Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Building genomic capacity for precision health in Africa

Abstract

The African continent is poised to have a pivotal role in the global population landscape, with the United Nations projecting a population of 2.5 billion (more than 25% of the global population) by 2050. Amid this demographic shift, Africa faces a unique healthcare challenge—navigating a complex landscape of infectious and non-communicable diseases. This necessitates a departure from the conventional ‘one-size-fits-all’ medical model toward precision approaches that are efficient and sustainable. Genomic capacity is a pillar of precision health; however, access to up-to-date genetic testing in African countries is limited, compounded by a startling lack of representation of data from populations of African descent in gene discovery studies. In this Review, we delve into the challenges impeding the development of genomic capacity in Africa, such as the lack of electronic clinical and epidemiological records, infrastructural challenges, high supply chain costs and the ‘dependency trap’ that jeopardizes long-term sustainability. We emphasize the need for strategies hinged on true partnerships, robust infrastructure, workforce development and well-crafted policies. Finally, we outline recent progress and existing initiatives that should be considered as role models for future capacity-building initiatives.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The dependency trap of the African continent.

Similar content being viewed by others

References

  1. United Nations. World Population Prospects 2017. Department of Economic and Social Affairs, United Nations, New York, 1–47 (2017).

  2. Bigna, J. J. & Noubiap, J. J. The rising burden of non-communicable diseases in sub-Saharan Africa. Lancet Glob. Health 7, e1295–e1296 (2019).

    Article  PubMed  Google Scholar 

  3. Borecki, I. B. & Province, M. A. Linkage and association: basic concepts. Adv. Genet. 60, 51–74 (2008).

    Article  PubMed  Google Scholar 

  4. Beltrame, M. H., Rubel, M. A. & Tishkoff, S. A. Inferences of African evolutionary history from genomic data. Curr. Opin. Genet. Dev. 41, 159–166 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fan, S. et al. Whole-genome sequencing reveals a complex African population demographic history and signatures of local adaptation. Cell 186, 923–939 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tishkoff, S. A. et al. The genetic structure and history of Africans and African Americans. Science 324, 1035–1044 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mills, M. C. & Rahal, C. The GWAS Diversity Monitor tracks diversity by disease in real time. Nat. Genet. 52, 242–243 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Fitipaldi, H. & Franks, P. W. Ethnic, gender and other sociodemographic biases in genome-wide association studies for the most burdensome non-communicable diseases: 2005–2022. Hum. Mol. Genet. 32, 520–532 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Olusanya, B. O., Neumann, K. J. & Saunders, J. E. The global burden of disabling hearing impairment: a call to action. Bull. World Health Organ. 92, 367–373 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Walls, W. D. & Azaiez, H. & Smith, R. Hereditary Hearing Loss Homepage. https://hereditaryhearingloss.org/ (accessed January 2024).

  11. Del Castillo, F. J. & Del Castillo, I. DFNB1 non-syndromic hearing impairment: diversity of mutations and associated phenotypes. Front. Mol. Neurosci. 10, 428 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Chan, D. K. & Chang, K. W. GJB2-associated hearing loss: systematic review of worldwide prevalence, genotype, and auditory phenotype. Laryngoscope 124, E34–E53 (2014).

    Article  PubMed  Google Scholar 

  13. Adhikary, B. et al. Spectrum and frequency of GJB2, GJB6 and SLC26A4 gene mutations among nonsyndromic hearing loss patients in eastern part of India. Gene 573, 239–245 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Wonkam, E. T. et al. GJB2 and GJB6 mutations in hereditary recessive non-syndromic hearing impairment in Cameroon. Genes 10, 844 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wonkam, A., Manyisa, N., Bope, C. D., Dandara, C. & Chimusa, E. R. Whole exome sequencing reveals pathogenic variants in MYO3A, MYO15A and COL9A3 and differential frequencies in ancestral alleles in hearing impairment genes among individuals from Cameroon. Hum. Mol. Genet. 29, 3729–3743 (2020).

    Article  CAS  PubMed Central  Google Scholar 

  16. Wonkam, A. et al. Exome sequencing of families from Ghana reveals known and candidate hearing impairment genes. Commun. Biol. 5, 369 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. World Health Organization. Fact sheet cancer. http://www.who.int/mediacentre/factsheets/fs297/en/ (2022).

  18. International Agency for Research on Cancer, World Health Organization. Global Cancer Observatory, Fact sheet all cancers. Cancer Today, GLOBOCAN 149, 778–789 (2022).

  19. Ansari-Pour, N. et al. Whole-genome analysis of Nigerian patients with breast cancer reveals ethnic-driven somatic evolution and distinct genomic subtypes. Nat. Commun. 12, 6946 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okoturo, E. Genetic determinants of cancers in Sub-Saharan African-based populations: a systematic review. Afr. J. Biomed. Res. 24, 311–317 (2021).

    Google Scholar 

  21. Rotimi, S. O., Rotimi, O. A. & Salhia, B. A review of cancer genetics and genomics studies in Africa. Front. Oncol. 10, 606400 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Thomson, A. M. et al. Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000–2021: a systematic analysis from the Global Burden of Disease Study 2021. Lancet Haematol. 10, e585–e599 (2023).

    Article  Google Scholar 

  23. Kato, G. J. et al. Sickle cell disease. Nat. Rev. Dis. Primers 4, 18010 (2018).

    Article  PubMed  Google Scholar 

  24. Luzzatto, L. Sickle cell anaemia and malaria. Mediterr. J. Hematol. Infect. Dis. 4, e2012065 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rayner, B. L., Jones, E. S. W., Davidson, B. & Wearne, N. Advances in chronic kidney disease in Africa. Appl. Sci. 13, 4924 (2023).

    Article  CAS  Google Scholar 

  26. Genovese, G. et al. Association of trypanolytic ApoL1 variants with kidney disease in African Americans. Science 329, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hung, R. K. Y. et al. Genetic variants of APOL1 are major determinants of kidney failure in people of african ancestry with HIV. Kidney Int. Rep. 7, 786–796 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pérez-Morga, D. et al. Apolipoprotein L-I promotes trypanosome lysis by forming pores in lysosomal membranes. Science 309, 469–472 (2005).

    Article  PubMed  Google Scholar 

  29. Vanhamme, L. et al. Apolipoprotein L-I is the trypanosome lytic factor of human serum. Nature 422, 83–87 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Niohuru, I. Healthcare and Disease Burden in Africa: The Impact of Socioeconomic Factors on Public Health (Springer, 2023).

  31. de Silva, E. & Stumpf, M. P. H. HIV and the CCR5-Δ32 resistance allele. FEMS Microbiol. Lett. 241, 1–12 (2004).

    Article  PubMed  Google Scholar 

  32. Novembre, J., Galvani, A. P. & Slatkin, M. The geographic spread of the CCR5 Δ32 HIV-resistance allele. PLoS Biol. 3, e339 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Henrich, T. J. et al. Genome-wide association study of human immunodeficiency virus (HIV)-1 coreceptor usage in treatment-naive patients from an AIDS clinical trials group study. Open Forum Infect. Dis. 1, ofu018 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boahen, C. K. et al. Genetic regulators of cytokine responses upon BCG vaccination in children from West Africa. J. Genet. Genomics 50, 434–446 (2023).

    Article  PubMed  Google Scholar 

  35. World Health Organization. Global Tuberculosis Report 2023. https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023 (2023).

  36. The White House Office of the Press Secretary. Fact Sheet: President Obama’s Precision Medicine Initiative. https://obamawhitehouse.archives.gov/the-press-office/2015/01/30/fact-sheet-president-obama-s-precision-medicine-initiative (2015).

  37. UNESCO Institute for Statistics. Fact Sheet: Global investments in R&D (research and experimental development). 42, 1–8 (2017).

  38. Simpkin, V., Namubiru-Mwaura, E., Clarke, L. & Mossialos, E. Investing in health R&D: where we are, what limits us, and how to make progress in africa. BMJ Glob. Health 4, e001047 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Staunton, C. et al. Safeguarding the future of genomic research in South Africa: broad consent and the protection of Personal Information Act no. 4 of 2013. South Afr. Med. J. 109, 468–470 (2019).

    Article  CAS  Google Scholar 

  40. Chanda-Kapata, P., Kapata, N., Moraes, A. N., Chongwe, G. & Munthali, J. Genomic research in Zambia: confronting the ethics, policy and regulatory frontiers in the 21st century. Health Res. Policy Syst. 13, 60 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nankya, H., Wamala, E., Alibu, V. P. & Barugahare, J. Community engagement in genetics and genomics research: a qualitative study of the perspectives of genetics and genomics researchers in Uganda. BMC Med. Ethics 25, 1 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Akwaowo, C. D. et al. Adoption of electronic medical records in developing countries—a multi-state study of the Nigerian healthcare system. Front. Digit. Health 4, 1017231 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhang, H. L. et al. Challenges of maintaining good clinical laboratory practices in low-resource settings: a health program evaluation framework case study from East Africa. Am. J. Clin. Pathol. 146, 199–206 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Ashiwaju, B. I., Agho, M. O., Okogwu, C., Orikpete, O. F. & Daraojimba, C. Digital transformation in pharmaceutical supply chain: an African case. Matrix Science Pharma 7, 95–102 (2023).

  45. Omotoso, O. E. et al. Bridging the genomic data gap in Africa: implications for global disease burdens. Global. Health 18, 103 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fonjungo, P. N. et al. Laboratory equipment maintenance: a critical bottleneck for strengthening health systems in sub-Saharan Africa. J. Public Health Policy 33, 34–45 (2012).

    Article  PubMed  Google Scholar 

  47. De Maria, C., Mazzei, D. & Ahluwalia, A. Improving African healthcare through open source biomedical engineering. Int. J. Adv. Life Sci. 7, 10–19 (2015).

    Google Scholar 

  48. Akinyemi, R. O. et al. Biobanking in a challenging African environment: unique experience from the SIREN Project. Biopreserv. Biobank. 16, 217–232 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Stork, C. & Esselaar, S. Towards an African e-index: SME e-access and usage across 14 African countries. Research ICT Africa (2006).

  50. Dalberg. Impact of the Internet in Africa. 5–50 http://www.impactoftheinternet.com/pdf/Dalberg_Impact_of_Internet_Africa_Full_Report_April2013_vENG_Final.pdf (2013).

  51. Akintola, A. A., Hwang, U. W. & Aborode, A. T. Africa needs more bioinformaticians for population studies. Nature 605, 619 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Misau, Y. A., Al-Sadat, N. & Gerei, A. B. Brain-drain and health care delivery in developing countries. J. Public Health Afr. 1, 20–21 (2010).

    Article  Google Scholar 

  53. World Bank. World Health Organization’s Global Health Workforce Statistics Physicians (per 1,000 people). https://data.worldbank.org/indicator/SH.MED.PHYS.ZS (2024).

  54. Maharaj, B. The African brain drain: causes, costs, consequences. Afr. Insight 40, 96–108 (2010).

    Google Scholar 

  55. Zhong, A. et al. Ethical, social, and cultural issues related to clinical genetic testing and counseling in low- and middle-income countries: a systematic review. Genet. Med. 23, 2270–2280 (2021).

    Article  PubMed  Google Scholar 

  56. Hsu, L. et al. White paper: pathways to progress in newborn screening for sickle cell disease in Sub-Saharan Africa. J. Trop. Dis. Public Health 6, 260 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Abacan, M. A. et al. The global state of the genetic counseling profession. Eur. J. Hum. Genet. 27, 183–197 (2019).

    Article  PubMed  Google Scholar 

  58. Jongeneel, C. V. et al. A view on genomic medicine activities in Africa: implications for policy. Front. Genet. 13, 769919 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fakiya, V. Electronic health and medical records can improve healthcare in Africa, but there are obstacles to their widespread adoption. https://techpoint.africa/2023/02/13/electronic-medical-health-records-africa/ (2013).

  60. Medical Device Network. Setting an example: Rwanda as a digital health success story. https://www.medicaldevice-network.com/features/setting-an-example-rwanda-as-a-digital-health-success-story/?cf-view (2015).

  61. Bowden, R. et al. Sequencing of human genomes with nanopore technology. Nat. Commun. 10, 1869 (2019).

    Article  Google Scholar 

  62. Glanzmann, B. et al. Human whole genome sequencing in South Africa. Sci. Rep. 11, 606 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Croxton, T. et al. Building blocks for better biorepositories in Africa. Genome Med. 15, 92 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Agarwal, S., Kirrane, S. & Scharf, J. Modelling the general data protection regulation. in Internationales Rechtsinformatik Symposion (IRIS) (2017).

  65. NHS. UK Genomics Education Programme. https://www.genomicseducation.hee.nhs.uk/ (2014).

  66. The Global Alliance for Genomics and Health. The Global Alliance for Genomics and Health. https://www.ga4gh.org/ (2013).

  67. Ihekweazu, C. et al. First African SARS-CoV-2 genome sequence from Nigerian COVID-19 case. Genome Rep. https://virological.org/t/first-african-sars-cov-2-genome-sequence-from-nigerian-covid-19-case/421 (2020).

  68. ACEGID. ACEGID boosts genomics sequencing capacity with two new state-of-the-art sequencing machines. https://acegid.org/acegid-boosts-genomics-sequencing-capacity-with-two-new-sequencing-machines/ (2023).

  69. Saied, A. A. et al. Strengthening vaccines and medicines manufacturing capabilities in Africa: challenges and perspectives. EMBO Mol. Med. 14, e16287 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. South African Medical Research Council. SAMRC Genomics Platform. https://www.samrc.ac.za/services/genomic-centre/ (accessed April 2024).

  71. Mulder, N. et al. H3Africa: current perspectives. Pharmacogenomics Pers. Med. 11, 59–66 (2018).

    Google Scholar 

Download references

Acknowledgements

C.H.’s research is supported by The Rockefeller Foundation (grant no. 2021 HTH), TED’s Audacious project (including the ELMA Foundation, MacKenzie Scott and the Skoll Foundation), The World Bank (projects ACE-019 and ACE-IMPACT), National Institute of Allergy and Infectious Diseases (grant no. U01HG007480) and NIH’s H3Africa (grant no. U54HG007480).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Happi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Medicine thanks Solomon Rotimi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Karen O’Leary, in collaboration with the Nature Medicine team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olono, A., Mitesser, V., Happi, A. et al. Building genomic capacity for precision health in Africa. Nat Med 30, 1856–1864 (2024). https://doi.org/10.1038/s41591-024-03081-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41591-024-03081-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing