Abstract
Many steps of RNA processing occur during transcription by RNA polymerases. Co-transcriptional activities are deemed commonplace in prokaryotes, in which the lack of membrane barriers allows mixing of all gene expression steps, from transcription to translation. In the past decade, an extraordinary level of coordination between transcription and RNA processing has emerged in eukaryotes. In this Review, we discuss recent developments in our understanding of co-transcriptional gene regulation in both eukaryotes and prokaryotes, comparing methodologies and mechanisms, and highlight striking parallels in how RNA polymerases interact with the machineries that act on nascent RNA. The development of RNA sequencing and imaging techniques that detect transient transcription and RNA processing intermediates has facilitated discoveries of transcription coordination with splicing, 3â²-end cleavage and dynamic RNA folding and revealed physical contacts between processing machineries and RNA polymerases. Such studies indicate that intron retention in a given nascent transcript can prevent 3â²-end cleavage and cause transcriptional readthrough, which is a hallmark of eukaryotic cellular stress responses. We also discuss how coordination between nascent RNA biogenesis and transcription drives fundamental aspects of gene expression in both prokaryotes and eukaryotes.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Miller, O. L. Jr, Hamkalo, B. A. & Thomas, C. A. Jr. Visualization of bacterial genes in action. Science 169, 392â395 (1970).
Cai, H. & Luse, D. S. Transcription initiation by RNA polymerase II in vitro. Properties of preinitiation, initiation, and elongation complexes. J. Biol. Chem. 262, 298â304 (1987).
Mougey, E. B. et al. The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev. 7, 1609â1619 (1993).
Dragon, F. et al. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417, 967â970 (2002).
Beyer, A. L. & Osheim, Y. N. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2, 754â765 (1988).
Osheim, Y. N., Miller, O. L. Jr. & Beyer, A. L. RNP particles at splice junction sequences on Drosophila chorion transcripts. Cell 43, 143â151 (1985).
Schärfen, L. & Neugebauer, K. M. Transcription regulation through nascent RNA folding. J. Mol. Biol. 433, 166975 (2021).
Salvail, H. & Breaker, R. R. Riboswitches. Curr. Biol. 33, R343âR348 (2023).
Spitale, R. C. & Incarnato, D. Probing the dynamic RNA structurome and its functions. Nat. Rev. Genet. 24, 178â196 (2023).
Tan, D., Marzluff, W. F., Dominski, Z. & Tong, L. Structure of histone mRNA stem-loop, human stem-loop binding protein, and 3â²hExo ternary complex. Science 339, 318â321 (2013).
Saldi, T., Fong, N. & Bentley, D. L. Transcription elongation rate affects nascent histone pre-mRNA folding and 3â² end processing. Genes Dev. 32, 297â308 (2018).
Johnson, G. E., Lalanne, J. B., Peters, M. L. & Li, G. W. Functionally uncoupled transcription-translation in Bacillus subtilis. Nature 585, 124â128 (2020).
Zhu, M., Mu, H., Han, F., Wang, Q. & Dai, X. Quantitative analysis of asynchronous transcription-translation and transcription processivity in Bacillus subtilis under various growth conditions. iScience 24, 103333 (2021).
Vargas-Blanco, D. A. & Shell, S. S. Regulation of mRNA stability during bacterial stress responses. Front. Microbiol. 11, 2111 (2020).
Herzel, L., Stanley, J. A., Yao, C. C. & Li, G. W. Ubiquitous mRNA decay fragments in E. coli redefine the functional transcriptome. Nucleic Acids Res. 50, 5029â5046 (2022).
Hör, J., Gorski, S. A. & Vogel, J. Bacterial RNA biology on a genome scale. Mol. Cell 70, 785â799 (2018).
Lalanne, J. B. et al. Evolutionary convergence of pathway-specific enzyme expression stoichiometry. Cell 173, 749â761.e38 (2018).
Sharma, C. M. et al. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464, 250â255 (2010).
Dar, D. et al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352, aad9822 (2016).
MejÃa-Almonte, C. et al. Redefining fundamental concepts of transcription initiation in bacteria. Nat. Rev. Genet. 21, 699â714 (2020).
Landick, R. Transcriptional pausing as a mediator of bacterial gene regulation. Annu. Rev. Microbiol. 75, 291â314 (2021).
Rogalska, M. E., Vivori, C. & Valcárcel, J. Regulation of pre-mRNA splicing: roles in physiology and disease, and therapeutic prospects. Nat. Rev. Genet. 24, 251â269 (2023).
Shenasa, H. & Bentley, D. L. Pre-mRNA splicing and its cotranscriptional connections. Trends Genet. 39, 672â685 (2023).
Marasco, L. E. & Kornblihtt, A. R. The physiology of alternative splicing. Nat. Rev. Mol. Cell Biol. 24, 242â254 (2023).
Mitschka, S. & Mayr, C. Context-specific regulation and function of mRNA alternative polyadenylation. Nat. Rev. Mol. Cell Biol. 23, 779â796 (2022).
Weixlbaumer, A., Grünberger, F., Werner, F. & Grohmann, D. Coupling of transcription and translation in Archaea: cues from the bacterial world. Front. Microbiol. 12, 661827 (2021).
Bernstein, J. A., Khodursky, A. B., Lin, P. H., Lin-Chao, S. & Cohen, S. N. Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc. Natl Acad. Sci. USA 99, 9697â9702 (2002).
Chen, H., Shiroguchi, K., Ge, H. & Xie, X. S. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol. Syst. Biol. 11, 781 (2015).
Moffitt, J. R., Pandey, S., Boettiger, A. N., Wang, S. & Zhuang, X. Spatial organization shapes the turnover of a bacterial transcriptome. eLife 5, e13065 (2016).
Proshkin, S., Rahmouni, A. R., Mironov, A. & Nudler, E. Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328, 504â508 (2010).
Vogel, U. & Jensen, K. F. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J. Bacteriol. 176, 2807â2813 (1994).
Zhu, M., Mori, M., Hwa, T. & Dai, X. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination. Nat. Microbiol. 4, 2347â2356 (2019).
Gowrishankar, J. & Harinarayanan, R. Why is transcription coupled to translation in bacteria? Mol. Microbiol. 54, 598â603 (2004).
Iost, I. & Dreyfus, M. The stability of Escherichia coli lacZ mRNA depends upon the simultaneity of its synthesis and translation. EMBO J. 14, 3252â3261 (1995).
Blaha, G. M. & Wade, J. T. Transcription-translation coupling in bacteria. Annu. Rev. Genet. 56, 187â205 (2022).
Burmann, B. M. et al. A NusE:NusG complex links transcription and translation. Science 328, 501â504 (2010).
Irastortza-Olaziregi, M. & Amster-Choder, O. Coupled transcription-translation in prokaryotes: an old couple with new surprises. Front. Microbiol. 11, 624830 (2020).
OâReilly, F. J. et al. In-cell architecture of an actively transcribing-translating expressome. Science 369, 554â557 (2020).
Louca, S., Mazel, F., Doebeli, M. & Parfrey, L. W. A census-based estimate of Earthâs bacterial and archaeal diversity. PloS Biol. 17, e3000106 (2019).
Iyer, S., Le, D., Park, B. R. & Kim, M. Distinct mechanisms coordinate transcription and translation under carbon and nitrogen starvation in Escherichia coli. Nat. Microbiol. 3, 741â748 (2018).
Vogel, U., Sørensen, M., Pedersen, S., Jensen, K. F. & Kilstrup, M. Decreasing transcription elongation rate in Escherichia coli exposed to amino acid starvation. Mol. Microbiol. 6, 2191â2200 (1992).
Chen, M. & Fredrick, K. Measures of single- versus multiple-round translation argue against a mechanism to ensure coupling of transcription and translation. Proc. Natl Acad. Sci. USA 115, 10774â10779 (2018).
Pani, B. & Nudler, E. Bacterial histones unveiled. Nat. Microbiol. 8, 1939â1941 (2023).
Hocher, A. et al. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat. Microbiol. 8, 2006â2019 (2023).
Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transertion) in bacterial chromosome segregation. Mol. Microbiol. 45, 17â29 (2002).
Bakshi, S., Choi, H. & Weisshaar, J. C. The spatial biology of transcription and translation in rapidly growing Escherichia coli. Front. Microbiol. 6, 636 (2015).
Gray, W. T. et al. Nucleoid size scaling and intracellular organization of translation across bacteria. Cell 177, 1632â1648.e20 (2019).
Al-Husini, N. et al. BR-bodies provide selectively permeable condensates that stimulate mRNA decay and prevent release of decay intermediates. Mol. Cell 78, 670â682.e8 (2020).
Sanamrad, A. et al. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. Proc. Natl Acad. Sci. USA 111, 11413â11418 (2014).
Stracy, M. et al. Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc. Natl Acad. Sci. USA 112, E4390âE4399 (2015).
Trinquier, A., Durand, S., Braun, F. & Condon, C. Regulation of RNA processing and degradation in bacteria. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194505 (2020).
Roberts, J. W. Mechanisms of bacterial transcription termination. J. Mol. Biol. 431, 4030â4039 (2019).
You, L. et al. Structural basis for intrinsic transcription termination. Nature 613, 783â789 (2023).
Said, N. et al. Steps toward translocation-independent RNA polymerase inactivation by terminator ATPase Ï. Science 371, eabd1673 (2021).
Molodtsov, V., Wang, C., Firlar, E., Kaelber, J. T. & Ebright, R. H. Structural basis of Rho-dependent transcription termination. Nature 614, 367â374 (2023).
Rashid, F. & Berger, J. Protein structure terminates doubt about how transcription stops. Nature 614, 237â238 (2023).
Kang, J. Y., Mishanina, T. V., Landick, R. & Darst, S. A. Mechanisms of transcriptional pausing in bacteria. J. Mol. Biol. 431, 4007â4029 (2019).
Vasilyev, N., Gao, A. & Serganov, A. Noncanonical features and modifications on the 5â²-end of bacterial sRNAs and mRNAs. Wiley Interdiscip. Rev. RNA 10, e1509 (2019).
Koslover, D. J. et al. The crystal structure of the Escherichia coli RNase E apoprotein and a mechanism for RNA degradation. Structure 16, 1238â1244 (2008).
Richards, J. & Belasco, J. G. Obstacles to scanning by RNase E govern bacterial mRNA lifetimes by hindering access to distal cleavage sites. Mol. Cell 74, 284â295.e5 (2019).
Dar, D. & Sorek, R. Extensive reshaping of bacterial operons by programmed mRNA decay. PloS Genet. 14, e1007354 (2018).
DeLoughery, A., Lalanne, J. B., Losick, R. & Li, G. W. Maturation of polycistronic mRNAs by the endoribonuclease RNase Y and its associated Y-complex in Bacillus subtilis. Proc. Natl Acad. Sci. USA 115, E5585âE5594 (2018).
Holmqvist, E. et al. Global RNA recognition patterns of post-transcriptional regulators Hfq and CsrA revealed by UV crosslinking in vivo. EMBO J. 35, 991â1011 (2016).
Doamekpor, S. K., Sharma, S., Kiledjian, M. & Tong, L. Recent insights into noncanonical 5â² capping and decapping of RNA. J. Biol. Chem. 298, 102171 (2022).
Jiao, X. et al. 5â² End nicotinamide adenine dinucleotide cap in human cells promotes RNA decay through DXO-mediated deNADding. Cell 168, 1015â1027.e1010 (2017).
Bird, J. G. et al. The mechanism of RNA 5â² capping with NAD+, NADH and desphospho-CoA. Nature 535, 444â447 (2016).
Cahová, H., Winz, M. L., Höfer, K., Nübel, G. & Jäschke, A. NAD captureSeq indicates NAD as a bacterial cap for a subset of regulatory RNAs. Nature 519, 374â377 (2015).
Julius, C. & Yuzenkova, Y. Noncanonical RNA-capping: discovery, mechanism, and physiological role debate. Wiley Interdiscip. Rev. RNA 10, e1512 (2019).
Vvedenskaya, I. O. et al. CapZyme-Seq comprehensively defines promoter-sequence determinants for RNA 5â² capping with NAD+. Mol. Cell 70, 553â564.e9 (2018).
Dar, D. & Sorek, R. High-resolution RNA 3â²-ends mapping of bacterial Rho-dependent transcripts. Nucleic Acids Res. 46, 6797â6805 (2018).
Kim, S. & Jacobs-Wagner, C. Effects of mRNA degradation and site-specific transcriptional pausing on protein expression noise. Biophys. J. 114, 1718â1729 (2018).
Yan, B., Boitano, M., Clark, T. A. & Ettwiller, L. SMRT-Cappable-seq reveals complex operon variants in bacteria. Nat. Commun. 9, 3676 (2018).
Bohne, A. V. The nucleoid as a site of rRNA processing and ribosome assembly. Front. Plant Sci. 5, 257 (2014).
Saito, K., Green, R. & Buskirk, A. R. Translational initiation in E. coli occurs at the correct sites genome-wide in the absence of mRNA-rRNA base-pairing. eLife 9, e55002 (2020).
Wee, L. M. et al. A trailing ribosome speeds up RNA polymerase at the expense of transcript fidelity via force and allostery. Cell 186, 1244â1262.e34 (2023).
Hao, Z. et al. Pre-termination transcription complex: structure and function. Mol. Cell 81, 281â292.e8 (2021).
Murayama, Y. et al. Structural basis of the transcription termination factor Rho engagement with transcribing RNA polymerase from Thermus thermophilus. Sci. Adv. 9, eade7093 (2023).
Hao, Z., Svetlov, V. & Nudler, E. Rho-dependent transcription termination: a revisionist view. Transcription 12, 171â181 (2021).
Song, E. et al. Transcriptional pause extension benefits the stand-by rather than catch-up Rho-dependent termination. Nucleic Acids Res. 51, 2778â2789 (2023).
Song, E. et al. Rho-dependent transcription termination proceeds via three routes. Nat. Commun. 13, 1663 (2022).
Mandell, Z. F. et al. Comprehensive transcription terminator atlas for Bacillus subtilis. Nat. Microbiol. 7, 1918â1931 (2022).
Mandell, Z. F., Zemba, D. & Babitzke, P. Factor-stimulated intrinsic termination: getting by with a little help from some friends. Transcription 13, 96â108 (2022).
Durand, S. & Condon, C. RNases and helicases in gram-positive bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0003-2017 (2018).
Mohanty, B. K. & Kushner, S. R. Enzymes involved in posttranscriptional RNA metabolism in gram-negative bacteria. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.RWR-0011-2017 (2018).
Li, R., Zhang, Q., Li, J. & Shi, H. Effects of cooperation between translating ribosome and RNA polymerase on termination efficiency of the Rho-independent terminator. Nucleic Acids Res. 44, 2554â2563 (2015).
Brandt, F. et al. The native 3D organization of bacterial polysomes. Cell 136, 261â271 (2009).
Saito, K. et al. Ribosome collisions induce mRNA cleavage and ribosome rescue in bacteria. Nature 603, 503â508 (2022).
Rodgers, M. L., OâBrien, B. & Woodson, S. A. Small RNAs and Hfq capture unfolded RNA target sites during transcription. Mol. Cell 83, 1489â1501.e5 (2023).
Machado de Amorim, A. & Chakrabarti, S. Assembly of multicomponent machines in RNA metabolism: a common theme in mRNA decay pathways. Wiley Interdiscip. Rev. RNA 13, e1684 (2022).
Keiler, K. C. Mechanisms of ribosome rescue in bacteria. Nat. Rev. Microbiol. 13, 285â297 (2015).
Kavita, K. & Breaker, R. R. Discovering riboswitches: the past and the future. Trends Biochem. Sci. 48, 119â141 (2023).
Zhang, Y. & Gross, C. A. Cold shock response in bacteria. Annu. Rev. Genet. 55, 377â400 (2021).
Buchser, R., Sweet, P., Anantharaman, A. & Contreras, L. RNAs as sensors of oxidative stress in bacteria. Annu. Rev. Chem. Biomol. Eng. 14, 265â281 (2023).
McManus, C. J. & Graveley, B. R. RNA structure and the mechanisms of alternative splicing. Curr. Opin. Genet. Dev. 21, 373â379 (2011).
Buratti, E. & Baralle, F. E. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell Biol. 24, 10505â10514 (2004).
Wachter, A. Riboswitch-mediated control of gene expression in eukaryotes. RNA Biol. 7, 67â76 (2010).
Martinez, N. M. et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol. Cell 82, 645â659.e9 (2022).
Zhou, K. I. et al. Regulation of co-transcriptional pre-mRNA splicing by m6A through the low-complexity protein hnRNPG. Mol. Cell 76, 70â81.e79 (2019).
Haussmann, I. U. et al. m6A potentiates Sxl alternative pre-mRNA splicing for robust Drosophila sex determination. Nature 540, 301â304 (2016).
Alpert, T., Herzel, L. & Neugebauer, K. M. Perfect timing: splicing and transcription rates in living cells. Wiley Interdiscip. Rev. RNA https://doi.org/10.1002/wrna.1401 (2017).
Neugebauer, K. M. Nascent RNA and the coordination of splicing with transcription. Cold Spring Harb. Perspect. Biol. 11, a032227 (2019).
Carrillo Oesterreich, F. et al. Splicing of nascent RNA coincides with intron exit from RNA polymerase II. Cell 165, 372â381 (2016).
Herzel, L., Straube, K. & Neugebauer, K. M. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res. 28, 1008â1019 (2018).
Zhang, M. Q. Statistical features of human exons and their flanking regions. Hum. Mol. Genet. 7, 919â932 (1998).
Reimer, K. A., Mimoso, C. A., Adelman, K. & Neugebauer, K. M. Co-transcriptional splicing regulates 3â² end cleavage during mammalian erythropoiesis. Mol. Cell 81, 998â1012.e7 (2021).
Sousa-LuÃs, R. et al. POINT technology illuminates the processing of polymerase-associated intact nascent transcripts. Mol. Cell 81, 1935â1950.e6 (2021).
Prudêncio, P., Savisaar, R., Rebelo, K., Martinho, R. G. & Carmo-Fonseca, M. Transcription and splicing dynamics during early Drosophila development. RNA 28, 139â161 (2022).
Zeng, Y. et al. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol. Cell 82, 4681â4699.e8 (2022).
Wan, Y. et al. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184, 2878â2895.e20 (2021).
Gildea, M. A., Dwyer, Z. W. & Pleiss, J. A. Transcript-specific determinants of pre-mRNA splicing revealed through in vivo kinetic analyses of the 1st and 2nd chemical steps. Mol. Cell 82, 2967â2981.e6 (2022).
Drexler, H. L., Choquet, K. & Churchman, L. S. Splicing kinetics and coordination revealed by direct nascent RNA sequencing through nanopores. Mol. Cell 77, 985â998.e8 (2020).
Drexler, H. L. et al. Revealing nascent RNA processing dynamics with nano-COP. Nat. Protoc. 16, 1343â1375 (2021).
Singh, J. & Padgett, R. A. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16, 1128â1133 (2009).
Altieri, J. A. C. & Hertel, K. J. The influence of 4-thiouridine labeling on pre-mRNA splicing outcomes. PloS ONE 16, e0257503 (2021).
Alfonso-Gonzalez, C. et al. Sites of transcription initiation drive mRNA isoform selection. Cell 186, 2438â2455.e22 (2023).
Fiszbein, A., Krick, K. S., Begg, B. E. & Burge, C. B. Exon-mediated activation of transcription starts. Cell 179, 1551â1565.e17 (2019).
Uriostegui-Arcos, M., Mick, S. T., Shi, Z., Rahman, R. & Fiszbein, A. Splicing activates transcription from weak promoters upstream of alternative exons. Nat. Commun. 14, 3435 (2023).
Bergfort, A. & Neugebauer, K. M. The promoter as a trip navigator: guiding alternative polyadenylation site destinations. Mol. Cell 83, 2395â2397 (2023).
Cramer, P., Pesce, C. G., Baralle, F. E. & Kornblihtt, A. R. Functional association between promoter structure and transcript alternative splicing. Proc. Natl Acad. Sci. USA 94, 11456â11460 (1997).
Schor, I. E., Rascovan, N., Pelisch, F., Alló, M. & Kornblihtt, A. R. Neuronal cell depolarization induces intragenic chromatin modifications affecting NCAM alternative splicing. Proc. Natl Acad. Sci. USA 106, 4325â4330 (2009).
Saldi, T., Cortazar, M. A., Sheridan, R. M. & Bentley, D. L. Coupling of RNA polymerase II transcription elongation with pre-mRNA splicing. J. Mol. Biol. 428, 2623â2635 (2016).
Godoy Herz, M. A. et al. Light regulates plant alternative splicing through the control of transcriptional elongation. Mol. Cell 73, 1066â1074.e3 (2019).
Muñoz, M. J. et al. DNA damage regulates alternative splicing through inhibition of RNA polymerase II elongation. Cell 137, 708â720 (2009).
Pandey, M., Stormo, G. D. & Dutcher, S. K. Alternative splicing during the Chlamydomonas reinhardtii cell cycle. G3 10, 3797â3810 (2020).
Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411â2414 (1995).
de la Mata, M., Lafaille, C. & Kornblihtt, A. R. First come, first served revisited: factors affecting the same alternative splicing event have different effects on the relative rates of intron removal. RNA 16, 904â912 (2010).
Tang, A. D. et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. Nat. Commun. 11, 1438 (2020).
Foord, C. et al. The variables on RNA molecules: concert or cacophony? Answers in long-read sequencing. Nat. Methods 20, 20â24 (2023).
Choquet, K. et al. Pre-mRNA splicing order is predetermined and maintains splicing fidelity across multi-intronic transcripts. Nat. Struct. Mol. Biol. 30, 1064â1076 (2023).
Melcák, I. & Raska, I. Structural organization of the pre-mRNA splicing commitment: a hypothesis. J. Struct. Biol. 117, 189â194 (1996).
Desterro, J., Bak-Gordon, P. & Carmo-Fonseca, M. Targeting mRNA processing as an anticancer strategy. Nat. Rev. Drug Discov. 19, 112â129 (2020).
Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496â506 (2013).
BoreikaitÄ, V. & Passmore, L. A. 3â²-End processing of eukaryotic mRNA: machinery, regulation, and impact on gene expression. Annu. Rev. Biochem. 92, 199â225 (2023).
Zhang, Z., Bae, B., Cuddleston, W. H. & Miura, P. Coordination of alternative splicing and alternative polyadenylation revealed by targeted long read sequencing. Nat. Commun. 14, 5506 (2023).
Sfaxi, R. et al. Post-transcriptional polyadenylation site cleavage maintains 3â²-end processing upon DNA damage. EMBO J. 42, e112358 (2023).
Geisberg, J. V., Moqtaderi, Z. & Struhl, K. The transcriptional elongation rate regulates alternative polyadenylation in yeast. eLife 9, e59810 (2020).
Goering, R. et al. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genom. 22, 476 (2021).
Yague-Sanz, C. et al. Nutrient-dependent control of RNA polymerase II elongation rate regulates specific gene expression programs by alternative polyadenylation. Genes Dev. 34, 883â897 (2020).
Geisberg, J. V. et al. Nucleotide-level linkage of transcriptional elongation and polyadenylation. eLife 11, e83153 (2022).
Carminati, M., RodrÃguez-Molina, J. B., Manav, M. C., Bellini, D. & Passmore, L. A. A direct interaction between CPF and RNA Pol II links RNA 3â² end processing to transcription. Mol. Cell 83, 4461â4478.e13 (2023).
Jenal, M. et al. The poly(A)-binding protein nuclear 1 suppresses alternative cleavage and polyadenylation sites. Cell 149, 538â553 (2012).
Lee, S. H. et al. Widespread intronic polyadenylation inactivates tumour suppressor genes in leukaemia. Nature 561, 127â131 (2018).
Berg, M. G. et al. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150, 53â64 (2012).
So, B. R. et al. A complex of U1 snRNP with cleavage and polyadenylation factors controls telescripting, regulating mRNA transcription in human cells. Mol. Cell 76, 590â599.e4 (2019).
Mimoso, C. A. & Adelman, K. U1 snRNP increases RNA Pol II elongation rate to enable synthesis of long genes. Mol. Cell 83, 1264â1279.e10 (2023).
Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 57, 341â348 (2015).
Rambout, X. et al. PGC-1α senses the CBC of pre-mRNA to dictate the fate of promoter-proximally paused RNAPII. Mol. Cell 83, 186â202.e11 (2023).
Wang, R., Zheng, D., Wei, L., Ding, Q. & Tian, B. Regulation of intronic polyadenylation by PCF11 impacts mRNA expression of long genes. Cell Rep. 26, 2766â2778.e6 (2019).
Kriner, M. A., Sevostyanova, A. & Groisman, E. A. Learning from the leaders: gene regulation by the transcription termination factor Rho. Trends Biochem. Sci. 41, 690â699 (2016).
De Crombrugghe, B., Adhya, S., Gottesman, M. A. X. & Pastan, I. R. A. Effect of Rho on transcription of bacterial operons. Nat. N. Biol. 241, 260â264 (1973).
Zhang, S. et al. Structure of a transcribing RNA polymerase II-U1 snRNP complex. Science 371, 305â309 (2021).
Dye, M. J., Gromak, N. & Proudfoot, N. J. Exon tethering in transcription by RNA polymerase II. Mol. Cell 21, 849â859 (2006).
Fong, N., Ohman, M. & Bentley, D. L. Fast ribozyme cleavage releases transcripts from RNA polymerase II and aborts co-transcriptional pre-mRNA processing. Nat. Struct. Mol. Biol. 16, 916â922 (2009).
Plaschka, C., Lin, P. C., Charenton, C. & Nagai, K. Prespliceosome structure provides insights into spliceosome assembly and regulation. Nature 559, 419â422 (2018).
