights and perspectives in innate immunity. Immunity 57, 649–673 (2024).

    Article  CAS  PubMed  Google Scholar 

  31. Mullick, A. E., Tobias, P. S. & Curtiss, L. K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115, 3149–3156 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Termeer, C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, D. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat. Med. 11, 1173–1179 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Allam, R. et al. Histones from dying renal cells aggravate kidney injury via TLR2 and TLR4. J. Am. Soc. Nephrol. 23, 1375–1388 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wilson, A. S. et al. Neutrophil extracellular traps and their histones promote Th17 cell differentiation directly via TLR2. Nat. Commun. 13, 528 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urbonaviciute, V. et al. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes: implications for the pathogenesis of SLE. J. Exp. Med. 205, 3007–3018 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, S. et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457, 102–106 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Vogl, T. et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 13, 1042–1049 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Bhattacharyya, S. et al. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Sci. Transl. Med. 6, 232ra250 (2014).

    Article  Google Scholar 

  42. Bhattacharyya, S. et al. Tenascin-C drives persistence of organ fibrosis. Nat. Commun. 7, 11703 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gozzelino, R., Jeney, V. & Soares, M. P. Mechanisms of cell protection by heme oxygenase-1. Annu. Rev. Pharmacol. Toxicol. 50, 323–354 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Martins, R. & Knapp, S. Heme and hemolysis in innate immunity: adding insult to injury. Curr. Opin. Immunol. 50, 14–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Soares, M. P. & Bozza, M. T. Red alert: labile heme is an alarmin. Curr. Opin. Immunol. 38, 94–100 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. Figueiredo, R. T. et al. Characterization of heme as activator of Toll-like receptor 4. J. Biol. Chem. 282, 20221–20229 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Min, H., Choi, B., Jang, Y. H., Cho, I. H. & Lee, S. J. Heme molecule functions as an endogenous agonist of astrocyte TLR2 to contribute to secondary brain damage after intracerebral hemorrhage. Mol. Brain 10, 27 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sundaram, B. et al. NLRP12-PANoptosome activates PANoptosis and pathology in response to heme and PAMPs. Cell 186, 2783–2801.e2720 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sundaram, B. et al. NLRC5 senses NAD+ depletion, forming a PANoptosome and driving PANoptosis and inflammation. Cell 187, 4061–4077.e1 (2024).

  50. Cavassani, K. A. et al. TLR3 is an endogenous sensor of tissue necrosis during acute inflammatory events. J. Exp. Med. 205, 2609–2621 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lande, R. et al. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449, 564–569 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Scaffidi, P., Misteli, T. & Bianchi, M. E. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418, 191–195 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Tian, J. et al. Toll-like receptor 9–dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol. 8, 487–496 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Ivanov, S. et al. A novel role for HMGB1 in TLR9-mediated inflammatory responses to CpG-DNA. Blood 110, 1970–1981 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sirois, C. M. et al. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. J. Exp. Med. 210, 2447–2463 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Imaeda, A. B. et al. Acetaminophen-induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J. Clin. Invest. 119, 305–314 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Gavin, A. L. et al. Cleavage of DNA and RNA by PLD3 and PLD4 limits autoinflammatory triggering by multiple sensors. Nat. Commun. 12, 5874 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hotz, M. J. et al. Red blood cells homeostatically bind mitochondrial DNA through TLR9 to maintain quiescence and to prevent lung injury. Am. J. Respir. Crit. Care Med. 197, 470–480 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lam, L. K. M. et al. DNA binding to TLR9 expressed by red blood cells promotes innate immune activation and anemia. Sci. Transl. Med. 13, eabj1008 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Tuomela, J. et al. DNA from dead cancer cells induces TLR9-mediated invasion and inflammation in living cancer cells. Breast Cancer Res. Treat. 142, 477–487 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kayagaki, N. et al. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature 591, 131–136 (2021).

    Article  CAS  PubMed  Google Scholar 

  63. Rogers, C. et al. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat. Commun. 8, 14128 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang, Y. et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature 547, 99–103 (2017).

    Article  CAS  PubMed  Google Scholar 

  65. Lee, S. et al. AIM2 forms a complex with pyrin and ZBP1 to drive PANoptosis and host defence. Nature 597, 415–419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Phulphagar, K. et al. Proteomics reveals distinct mechanisms regulating the release of cytokines and alarmins during pyroptosis. Cell Rep. 34, 108826 (2021).

    Article  CAS  PubMed  Google Scholar 

  67. Russo, A. J. et al. Intracellular immune sensing promotes inflammation via gasdermin D–driven release of a lectin alarmin. Nat. Immunol. 22, 154–165 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tsuchiya, K. et al. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep. 34, 108887 (2021).

