Abstract
Light detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and unmanned aerial vehicle reconnaissance. Until recently, LiDAR has relied on light sources and detectors mounted on multiple mechanically rotating optical transmitters and receivers to cover an entire scene. Such an architecture gives rise to limitations in terms of the imaging frame rate and resolution. In this Review, we examine how novel nanophotonic platforms could overcome the hardware restrictions of existing LiDAR technologies. After briefly introducing the basic principles of LiDAR, we present the device specifications required by the industrial sector. We then review a variety of LiDAR-relevant nanophotonic approaches such as integrated photonic circuits, optical phased antenna arrays and flat optical devices based on metasurfaces. The latter have already demonstrated exceptional functional beam manipulation properties, such as active beam deflection, point-cloud generation and device integration using scalable manufacturing methods, and are expected to disrupt modern optical technologies. In the outlook, we address the upcoming physics and engineering challenges that must be overcome from the viewpoint of incorporating nanophotonic technologies into commercially viable, fast, ultrathin and lightweight LiDAR systems.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Smullin, L. D. & Fiocco, G. Optical echoes from the moon. Nature 194, 1267 (1962).
Christian, J. A. & Cryan, A. A survey of LiDAR technology and its use in spacecraft relative navigation. In Proc. AIAA Guidance, Navigation and Control Conference. 1â7 (American Institute of Aeronautics And Astronautics, 2013).
Royo, S. & Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 9, 4093 (2019).
Kaul, L., Zlot, R. & Bosse, M. Continuous-time three-dimensional mapping for micro aerical vehicles with a passively actuated rotating laser scanner. J. Field Robot. 33, 103â132 (2016).
Ham, Y., Han, K. K., Lin, J. J. & Goparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works. Visual. Eng. 4, 1 (2016).
LiDAR drives forwards. Nat. Photon. 12, 441 (2018).
Jiang, Y., Karpf, S. & Jalali, B. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nat. Photon. 14, 14â18 (2020).
Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 3451â351 (2017).
Na, Y. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photon. 14, 355â360 (2020).
Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887â891 (2018).
Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884â887 (2018).
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164â170 (2020).
Shuttleworth, J. AE Standards News: J3016 automated-driving graphic update. SAE Inernational https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic (2019).
Hecht, J. Lasers for LiDAR: FMCW lidar: an alternative for self-driving cars. LaserFocusWorld https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars (2019).
LiDAR for Automotive and Industrial Applications 2019: Market & Technology Report (Yole Développement, 2019).
Shpunt, A. & Erlich, R. Scanning depth engine. US patent 10,261,578 (2019).
Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742â760 (2019).
Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319â5325 (2016).
Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurfaces at 1550ânm with wide (>300°) phase tenability. Nano Lett. 18, 2957â2963 (2018).
Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407â413 (2017).
Lesina, A. C., Goodwill, D., Bernier, E., Ramunno, L. & Berini, P. Tunable plasmonic metasurfaces for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 27, 4700116 (2020).
Liberal, I., Li, Y. & Engheta, N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 7, 1117â1127 (2018).
Brière, G. et al. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 7, 1801271 (2019).
Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345â6352 (2017).
Lee, J. et al. Ultrafast electrically tunable polaritonic metausrfaces. Adv. Opt. Mater. 2, 1057â1063 (2014).
Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic IIIâV multiple quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).
Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).
Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257â260 (2019).
Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tenability. Nano Lett. 10, 4222â4227 (2010).
Cui, Y., Zhou, J., Tamma, V. A. & Park, W. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385â2393 (2012).
Gutruf, P. et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10, 133â141 (2016).
Reeves, J. B. et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Lett. 18, 2802â2806 (2018).
Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641â3645 (2017).
Ee, H.-S. & Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818â2823 (2016).
She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).
Wang, J., Zhang, G. & You, Z. Design rules for dense and rapid Lissajous scanning. Microsyst. Nanoeng. 6, 101 (2020).