Nojima, T. et al. RNA polymerase II phosphorylated on CTD serine 5 interacts with the spliceosome during co-transcriptional splicing. Mol. Cell 72, 369â379.e4 (2018).
Harlen, K. M. et al. Comprehensive RNA polymerase II interactomes reveal distinct and varied roles for each phospho-CTD residue. Cell Rep. 15, 2147â2158 (2016).
Alpert, T., Straube, K., Carrillo Oesterreich, F., Herzel, L. & Neugebauer, K. M. Widespread transcriptional readthrough caused by Nab2 depletion leads to chimeric transcripts with retained introns. Cell Rep. 33, 108324 (2020).
Couvillion, M. et al. Transcription elongation is finely tuned by dozens of regulatory factors. eLife 11, e78944 (2022).
Hluchý, M. et al. CDK11 regulates pre-mRNA splicing by phosphorylation of SF3B1. Nature 609, 829â834 (2022).
Chiu, A. C. et al. Transcriptional pause sites delineate stable nucleosome-associated premature polyadenylation suppressed by U1 snRNP. Mol. Cell 69, 648â663.e7 (2018).
Zamft, B., Bintu, L., Ishibashi, T. & Bustamante, C. Nascent RNA structure modulates the transcriptional dynamics of RNA polymerases. Proc. Natl Acad. Sci. USA 109, 8948â8953 (2012).
Turowski, T. W. et al. Nascent transcript folding plays a major role in determining RNA polymerase elongation rates. Mol. Cell 79, 488â503.e11 (2020).
Vlaming, H., Mimoso, C. A., Field, A. R., Martin, B. J. E. & Adelman, K. Screening thousands of transcribed coding and non-coding regions reveals sequence determinants of RNA polymerase II elongation potential. Nat. Struct. Mol. Biol. 29, 613â620 (2022).
Fong, N., Sheridan, R. M., Ramachandran, S. & Bentley, D. L. The pausing zone and control of RNA polymerase II elongation by Spt5: implications for the pause-release model. Mol. Cell 82, 3632â3645.e4 (2022).
Schwartz, S., Meshorer, E. & Ast, G. Chromatin organization marks exon-intron structure. Nat. Struct. Mol. Biol. 16, 990â995 (2009).
Hodges, C., Bintu, L., Lubkowska, L., Kashlev, M. & Bustamante, C. Nucleosomal fluctuations govern the transcription dynamics of RNA polymerase II. Science 325, 626â628 (2009).
Bieberstein, N. I., Carrillo Oesterreich, F., Straube, K. & Neugebauer, K. M. First exon length controls active chromatin signatures and transcription. Cell Rep. 2, 62â68 (2012).
Fuchs, G. et al. 4sUDRB-seq: measuring genomewide transcriptional elongation rates and initiation frequencies within cells. Genome Biol. 15, R69 (2014).
Sheridan, R. M., Fong, N., DâAlessandro, A. & Bentley, D. L. Widespread backtracking by RNA Pol II is a major effector of gene activation, 5â² pause release, termination, and transcription elongation rate. Mol. Cell 73, 107â118.e4 (2019).
Carrillo Oesterreich, F., Preibisch, S. & Neugebauer, K. M. Global analysis of nascent RNA reveals transcriptional pausing in terminal exons. Mol. Cell 40, 571â581 (2010).
Mayer, A. et al. Native elongating transcript sequencing reveals human transcriptional activity at nucleotide resolution. Cell 161, 541â554 (2015).
Chathoth, K. T., Barrass, J. D., Webb, S. & Beggs, J. D. A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol. Cell 53, 779â790 (2014).
Alexander, R. D. et al. RiboSys, a high-resolution, quantitative approach to measure the in vivo kinetics of pre-mRNA splicing and 3â²-end processing in Saccharomyces cerevisiae. RNA 16, 2570â2580 (2010).
Li, M. Calculating the most likely intron splicing orders in S. pombe, fruit fly, Arabidopsis thaliana, and humans. BMC Bioinform. 21, 478 (2020).
Gohr, A., Iñiguez, L. P., Torres-Méndez, A., Bonnal, S. & Irimia, M. Insplico: effective computational tool for studying splicing order of adjacent introns genome-wide with short and long RNA-seq reads. Nucleic Acids Res. 51, e56 (2023).
Kim, S. W. et al. Widespread intra-dependencies in the removal of introns from human transcripts. Nucleic Acids Res. 45, 9503â9513 (2017).
Deng, Y., Shi, J., Ran, Y., Xiang, A. P. & Yao, C. A potential mechanism underlying U1 snRNP inhibition of the cleavage step of mRNA 3â² processing. Biochem. Biophys. Res. Commun. 530, 196â202 (2020).
Singh, G. et al. The cellular EJC interactome reveals higher-order mRNP structure and an EJC-SR protein nexus. Cell 151, 750â764 (2012).
Pacheco-Fiallos, B. et al. mRNA recognition and packaging by the human transcription-export complex. Nature 616, 828â835 (2023).
Zhu, Y. et al. Molecular mechanisms for CFIm-mediated regulation of mRNA alternative polyadenylation. Mol. Cell 69, 62â74.e4 (2018).
Müller-McNicoll, M. et al. SR proteins are NXF1 adaptors that link alternative RNA processing to mRNA export. Genes Dev. 30, 553â566 (2016).
Hossain, M. A. et al. Posttranscriptional regulation of Gcr1 expression and activity is crucial for metabolic adjustment in response to glucose availability. Mol. Cell 62, 346â358 (2016).
Martin Anduaga, A. et al. Thermosensitive alternative splicing senses and mediates temperature adaptation in Drosophila. eLife 8, e44642 (2019).
Haltenhof, T. et al. A conserved kinase-based body-temperature sensor globally controls alternative splicing and gene expression. Mol. Cell 78, 57â69.e4 (2020).
Neumann, A. et al. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome. EMBO Rep. 21, e51369 (2020).
PreuÃner, M. et al. Body temperature cycles control rhythmic alternative splicing in mammals. Mol. Cell 67, 433â446.e4 (2017).
Meyer, M., Plass, M., Pérez-Valle, J., Eyras, E. & Vilardell, J. Deciphering 3â²ss selection in the yeast genome reveals an RNA thermosensor that mediates alternative splicing. Mol. Cell 43, 1033â1039 (2011).
Gahura, O., Hammann, C., Valentová, A., Půta, F. & Folk, P. Secondary structure is required for 3â² splice site recognition in yeast. Nucleic Acids Res. 39, 9759â9767 (2011).
Broft, P., Rosenkranz, R. R. E., Schleiff, E., Hengesbach, M. & Schwalbe, H. Structural analysis of temperature-dependent alternative splicing of HsfA2 pre-mRNA from tomato plants. RNA Biol. 19, 266â278 (2022).
Lin, J., Shi, J., Zhang, Z., Zhong, B. & Zhu, Z. Plant AFC2 kinase desensitizes thermomorphogenesis through modulation of alternative splicing. iScience 25, 104051 (2022).
Rosa-Mercado, N. A. & Steitz, J. A. Who let the DoGs out? â biogenesis of stress-induced readthrough transcripts. Trends Biochem. Sci. 47, 206â217 (2022).
Vilborg, A., Passarelli, M. C., Yario, T. A., Tycowski, K. T. & Steitz, J. A. Widespread inducible transcription downstream of human genes. Mol. Cell 59, 449â461 (2015).
Grosso, A. R. et al. Pervasive transcription read-through promotes aberrant expression of oncogenes and RNA chimeras in renal carcinoma. eLife 4, e09214 (2015).
Rutkowski, A. J. et al. Widespread disruption of host transcription termination in HSV-1 infection. Nat. Commun. 6, 7126 (2015).
Rosa-Mercado, N. A. et al. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcription despite widespread transcriptional repression. Mol. Cell 81, 502â513.e4 (2021).
Hadar, S., Meller, A., Saida, N. & Shalgi, R. Stress-induced transcriptional readthrough into neighboring genes is linked to intron retention. iScience 25, 105543 (2022).
Morgan, M., Shiekhattar, R., Shilatifard, A. & Lauberth, S. M. Itâs a DoG-eat-DoG world â altered transcriptional mechanisms drive downstream-of-gene (DoG) transcript production. Mol. Cell 82, 1981â1991 (2022).
Vilborg, A. et al. Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proc. Natl Acad. Sci. USA 114, E8362âE8371 (2017).
Urso, S. J., Sathaseevan, A., Brent Derry, W. & Lamitina, T. Regulation of the hypertonic stress response by the 3â² mRNA cleavage and polyadenylation complex. Genetics 224, iyad051 (2023).
Nevins, J. R. & Darnell, J. E. Jr. Steps in the processing of Ad2 mRNA: poly(A)+ nuclear sequences are conserved and poly(A) addition precedes splicing. Cell 15, 1477â1493 (1978).
Workman, R. E. et al. Nanopore native RNA sequencing of a human poly(A) transcriptome. Nat. Methods 16, 1297â1305 (2019).
Boutz, P. L., Bhutkar, A. & Sharp, P. A. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev. 29, 63â80 (2015).
Liu, Z. et al. In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants. Genome Biol. 22, 11 (2021).
Kumar, J. et al. Quantitative prediction of variant effects on alternative splicing in MAPT using endogenous pre-messenger RNA structure probing. eLife 11, e73888 (2022).
Tomezsko, P. J. et al. Determination of RNA structural diversity and its role in HIV-1 RNA splicing. Nature 582, 438â442 (2020).
McNulty, R. et al. Probe-based bacterial single-cell RNA sequencing predicts toxin regulation. Nat. Microbiol. 8, 934â945 (2023).
Homberger, C., Hayward, R. J., Barquist, L. & Vogel, J. Improved bacterial single-cell RNA-Seq through automated MATQ-seq and Cas9-based removal of rRNA reads. mBio 14, e0355722 (2023).
Ma, P. et al. Bacterial droplet-based single-cell RNA-seq reveals antibiotic-associated heterogeneous cellular states. Cell 186, 877â891.e14 (2023).
Kuchina, A. et al. Microbial single-cell RNA sequencing by split-pool barcoding. Science 371, eaba5257 (2021).
Blattman, S. B., Jiang, W., Oikonomou, P. & Tavazoie, S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat. Microbiol. 5, 1192â1201 (2020).
Imdahl, F., Vafadarnejad, E., Homberger, C., Saliba, A.-E. & Vogel, J. Single-cell RNA-sequencing reports growth-condition-specific global transcriptomes of individual bacteria. Nat. Microbiol. 5, 1202â1206 (2020).
Brennan, M. A. & Rosenthal, A. Z. Single-cell RNA sequencing elucidates the structure and organization of microbial communities. Front. Microbiol. 12, 713128 (2021).
Herzel, L., Ottoz, D. S. M., Alpert, T. & Neugebauer, K. M. Splicing and transcription touch base: co-transcriptional spliceosome assembly and function. Nat. Rev. Mol. Cell Biol. 18, 637â650 (2017).
Guo, Y. E. et al. Pol II phosphorylation regulates a switch between transcriptional and splicing condensates. Nature 572, 543â548 (2019).
Carpousis, A. J., Campo, N., Hadjeras, L. & Hamouche, L. Compartmentalization of RNA degradosomes in bacteria controls accessibility to substrates and ensures concerted degradation of mRNA to nucleotides. Annu. Rev. Microbiol. 76, 533â552 (2022).
Montero Llopis, P. et al. Spatial organization of the flow of genetic information in bacteria. Nature 466, 77â81 (2010).
Nandana, V. & Schrader, J. M. Roles of liquid-liquid phase separation in bacterial RNA metabolism. Curr. Opin. Microbiol. 61, 91â98 (2021).
Bandyra, K. J., Bouvier, M., Carpousis, A. J. & Luisi, B. F. The social fabric of the RNA degradosome. Biochim. Biophys. Acta 1829, 514â522 (2013).
Valkenburg, J. A. & Woldringh, C. L. Phase separation between nucleoid and cytoplasm in Escherichia coli as defined by immersive refractometry. J. Bacteriol. 160, 1151â1157 (1984).
Abbondanzieri, E. A. & Meyer, A. S. More than just a phase: the search for membraneless organelles in the bacterial cytoplasm. Curr. Genet. 65, 691â694 (2019).
Milo, R. & Phillips, R. Cell Biology by the Numbers 1st edn (Garland Science, 2015).
Bakshi, S., Siryaporn, A., Goulian, M. & Weisshaar, J. C. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85, 21â38 (2012).
Barrass, J. D. et al. Transcriptome-wide RNA processing kinetics revealed using extremely short 4tU labeling. Genome Biol. 16, 282 (2015).
Bedi, K. et al. Co-transcriptional splicing efficiencies differ within genes and between cell types. RNA 27, 829â840 (2021).
Coulon, A. et al. Kinetic competition during the transcription cycle results in stochastic RNA processing. eLife 3, e03939 (2014).
Eser, P. et al. Determinants of RNA metabolism in the Schizosaccharomyces pombe genome. Mol. Syst. Biol. 12, 857 (2016).
Görnemann, J., Kotovic, K. M., Hujer, K. & Neugebauer, K. M. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19, 53â63 (2005).
Huranová, M. et al. The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. J. Cell Biol. 191, 75â86 (2010).
Lacadie, S. A. & Rosbash, M. Cotranscriptional spliceosome assembly dynamics and the role of U1 snRNA:5â²ss base pairing in yeast. Mol. Cell 19, 65â75 (2005).
Lacadie, S. A., Tardiff, D. F., Kadener, S. & Rosbash, M. In vivo commitment to yeast cotranscriptional splicing is sensitive to transcription elongation mutants. Genes Dev. 20, 2055â2066 (2006).
Martin, R. M., Rino, J., Carvalho, C., Kirchhausen, T. & Carmo-Fonseca, M. Live-cell visualization of pre-mRNA splicing with single-molecule sensitivity. Cell Rep. 4, 1144â1155 (2013).
Rabani, M. et al. Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nat. Biotechnol. 29, 436â442 (2011).
Rabani, M. et al. High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell 159, 1698â1710 (2014).
Schmidt, U. et al. Real-time imaging of cotranscriptional splicing reveals a kinetic model that reduces noise: implications for alternative splicing regulation. J. Cell Biol. 193, 819â829 (2011).
Tardiff, D. F. & Rosbash, M. Arrested yeast splicing complexes indicate stepwise snRNP recruitment during in vivo spliceosome assembly. RNA 12, 968â979 (2006).
Windhager, L. et al. Ultrashort and progressive 4sU-tagging reveals key characteristics of RNA processing at nucleotide resolution. Genome Res. 22, 2031â2042 (2012).
Zeisel, A. et al. Coupled pre-mRNA and mRNA dynamics unveil operational strategies underlying transcriptional responses to stimuli. Mol. Syst. Biol. 7, 529 (2011).
Wilson, K. S. & von Hippel, P. H. Transcription termination at intrinsic terminators: the role of the RNA hairpin. Proc. Natl Acad. Sci. USA 92, 8793â8797 (1995).
Watters, K. E., Strobel, E. J., Yu, A. M., Lis, J. T. & Lucks, J. B. Cotranscriptional folding of a riboswitch at nucleotide resolution. Nat. Struct. Mol. Biol. 23, 1124â1131 (2016).
Incarnato, D. et al. In vivo probing of nascent RNA structures reveals principles of cotranscriptional folding. Nucleic Acids Res. 45, 9716â9725 (2017).
Yu, A. M. et al. Computationally reconstructing cotranscriptional RNA folding from experimental data reveals rearrangement of non-native folding intermediates. Mol. Cell 81, 870â883.e10 (2021).
Wang, X. W., Liu, C. X., Chen, L. L. & Zhang, Q. C. RNA structure probing uncovers RNA structure-dependent biological functions. Nat. Chem. Biol. 17, 755â766 (2021).
Zubradt, M. et al. DMS-MaPseq for genome-wide or targeted RNA structure probing in vivo. Nat. Methods 14, 75â82 (2017).
Siegfried, N. A., Busan, S., Rice, G. M., Nelson, J. A. & Weeks, K. M. RNA motif discovery by SHAPE and mutational profiling (SHAPE-MaP). Nat. Methods 11, 959â965 (2014).
Carlile, T. M. et al. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515, 143â146 (2014).
Dai, Q. et al. Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat. Biotechnol. 41, 344â354 (2023).
Lewis, C. J. T., Pan, T. & Kalsotra, A. RNA modifications and structures cooperate to guide RNAâprotein interactions. Nat. Rev. Mol. Cell Biol. 18, 202â210 (2017).
Begik, O., Mattick, J. S. & Novoa, E. M. Exploring the epitranscriptome by native RNA sequencing. RNA 28, 1430â1439 (2022).
Stephenson, W. et al. Direct detection of RNA modifications and structure using single-molecule nanopore sequencing. Cell Genom. 2, 100097 (2022).
Sun, L. et al. RNA structure maps across mammalian cellular compartments. Nat. Struct. Mol. Biol. 26, 322â330 (2019).
Saldi, T., Riemondy, K., Erickson, B. & Bentley, D. L. Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing. Mol. Cell 81, 1789â1801.e5 (2021).
Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: the teenage years. Nat. Rev. Genet. 20, 631â656 (2019).
Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133â138 (2009).
Wang, Y., Zhao, Y., Bollas, A., Wang, Y. & Au, K. F. Nanopore sequencing technology, bioinformatics and applications. Nat. Biotechnol. 39, 1348â1365 (2021).
Mikheenko, A., Prjibelski, A. D., Joglekar, A. & Tilgner, H. U. Sequencing of individual barcoded cDNAs using Pacific Biosciences and Oxford Nanopore Technologies reveals platform-specific error patterns. Genome Res. 32, 726â737 (2022).
Grünberger, F., Ferreira-Cerca, S. & Grohmann, D. Nanopore sequencing of RNA and cDNA molecules in Escherichia coli. RNA 28, 400â417 (2022).
Al Kadi, M. et al. Direct RNA sequencing unfolds the complex transcriptome of Vibrio parahaemolyticus. mSystems 6, e0099621 (2021).
Ju, X., Li, D. & Liu, S. Full-length RNA profiling reveals pervasive bidirectional transcription terminators in bacteria. Nat. Microbiol. 4, 1907â1918 (2019).
Reimer, K. A. & Neugebauer, K. M. Preparation of mammalian nascent RNA for long read sequencing. Curr. Protoc. Mol. Biol. 133, e128 (2020).
Nojima, T., Gomes, T., Carmo-Fonseca, M. & Proudfoot, N. J. Mammalian NET-seq analysis defines nascent RNA profiles and associated RNA processing genome-wide. Nat. Protoc. 11, 413â428 (2016).
Nojima, T. et al. Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell 161, 526â540 (2015).
Martins, S. B. et al. Spliceosome assembly is coupled to RNA polymerase II dynamics at the 3â² end of human genes. Nat. Struct. Mol. Biol. 18, 1115â1123 (2011).
Janicki, S. M. et al. From silencing to gene expression: real-time analysis in single cells. Cell 116, 683â698 (2004).
Shav-Tal, Y. et al. Dynamics of single mRNPs in nuclei of living cells. Science 304, 1797â1800 (2004).
Leidescher, S. et al. Spatial organization of transcribed eukaryotic genes. Nat. Cell Biol. 24, 327â339 (2022).
Barutcu, A. R. et al. Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol. Cell 82, 1035â1052.e9 (2022).
Tammer, L. et al. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol. Cell 82, 1021â1034.e8 (2022).
Acknowledgements
The authors would like to thank J. Steitz for her many insightful comments on the manuscript and N. Said for the helpful discussions. The authors are grateful for the support from the National Institutes of Health (R01 GM112766 and R01 GM140735 to K.M.N). The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. M.S. is a recipient of a Gruber Science Fellowship, J.G. is a recipient of an NIH F31 predoctoral fellowship (F31NS129248), and L.S. is a recipient of a predoctoral fellowship from the American Heart Association (908949).
Author information
Authors and Affiliations
Contributions
All authors contributed to researching data for the article, writing, editing and artwork. M.S., L.H. and K.M.N. contributed to the conceptualization and additional editing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Molecular Cell Biology thanks Maria Carmo-Fonseca and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- 3â² splice sites
-
The 3â²-most sequence of each intron, which, along with the polypyrimidine tract is recognized by U2AF.
- 5â² splice site
-
The 5â²-most sequence of each intron, harbouring approximately 6ânt complementarity to the 5â² end of U1 snRNA, thereby enabling its binding for intron identification and, later during splicing, interactions with U6 snRNA.
- Alternative cleavage and polyadenylation
-
(APA). Use of alternative polyadenylation sites to generate transcript isoforms from the same gene, which can give rise to protein isoforms with distinct C-termini or contribute to transcript regulation through changes to 3â² untranslated regions.
- Alternative splicing
-
(AS). The process of generating multiple mRNA isoforms from a single gene by using different combinations of splice sites, for example, intron retention, exon skipping, and alternative 5â² splice site or 3â² splice site usage.
- Backtracking
-
Transcription pausing through diffusive movement of RNA polymerase along template DNA, maintained by feeding nascent RNA through a channel at the front of the enzyme.
- Branchpoint
-
Short cis-regulatory element containing an adenine base that is involved in lariat formation during the first step of pre-mRNA splicing; resides within the 3â² portion of the intron, usually near and upstream of another cis-regulatory element, the polypyrimidine tract.
- cis-Elements required for translation initiation
-
For most coding sequences in bacteria, these are the ShineâDalgarno sequence, an A-rich sequence upstream of the start codon, and the start codon itself.
- Cleavage and polyadenylation
-
(CPA). Endonucleolytic cleavage followed by polyadenylation of the transcript by the CPC while Pol II continues transcription until termination downstream.
- Cleavage and polyadenylation complex
-
(CPC). Macromolecular protein complex that binds to cis-regulatory elements involved in 3â²-end formation of eukaryotic mRNAs and facilitates its coupling to Pol II.
- Degradosome
-
Protein complex containing RNA degradation enzymes such as endonucleases and exonucleases, helicases and often also metabolic enzymes.
- Exon definition
-
Definition of the 3â²Â splice site of the intron upstream of a short exon and of the 5â²Â splice sites of the intron downstream of the same short exon, usually through the binding of exon sequences by splicing factors.
- Exon junction complex
-
(EJC). Macromolecular protein complex that forms at exonâexon junctions after splicing is completed and regulates post-transcriptional processes.
- Intrinsic transcription terminators
-
RNA stemâloops associated with A-tracts and U-tracts in nascent RNA that cause transcription termination of bacterial RNA polymerase.
- Nascent elongating transcript sequencing
-
(NET-seq). A method that sequences the 3â² end of all RNAs that co-purify with RNA polymerase, thereby indicating the position of all RNA polymerase holoenzymes that have initiated transcription.
- Nucleoid
-
Part of the bacterial cell plasm that contains most of the genomic DNA, nucleoid-associated structural proteins and components of the gene expression and replication machinery.
- Polyadenylation site
-
The signal for polyadenylation (AAUAAA in humans) is read by the cleavage and polyadenylation specificity factor (CPSF), upon which the cleavage and CPC is assembled and which releases the nascent transcript from the polymerase and polyadenylates it.
- Polypyrimidine tract
-
An approximately 15â20-nt-long region of pre-mRNA located near the 3â² end of introns that is rich in pyrimidine bases (that is, cytosine and uracil) and promotes spliceosome assembly by serving as a binding site for the spliceosome component U2AF.
- Polypyrimidine tract-binding protein
-
(PTB). A protein that binds to polypyrimidine tracts within introns and negatively regulates pre-mRNA splicing.
- Precision run-on sequencing
-
(PRO-eq). A method that determines the density of elongating RNA polymerases through the addition of a single biotinylated nucleotide (or BrUTP), which can be used to select the nascent RNA, obtain short reads and map the 3â²-end and polymerase position.
- Recursive splicing
-
A process by which a long intron is removed in multiple smaller pieces rather than as a single unit.
- Rho
-
Bacterial homohexameric RNA helicase and chaperone whose binding to nascent RNAs, often between not-closely trailing ribosomes and the RNA polymerase, can lead to transcription termination.
- Runaway transcription
-
Transcript elongation is substantially faster than translation and, thus, the RNA polymerase outpaces ribosomes, generating âslackâ of nascent RNA in between the two molecular machines. First experimentally detected in B. subtilis, it also tends to occur in other bacteria.
- Serineâarginine-rich proteins
-
A family of protein splicing regulators that contain one or two RNA-recognition motifs and a serineâarginine-rich domain.
- Small RNA
-
(sRNA). Regulatory short RNAs (<200ânt) in bacteria that can affect all steps of prokaryotic gene expression, including secondary-structure formation.
- Spliceosomes
-
Multi-megadalton molecular machines composed of the small nuclear ribonucleoproteins U1, U2, U4, U5 and U6 and of associated proteins, which catalyse the removal of introns from pre-mRNA.
- Tight transcriptionâtranslation coupling
-
The first translating ribosome on nascent RNA is closely trailing the RNA polymerase, possibly even physically interacting with it; tight coupling has been the core model for co-transcriptional translation and is based on work in E. coli.
- Transcription polarity
-
Decline (5â² to 3â²) of RNA signal across operons caused by transcription termination within operons at varying sites, for example, through Rho-dependent termination.
- Transient transcriptome sequencing
-
(TT-seq). A method that detects newly synthesized RNA by metabolic incorporation of 4sU in live cells and focusing on the proportion of transcripts that have been synthesized in the labelling period.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shine, M., Gordon, J., Schärfen, L. et al. Co-transcriptional gene regulation in eukaryotes and prokaryotes. Nat Rev Mol Cell Biol 25, 534â554 (2024). https://doi.org/10.1038/s41580-024-00706-2
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41580-024-00706-2
This article is cited by
-
Steering research on mRNA splicing in cancer towards clinical translation
Nature Reviews Cancer (2024)