    Article  CAS  PubMed  Google Scholar 

  69. Pruenster, M. et al. E-selectin-mediated rapid NLRP3 inflammasome activation regulates S100A8/S100A9 release from neutrophils via transient gasdermin D pore formation. Nat. Immunol. 24, 2021–2031 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiao, H. et al. ADAR1 averts fatal type I interferon induction by ZBP1. Nature 607, 776–783 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hubbard, N. W. et al. ADAR1 mutation causes ZBP1-dependent immunopathology. Nature 607, 769–775 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yan, W. T. et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen. Res. 17, 1761–1768 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Ruixi, Z. et al. A new cell death program regulated by toll-like receptor 9 through p38 mitogen-activated protein kinase signaling pathway in a neonatal rat model with sepsis associated encephalopathy. Chin. Med. J. 135, 1474–1485 (2022).

    Article  Google Scholar 

  74. Malireddi, R. K. S. et al. RIPK1 distinctly regulates Yersinia-induced inflammatory cell death, PANoptosis. Immunohorizons 4, 789–796 (2020).

    Article  CAS  PubMed  Google Scholar 

  75. Zheng, M., Karki, R., Vogel, P. & Kanneganti, T. D. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181, 674–687.e613 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Banoth, B. et al. ZBP1 promotes fungi-induced inflammasome activation and pyroptosis, apoptosis, and necroptosis (PANoptosis). J. Biol. Chem. 295, 18276–18283 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Sharma, B. R. & Kanneganti, T. D. NLRP3 inflammasome in cancer and metabolic diseases. Nat. Immunol. 22, 550–559 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Liu, Y. et al. Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat. Commun. 14, 7246 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Baroja-Mazo, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat. Immunol. 15, 738–748 (2014).

    Article  CAS  PubMed  Google Scholar 

  81. Franklin, B. S. et al. The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nat. Immunol. 15, 727–737 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Iyer, S. S. et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl Acad. Sci. USA 106, 20388–20393 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Masters, S. L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Babelova, A. et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284, 24035–24048 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  87. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wen, H. et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang, H. et al. Histones activate the NLRP3 inflammasome in Kupffer cells during sterile inflammatory liver injury. J. Immunol. 191, 2665–2679 (2013).

    Article  CAS  PubMed  Google Scholar 

  90. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Cabral, A. et al. Differential binding of NLRP3 to non-oxidized and Ox-mtDNA mediates NLRP3 inflammasome activation. Commun. Biol. 6, 578 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kanneganti, T. D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Kanneganti, T. D. et al. Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J. Biol. Chem. 281, 36560–36568 (2006).

    Article  CAS  PubMed  Google Scholar 

  95. Su, M. et al. Gasdermin D-dependent platelet pyroptosis exacerbates NET formation and inflammation in severe sepsis. Nat. Cardiovasc. Res. 1, 732–747 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).

    Article  CAS  PubMed  Google Scholar 

  97. Dalbeth, N. et al. Gout. Nat. Rev. Dis. Prim. 5, 69 (2019).

    Article  PubMed  Google Scholar 

  98. Rashidi, M. et al. The pyroptotic cell death effector gasdermin D is activated by gout-associated uric acid crystals but is dispensable for cell death and IL-1β release. J. Immunol. 203, 736–748 (2019).

    Article  CAS  PubMed  Google Scholar 

  99. Zhong, C. S. et al. Gout-associated monosodium urate crystal-induced necrosis is independent of NLRP3 activity but can be suppressed by combined inhibitors for multiple signaling pathways. Acta Pharmacol. Sin. 43, 1324–1336 (2022).

    Article  CAS  PubMed  Google Scholar 

  100. Kluck, V. et al. Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: an open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2, e270–e280 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Edgeworth, J., Gorman, M., Bennett, R., Freemont, P. & Hogg, N. Identification of p8,14 as a highly abundant heterodimeric calcium binding protein complex of myeloid cells. J. Biol. Chem. 266, 7706–7713 (1991).

    Article  CAS  PubMed  Google Scholar 

  102. van Zoelen, M. A. et al. Expression and role of myeloid-related protein-14 in clinical and experimental sepsis. Am. J. Respir. Crit. Care Med. 180, 1098–1106 (2009).