Oshita, M., Takahashi, H., Ajiki, Y. & Kan, T. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photon. 7, 673â679 (2020).
Li, S.-Q. et al. Phase-only transmissive SLM based on tunable dielectric metasurfaces. Science 364, 1087â1090 (2019).
Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465â276 (2017).
Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050â3054 (2013).
Rensberg, J. et al. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett. 16, 1050â1055 (2016).
De Galarreta, C. R. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476â484 (2020).
Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).
Lei, D. Y., Appavoo, K., Sonnefraud, Y., Haglund, R. F. & Maier, S. A. Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. Opt. Express 35, 3988â3990 (2010).
Kaplan, G., Aydin, K. & Scheuer, J. Dynamically controlled plasmonic nano-antenna phase array utilizing vanadium dioxide. Opt. Mater. Exp. 5, 2513â2524 (2015).
Butakov, N. A. et al. Switchable plasmonic-dielectric resonators with metal-insulator transitions. ACS Photon. 5, 371â377 (2018).
Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881â4885 (2017).
Kim, S.-J. et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light. Nanoscale Horiz. 5, 1088â1095 (2020).
Savaliya, P. B., Gupta, N. & Dhawan, A. Steerable plasmonic nanoantennas: active beam steering of radiation patterns using phase change materials. Opt. Express 27, 31567â31586 (2019).
Gnecchi, S. & Jackson, C. A 1âÃâ16 SiPM array for automotive 3D imaging LiDAR systems. In International Image Sensor Workshop (IISW) 133â136 (International Image Sensor Society, 2017).
Ni, Y. et al. Metasurface for structured light projection over 120° field of view. Nano Lett. 20, 6719â6724 (2020).
Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light. Sci. Appl. 7, 63 (2018).
Chen, K. et al. 2Ï-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light. Opt. Express 28, 12331â12341 (2020).
Li, N. et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics 8, 1855â1861 (2019).
Jin, C. et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv. Photon. 1, 036001 (2019).
Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959â22965 (2019).
Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 17, 896â901 (2017).
Mahmood, N. et al. Twisted non-diffracting beams through all dielectric meta-axicon. Nanoscale 11, 20571â20578 (2019).
Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using lightâs orbital angular momentum. Science 341, 537â540 (2013).
Cvijetic, N., Milione, G., Ip, E. & Wang, T. Detecting lateral motion using lightâs orbital angular momentum. Sci. Rep. 5, 15422 (2015).
Dorrah, A. H., Zamboni-Rached, M. & Mojahedi, M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci. Appl. 7, 40 (2018).
Geng, J. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon. 3, 128â160 (2011).
Khaidarov, E. et al. Control of LED Emission with functional dielectric metasurfaces. Laser Photon. Rev. 14, 1900235 (2020).
Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photon. 14, 543â548 (2020).
Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125â130 (2020).
Wang, Q.-H. et al. On-chip generation of structured light via metasurface integrated vertical cavity surface emitting lasers. Laser Photon. Rev. 15, 2000385 (2021).
Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640â4645 (2018).
Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 39, 5512â5517 (2000).
Schuhler, N., Salvadé, Y., Lévêque, S., Dändliker, R. & Holzwarth, R. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 31, 3101â3103 (2006).
Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351â356 (2009).
Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369â374 (2020).
Davoyan, A. & Atwater, H. Perimeter-control architecture for optical phased arrays and metasurfaces. Phys. Rev. Appl. 14, 024038 (2020).
Dostart, N. et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica 7, 726â733 (2020).
Hutchison, D. N. et al. High-resolution aliasing-free optical beam steering. Optica 3, 887â890 (2016).
Komljenovic, T., Helkey, R., Coldren, L. & Bowers, J. E. Sparse aperiodic arrays for optical beam forming and LIDAR. Opt. Express 25, 2511â2528 (2017).
Shaltout, A. M. et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374â377 (2019).
Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).
Liu, Z. et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater. 32, 1904790 (2020).
Ma, W., Cheng, F., Xu, Y., Wen, Q. & Liu, Y. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).
Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570â6576 (2018).
Malkiel, I. et al. Plasmonic nanostructure design and characterizations via deep learning. Light. Sci. Appl. 7, 60 (2018).
So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041â1057 (2020).
So, S. & Rho, J. Designing nanophotonic structure using conditional-deep convolutional generative adversarial networks. Nanophotonics 8, 1255â1261 (2019).
Elsawy, M. M. R., Lanteri, S., Duvigneau, R., Fan, J. A. & Genevet, P. Numerical optimization methods for metasurfaces. Laser Photon. Rev. 14, 1900445 (2020).
She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573â1585 (2018).
Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep ultraviolet projection lithography. Nano Lett. 19, 8673â8682 (2019).
Li, N. et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics 9, 3071â3087 (2020).
Kim, K., Yoon, G., Baek, S., Rho, J. & Lee, H. Facile nanocasting of dielectric metasurfaces with sub-100ânm resolution. ACS Appl. Mater. Interfaces 11, 26109â26115 (2019).
Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).
Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314â5320 (2002).
Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549â554 (2007).
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220â226 (2018).
Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227â232 (2018).
Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205â209 (2020).
Ferrari, S., Carsten, S. & Wolfram, P. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725â1758 (2018).
Yang, Y. et al. Ferroelectric enhanced performance of GeSn/Ge dual-nanowire photodetector. Nano Lett. 20, 3872â3879 (2020).
Kuzmenko, K. et al. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors. Opt. Express 28, 1330â1344 (2020).
Katiyar, A. K., Thai, K. Y., Yun, W. S., Lee, J. & Ahn, J.-H. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv. 6, eabb0576 (2020).
Akselrod, G. M. Optics for automotive lidar: metasurface beam steering enables solid-state, high-performance lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14036818/metasurface-beam-steering-enables-solidstate-highperformance-lidar (2019).
Wallace, J. Lumotive and Himax collaborate on metasurface approach to beam steering for lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14039216/lumotive-and-himax-collaborate-on-metasurface-approach-to-beam-steering-for-lidar (2019).
Akselrod, G. M., Yang, Y. & Bowen, P. Tunable liquid crystal metasurfaces. US patent 10,665,953 (2020).
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69â75 (2021).
Yi, S. et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143â1147 (2018).
Lee, J., Kim, Y. J., Lee, K., Lee, S. & Kim, S. W. Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716â720 (2010).
Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135â142 (2017).
Acknowledgements
This work was financially supported by industry-university strategic grants funded by SL Corporation and LG Innotek, and the National Research Foundation (NRF) grants (grant numbers NRF-2019R1A2C3003129, NRF-2019R1A5A8080290, CAMM-2019M3A6B3030637, NRF-2018M3D1A1058998 and NRF-2015R1A5A1037668) funded by the Ministry of Science and ICT (MSIT), Republic of Korea. J.R. and P.G. acknowledge the KoreaâFrance Science and Technology Amicable Relationships programme (grant number NRF-2020K1A3A1A21024374) funded by the MSIT, Republic of Korea. P.G. and R.J.M. acknowledge the financial support from the European Research Council (ERC POC) under the European Unionâs Horizon 2020 research and innovation programme (Project i-LiDAR, grant number 874986). I.K. acknowledges the NRF Sejong Science fellowship (grant number NRF-2021R1C1C2004291) funded by the MSIT, Republic of Korea. J.J. acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation and the NRF fellowship (grant number NRF-2019R1A6A3A13091132) funded by the Ministry of Education, Republic of Korea. The authors thank J. Park, J. Kim and S. Jang for discussions.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Nanotechnology thanks Pierre Berini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kim, I., Martins, R.J., Jang, J. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508â524 (2021). https://doi.org/10.1038/s41565-021-00895-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41565-021-00895-3