    Article  PubMed  Google Scholar 

  103. Rathinam, V. A. et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11, 395–402 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Karki, R. et al. Concerted activation of the AIM2 and NLRP3 inflammasomes orchestrates host protection against Aspergillus infection. Cell Host Microbe 17, 357–368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dombrowski, Y. et al. Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic lesions. Sci. Transl. Med. 3, 82ra38 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Naik, S. et al. Inflammatory memory sensitizes skin epithelial stem cells to tissue damage. Nature 550, 475–480 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hu, B. et al. The DNA-sensing AIM2 inflammasome controls radiation-induced cell death and tissue injury. Science 354, 765–768 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Man, S. M. et al. Critical role for the DNA sensor AIM2 in stem cell proliferation and cancer. Cell 162, 45–58 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wilson, J. E. et al. Inflammasome-independent role of AIM2 in suppressing colon tumorigenesis via DNA-PK and Akt. Nat. Med. 21, 906–913 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Schattgen, S. A., Gao, G., Kurt-Jones, E. A. & Fitzgerald, K. A. Cutting edge: DNA in the lung microenvironment during influenza virus infection tempers inflammation by engaging the DNA sensor AIM2. J. Immunol. 196, 29–33 (2016).

    Article  CAS  PubMed  Google Scholar 

  112. Zhang, H. et al. AIM2 inflammasome is critical for influenza-induced lung injury and mortality. J. Immunol. 198, 4383–4393 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Moriyama, M. et al. Influenza virus-induced oxidized DNA activates inflammasomes. iScience 23, 101270 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lian, Q. et al. Chemotherapy-induced intestinal inflammatory responses are mediated by exosome secretion of double-strand DNA via AIM2 inflammasome activation. Cell Res. 27, 784–800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Komada, T. et al. Macrophage uptake of necrotic cell DNA activates the AIM2 inflammasome to regulate a proinflammatory phenotype in CKD. J. Am. Soc. Nephrol. 29, 1165–1181 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Karki, R. et al. ZBP1-dependent inflammatory cell death, PANoptosis, and cytokine storm disrupt IFN therapeutic efficacy during coronavirus infection. Sci. Immunol. 7, eabo6294 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Karki, R. et al. ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep. 37, 109858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sharma, B. R., Karki, R., Rajesh, Y. & Kanneganti, T. D. Immune regulator IRF1 contributes to ZBP1-, AIM2-, RIPK1-, and NLRP12-PANoptosome activation and inflammatory cell death (PANoptosis). J. Biol. Chem. 299, 105141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Malireddi, R. K. S. et al. Innate immune priming in the absence of TAK1 drives RIPK1 kinase activity-independent pyroptosis, apoptosis, necroptosis, and inflammatory disease. J. Exp. Med. 217, jem.20191644 (2020).

    Article  PubMed  Google Scholar 

  120. Malireddi, R. K. S. et al. TAK1 restricts spontaneous NLRP3 activation and cell death to control myeloid proliferation. J. Exp. Med. 215, 1023–1034 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Karki, R. et al. Interferon regulatory factor 1 regulates PANoptosis to prevent colorectal cancer. JCI Insight 5, e136720 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Malireddi, R. K. S. et al. Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages inhibits tumor growth. Immunohorizons 5, 568–580 (2021).

    Article  PubMed  Google Scholar 

  123. Geijtenbeek, T. B. & Gringhuis, S. I. C-type lectin receptors in the control of T helper cell differentiation. Nat. Rev. Immunol. 16, 433–448 (2016).

    Article  CAS  PubMed  Google Scholar 

  124. Chiba, S. et al. Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses. eLife 3, e04177 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Daley, D. et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 23, 556–567 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Matsumoto, M. et al. A novel LPS-inducible C-type lectin is a transcriptional target of NF-IL6 in macrophages. J. Immunol. 163, 5039–5048 (1999).

    Article  CAS  PubMed  Google Scholar 

  127. Ishikawa, E. et al. Direct recognition of the mycobacterial glycolipid, trehalose dimycolate, by C-type lectin Mincle. J. Exp. Med. 206, 2879–2888 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yamaski, S. et al. C-type lectin Mincle is an activating rceptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).

    Article  Google Scholar 

  129. Yamasaki, S. et al. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat. Immunol. 9, 1179–1188 (2008).

    Article  CAS  PubMed  Google Scholar 

  130. Nagata, M. et al. Intracellular metabolite β-glucosylceramide is an endogenous Mincle ligand possessing immunostimulatory activity. Proc. Natl Acad. Sci. USA 114, E3285–E3294 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Memon, R. A. et al. Regulation of glycosphingolipid metabolism in liver during the acute phase response. J. Biol. Chem. 274, 19707–19713 (1999).

    Article  CAS  PubMed  Google Scholar 

  132. Brennan, P. J. et al. Invariant natural killer T cells recognize lipid self antigen induced by microbial danger signals. Nat. Immunol. 12, 1202–1211 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Stephens, M. et al. Mincle-binding DNA aptamer demonstrates therapeutic potential in a model of inflammatory bowel disease. Mol. Ther. Nucleic Acids 28, 935–947 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Seifert, L. et al. The necrosome promotes pancreatic oncogenesis via CXCL1 and Mincle-induced immune suppression. Nature 532, 245–249 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Colonna, M., Samaridis, J. & Angman, L. Molecular characterization of two novel C-type lectin-like receptors, one of which is selectively expressed in human dendritic cells. Eur. J. Immunol. 30, 697–704 (2000).

    Article  CAS  PubMed  Google Scholar 

  136. Sobanov, Y. et al. A novel cluster of lectin-like receptor genes expressed in monocytic, dendritic and endothelial cells maps close to the NK receptor genes in the human NK gene complex. Eur. J. Immunol. 31, 3493–3503 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Thebault, P. et al. The C-type lectin-like receptor CLEC-1, expressed by myeloid cells and endothelial cells, is up-regulated by immunoregulatory mediators and moderates T cell activation. J. Immunol. 183, 3099–3108 (2009).

    Article  CAS  PubMed  Google Scholar 

  138. Gao, S. et al. Histidine-rich glycoprotein inhibits high-mobility group box-1-mediated pathways in vascular endothelial cells through CLEC-1A. iScience 23, 101180 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Drouin, M. et al. CLEC-1 is a death sensor that limits antigen cross-presentation by dendritic cells and represents a target for cancer immunotherapy. Sci. Adv. 8, eabo7621 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Takahashi, Y. et al. Histidine-rich glycoprotein stimulates human neutrophil phagocytosis and prolongs survival through CLEC1A. J. Immunol. 206, 737–750 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Lai, J. J., Cruz, F. M. & Rock, K. L. Immune sensing of cell death through recognition of histone sequences by C-type lectin-receptor-2d causes inflammation and tissue injury. Immunity 52, 123–135.e126 (2020).

    Article  CAS  PubMed  Google Scholar 

  142. Marsman, G., Zeerleder, S. & Luken, B. M. Extracellular histones, cell-free DNA, or nucleosomes: differences in immunostimulation. Cell Death Dis. 7, e2518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Sancho, D. et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature 458, 899–903 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ahrens, S. et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity 36, 635–645 (2012).

    Article  CAS  PubMed  Google Scholar 

  145. Zhang, J. G. et al. The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36, 646–657 (2012).

    Article  CAS  PubMed  Google Scholar 

  146. Hanc, P. et al. Structure of the complex of F-actin and DNGR-1, a C-type lectin receptor involved in dendritic cell cross-presentation of dead cell-associated antigens. Immunity 42, 839–849 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Schulz, O. et al. Myosin II synergizes with F-actin to promote DNGR-1-dependent cross-presentation of dead cell-associated antigens. Cell Rep. 24, 419–428 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Zelenay, S. et al. The dendritic cell receptor DNGR-1 controls endocytic handling of necrotic cell antigens to favor cross-priming of CTLs in virus-infected mice. J. Clin. Invest. 122, 1615–1627 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Canton, J. et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat. Immunol. 22, 140–153 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Del Fresno, C. et al. DNGR-1 in dendritic cells limits tissue damage by dampening neutrophil recruitment. Science 362, 351–356 (2018).

    Article  PubMed  Google Scholar 

  151. Neumann, K. et al. Clec12a is an inhibitory receptor for uric acid crystals that regulates inflammation in response to cell death. Immunity 40, 389–399 (2014).

    Article  CAS  PubMed  Google Scholar 

  152. Li, K. et al. The uric acid crystal receptor Clec12A potentiates type I interferon responses. Proc. Natl Acad. Sci. USA 116, 18544–18549 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).

    Article  CAS  PubMed  Google Scholar 

  155. Kawane, K. et al. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443, 998–1002 (2006).

    Article  CAS  PubMed  Google Scholar 

  156. Yoshida, H., Okabe, Y., Kawane, K., Fukuyama, H. & Nagata, S. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6, 49–56 (2005).

    Article  CAS  PubMed  Google Scholar 

  157. Kawane, K. et al. Impaired thymic development in mouse embryos deficient in apoptotic DNA degradation. Nat. Immunol. 4, 138–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  158. Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Kawane, K. et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver. Science 292, 1546–1549 (2001).

    Article  CAS  PubMed  Google Scholar 

  160. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gao, D. et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc. Natl Acad. Sci. USA 112, E5699–E5705 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li, T. et al. TBK1 recruitment to STING mediates autoinflammatory arthritis caused by defective DNA clearance. J. Exp. Med. 219, e20211539 (2022).

    Article  CAS  PubMed  Google Scholar 

  164. Baum, R. et al. Cutting edge: AIM2 and endosomal TLRs differentially regulate arthritis and autoantibody production in DNase II-deficient mice. J. Immunol. 194, 873–877 (2015).

    Article  CAS  PubMed  Google Scholar 

  165. Jakobs, C., Perner, S. & Hornung, V. AIM2 drives joint inflammation in a self-DNA triggered model of chronic polyarthritis. PLoS One 10, e0131702 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Deng, L. et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity 41, 843–852 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Klarquist, J. et al. STING-mediated DNA sensing promotes antitumor and autoimmune responses to dying cells. J. Immunol. 193, 6124–6134 (2014).

    Article  CAS  PubMed  Google Scholar 

  168. Zhu, Q. et al. Cutting edge: STING mediates protection against colorectal tumorigenesis by governing the magnitude of intestinal inflammation. J. Immunol. 193, 4779–4782 (2014).

    Article  CAS  PubMed  Google Scholar 

  169. Woo, S. R. et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity 41, 830–842 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Ahn, J., Xia, T., Rabasa Capote, A., Betancourt, D. & Barber, G. N. Extrinsic phagocyte-dependent STING signaling dictates the immunogenicity of dying cells. Cancer Cell 33, 862–873 e865 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Xu, M. M. et al. Dendritic cells but not macrophages sense tumor mitochondrial DNA for cross-priming through signal regulatory protein α signaling. Immunity 47, 363–373 e365 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Marcus, A. et al. Tumor-derived cGAMP triggers a STING-mediated interferon response in non-tumor cells to activate the NK cell response. Immunity 49, 754–763 e754 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Carozza, J. A. et al. Extracellular cGAMP is a cancer cell-produced immunotransmitter involved in radiation-induced anti-cancer immunity. Nat. Cancer 1, 184–196 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Roers, A., Hiller, B. & Hornung, V. Recognition of endogenous nucleic acids by the innate immune system. Immunity 44, 739–754 (2016).

    Article  CAS  PubMed  Google Scholar 

  175. Dhir, A. et al. Mitochondrial double-stranded RNA triggers antiviral signalling in humans. Nature 560, 238–242 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Pestal, K. et al. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity 43, 933–944 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Liddicoat, B. J. et al. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science 349, 1115–1120 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chung, H. et al. Human ADAR1 prevents endogenous RNA from triggering translational shutdown. Cell 172, 811–824.e814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Ishizuka, J. J. et al. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature 565, 43–48 (2019).

    Article  CAS  PubMed  Google Scholar 

  180. Stok, J. E. et al. RNA sensing via the RIG-I-like receptor LGP2 is essential for the induction of a type I IFN response in ADAR1 deficiency. EMBO J. 41, e109760 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Tosar, J. P., Witwer, K. & Cayota, A. Revisiting extracellular RNA release, processing, and function. Trends Biochem. Sci. 46, 438–445 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Masouris, I. et al. Inhibition of DAMP signaling as an effective adjunctive treatment strategy in pneumococcal meningitis. J. Neuroinflammation 14, 214 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Liu, K. et al. Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J. 21, 3904–3916 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Fujita, K. et al. HMGB1, a pathogenic molecule that induces neurite degeneration via TLR4-MARCKS, is a potential therapeutic target for Alzheimer’s disease. Sci. Rep. 6, 31895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge our colleagues whose work contributed to the advancement of immune sensing of cell death, and we apologize to those whose work could not be comprehensively cited due to space constraints. Research studies in our laboratories are supported by the US National Institutes of Health (grants AI101935, AI124346, AI160179, AR056296 and CA253095 to T.-D.K.) and the American Lebanese Syrian Associated Charities (T.-D.K.), and the National Health and Medical Research Council of Australia (Ideas Grant APP2002686 and Investigator Grant 2026910 to S.M.M.) and the CSL Centenary Fellowship (S.M.M.).

Author information

Authors and Affiliations

Authors

Contributions

S.M.M. and T.-D.K. researched the literature, wrote and edited the Review, and created the original figures.

Corresponding authors

Correspondence to Si Ming Man or Thirumala-Devi Kanneganti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Cell Biology thanks Nan Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Man, S.M., Kanneganti, TD. Innate immune sensing of cell death in disease and therapeutics. Nat Cell Biol 26, 1420–1433 (2024). https://doi.org/10.1038/s41556-024-01491-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41556-024-01491-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing