Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Tip-enhanced Raman scattering

Abstract

Tip-enhanced Raman scattering (TERS) is one of the few methods to access the molecular composition and structure of surfaces with extreme lateral and depth resolution, down to the nanometre scale and beyond. This Primer examines the underlying physical principles driving signal enhancement and lateral resolution of TERS, laying the foundation for both theoretical understanding and practical applications. Addressing critical factors such as reproducibility, averaging and general limitations, we delve into the nuances of TERS experiments. Various TERS modifications are introduced, highlighting diverse optical geometries and tip feedback schemes tailored to the specific experimental needs. State-of-the-art TERS studies are showcased to illustrate its versatility, encompassing structural analysis of biomolecules, nanoscale investigation of chemical reactivity and exploration of the intrinsic physical properties of 2D materials. These TERS applications serve as a comprehensive overview of current advancements in the field, encapsulating the breadth of TERS experiments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Simulation of plasmon-enhanced Raman signals, combining electromagnetic and chemical enhancement.
Fig. 2: TERS setup configurations.
Fig. 3: Different processes and parameters determining the TERS peak pattern and deviations from bulk Raman spectra.
Fig. 4: Synergistic TERS for correlating the chemical composition and nanomechanical properties of core crosslinked block copolymer core–corona micelles.
Fig. 5: Application of TERS spectroscopy to biological samples.
Fig. 6: Application of TERS technology in nanoscale chemical reactivity.
Fig. 7: TERS imaging of reconstructed low-angle twisted bilayer graphene and lateral graphene homojunctions.

Similar content being viewed by others

References

  1. Anderson, M. S. Locally enhanced Raman spectroscopy with an atomic force microscope. Appl. Phys. Lett. 76, 3130–3132 (2000).

    Article  ADS  Google Scholar 

  2. Hayazawa, N., Inouye, Y., Sekkat, Z. & Kawata, S. Metallized tip amplification of near-field Raman scattering. Opt. Commun. 183, 333–336 (2000).

    Article  ADS  Google Scholar 

  3. Stöckle, R. M., Suh, Y. D., Deckert, V. & Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 318, 131–136 (2000).

    Article  ADS  Google Scholar 

  4. Domke, K. F., Zhang, D. & Pettinger, B. Toward Raman fingerprints of single dye molecules at atomically smooth Au(111). J. Am. Chem. Soc. 128, 14721–14727 (2006).

    Article  Google Scholar 

  5. Neacsu, C. C., Dreyer, J., Behr, N. & Raschke, M. B. Scanning-probe Raman spectroscopy with single-molecule sensitivity. Phys. Rev. B 73, 193406 (2006).

    Article  ADS  Google Scholar 

  6. Zhang, W., Yeo, B. S., Schmid, T. & Zenobi, R. Single molecule tip-enhanced Raman spectroscopy with silver tips. J. Phys. Chem. C 111, 1733–1738 (2007).

    Article  Google Scholar 

  7. Richard-Lacroix, M., Zhang, Y., Dong, Z. & Deckert, V. Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception. Chem. Soc. Rev. 46, 3922–3944 (2017).

    Article  Google Scholar 

  8. Hartschuh, A., Sánchez, E. J., Xie, X. S. & Novotny, L. High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90, 095503 (2003).

    Article  ADS  Google Scholar 

  9. Chen, C., Hayazawa, N. & Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 5, 3312 (2014).

    Article  ADS  Google Scholar 

  10. Anderson, N., Hartschuh, A. & Novotny, L. Chirality changes in carbon nanotubes studied with near-field Raman spectroscopy. Nano Lett. 7, 577–582 (2007).

    Article  ADS  Google Scholar 

  11. Anderson, N., Hartschuh, A., Cronin, S. & Novotny, L. Nanoscale vibrational analysis of single-walled carbon nanotubes. J. Am. Chem. Soc. 127, 2533–2537 (2005).

    Article  Google Scholar 

  12. Liao, M. et al. Tip-enhanced Raman spectroscopic imaging of individual carbon nanotubes with subnanometer resolution. Nano Lett. 16, 4040–4046 (2016).

    Article  ADS  Google Scholar 

  13. Yano, T.-A. et al. Tip-enhanced nano-Raman analytical imaging of locally induced strain distribution in carbon nanotubes. Nat. Commun. 4, 2592 (2013).

    Article  ADS  Google Scholar 

  14. Schultz, J. F. & Jiang, N. Characterizations of two-dimensional materials with cryogenic ultrahigh vacuum near-field optical microscopy in the visible range. J. Vac. Sci. Technol. A 40, 40801 (2022). This review article discusses the technical challenges and advantages of cryogenic UHV TERS and STM-induced luminescence.

    Article  Google Scholar 

  15. Ren, B., Picardi, G., Pettinger, B., Schuster, R. & Ertl, G. Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces. Angew. Chem. Int. Ed. 44, 139–142 (2005).

    Article  Google Scholar 

  16. Wang, X. et al. Tip-enhanced Raman spectroscopy for investigating adsorbed species on a single-crystal surface using electrochemically prepared Au tips. Appl. Phys. Lett. 91, 101105 (2007).

    Article  ADS  Google Scholar 

  17. Chiang, N. et al. Conformational contrast of surface-mediated molecular switches yields Ångstrom-scale spatial resolution in ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 7774–7778 (2016).

    Article  ADS  Google Scholar 

  18. Braun, K. et al. Probing bias-induced electron density shifts in metal–molecule interfaces via tip-enhanced Raman scattering. J. Am. Chem. Soc. 143, 1816–1821 (2021).

    Article  Google Scholar 

  19. Zhang, D., Domke, K. F. & Pettinger, B. Tip-enhanced Raman spectroscopic studies of the hydrogen bonding between adenine and thymine adsorbed on Au (111). ChemPhysChem 11, 1662–1665 (2010).

    Article  Google Scholar 

  20. Wang, X. et al. Revealing intermolecular interaction and surface restructuring of an aromatic thiol assembling on Au(111) by tip-enhanced Raman spectroscopy. Anal. Chem. 88, 915–921 (2016).

    Article  Google Scholar 

  21. Pandey, Y., Kumar, N., Goubert, G. & Zenobi, R. Nanoscale chemical imaging of supported lipid monolayers using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 60, 19041–19046 (2021).

    Article  Google Scholar 

  22. Jiang, N. et al. Nanoscale chemical imaging of a dynamic molecular phase boundary with ultrahigh vacuum tip-enhanced Raman spectroscopy. Nano Lett. 16, 3898–3904 (2016).

    Article  ADS  Google Scholar 

  23. Kurouski, D., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Structural characterization of insulin fibril surfaces using tip enhanced Raman spectroscopy (TERS). Biophys. J. 104, 49A (2014).

    Article  Google Scholar 

  24. Deckert-Gaudig, T. & Deckert, V. High resolution spectroscopy reveals fibrillation inhibition pathways of insulin. Sci. Rep. 6, 39622 (2016).

    Article  ADS  Google Scholar 

  25. Krasnoslobodtsev, A., Deckert-Gaudig, T., Zhang, Y., Deckert, V. & Lyubchenko, Y. L. Polymorphism of amyloid fibrils formed by a peptide from the yeast prion protein Sup35: AFM and tip-enhanced Raman scattering studies. Ultramicroscopy 165, 26–33 (2016).

    Article  Google Scholar 

  26. Paulite, M. et al. Full spectroscopic tip-enhanced Raman imaging of single nanotapes formed from β-amyloid(1-40) peptide fragments. ACS Nano 7, 911–920 (2013).

    Article  Google Scholar 

  27. Lipiec, E., Perez-Guaita, D., Kaderli, J., Wood, B. R. & Zenobi, R. Direct nanospectroscopic verification of the amyloid aggregation pathway. Angew. Chem. Int. Ed. 57, 8519–8524 (2018).

    Article  Google Scholar 

  28. Talaga, D. et al. Total internal reflection tip-enhanced Raman spectroscopy of tau fibrils. J. Phys. Chem. B 126, 5024–5032 (2022).

    Article  Google Scholar 

  29. Bonhommeau, S., Talaga, D., Hunel, J., Cullin, C. & Lecomte, S. Tip-enhanced Raman spectroscopy to distinguish toxic oligomers from Aβ1–42 fibrils at the nanometer scale. Angew. Chem. Int. Ed. 56, 1771–1774 (2017).

    Article  Google Scholar 

  30. D’Andrea, C. et al. Nanoscale discrimination between toxic and nontoxic protein misfolded oligomers with tip-enhanced Raman spectroscopy. Small 14, 1800890 (2018).

    Article  Google Scholar 

  31. vandenAkker, C. et al. Nanoscale heterogeneity of the molecular structure of individual hIAPP amyloid fibrils revealed with tip-enhanced Raman spectroscopy. Small 11, 4131–4139 (2015).

    Article  Google Scholar 

  32. Yeo, B.-S., Amstad, E., Schmid, T., Stadler, J. & Zenobi, R. Nanoscale probing of a polymer-blend thin film with tip-enhanced Raman spectroscopy. Small 5, 952–960 (2009).

    Article  Google Scholar 

  33. Xue, L. et al. High-resolution chemical identification of polymer blend thin films using tip-enhanced Raman mapping. Macromolecules 44, 2852–2858 (2011).

    Article  ADS  Google Scholar 

  34. Agapov, R. L., Scherger, J. D., Sokolov, A. P. & Foster, M. D. Identification of individual isotopes in a polymer blend using tip enhanced Raman spectroscopy. J. Raman Spectrosc. 46, 447–450 (2015).

    Article  ADS  Google Scholar 

  35. Höppener, C., Elter, J. K., Schacher, F. H. & Deckert, V. Inside block copolymer micelles — tracing interfacial influences on crosslinking efficiency in nanoscale confined spaces. Small 19, 2206451 (2023).

    Article  Google Scholar 

  36. Höppener, C., Schacher, F. H. & Deckert, V. Multimodal characterization of resin embedded and sliced polymer nanoparticles by means of tip-enhanced Raman spectroscopy and force-distance curve based atomic force microscopy. Small 112, 1907418 (2020).

    Article  Google Scholar 

  37. van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J. G., Deckert, V. & Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7, 583–586 (2012).

    Article  ADS  Google Scholar 

  38. Sun, M., Zhang, Z., Zheng, H. & Xu, H. In-situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy. Sci. Rep. 2, 647 (2012).

    Article  ADS  Google Scholar 

  39. Pfisterer, J. H. K., Baghernejad, M., Giuzio, G. & Domke, K. F. Reactivity mapping of nanoscale defect chemistry under electrochemical reaction conditions. Nat. Commun. 10, 5702 (2019).

    Article  ADS  Google Scholar 

  40. Zhong, J.-H. et al. Probing the electronic and catalytic properties of a bimetallic surface with 3 nm resolution. Nat. Nanotechnol. 12, 132–136 (2017).

    Article  ADS  Google Scholar 

  41. Shao, F. et al. In-situ nanospectroscopic imaging of plasmon-induced two-dimensional [4+4]-cycloaddition polymerization on Au(111). Nat. Commun. 12, 4557 (2021).

    Article  ADS  Google Scholar 

  42. Mahapatra, S. et al. Localized surface plasmon controlled chemistry at and beyond the nanoscale. Chem. Phys. Rev. 4, 021301 (2023).

    Article  Google Scholar 

  43. Trautmann, S. et al. A classical description of subnanometer resolution by atomic features in metallic structures. Nanoscale 9, 391–401 (2017).

    Article  Google Scholar 

  44. Jakob, L. A. et al. Giant optomechanical spring effect in plasmonic nano- and picocavities probed by surface-enhanced Raman scattering. Nat. Commun. 14, 3291 (2023).

    Article  ADS  Google Scholar 

  45. García de Abajo, F. J. & Howie, A. Retarded field calculation of electron energy loss in inhomogeneous dielectrics. Phys. Rev. B 65, 115418 (2002).

    Article  ADS  Google Scholar 

  46. Hohenester, U. & Trügler, A. MNPBEM — a Matlab toolbox for the simulation of plasmonic nanoparticles. Comput. Phys. Commun. 183, 370–381 (2012).

    Article  ADS  Google Scholar 

  47. Cvitkovic, A., Ocelic, N., Aizpurua, J., Guckenberger, R. & Hillenbrand, R. Infrared imaging of single nanoparticles via strong field enhancement in a scanning nanogap. Phys. Rev. Lett. 97, 060801 (2006).

    Article  ADS  Google Scholar 

  48. Barbry, M. et al. Atomistic near-field nanoplasmonics: reaching atomic-scale resolution in nanooptics. Nano Lett. 15, 3410–3419 (2015).

    Article  ADS  Google Scholar 

  49. Schmidt, M. K., Esteban, R., González-Tudela, A., Giedke, G. & Aizpurua, J. Quantum mechanical description of Raman scattering from molecules in plasmonic cavities. ACS Nano 10, 6291–6298 (2016).

    Article  Google Scholar 

  50. Baumberg, J. J. Picocavities: a primer. Nano Lett. 22, 5859–5865 (2022).

    Article  ADS  Google Scholar 

  51. Benz, F. et al. Single-molecule optomechanics in “picocavities”. Science 354, 726–729 (2016).

    Article  ADS  Google Scholar 

  52. Zhang, R. et al. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  53. Lee, J., Crampton, K. T., Tallarida, N. & Apkarian, V. A. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–82 (2019).

    Article  ADS  Google Scholar 

  54. Jiang, S. et al. Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 6, e17098 (2017).

    Article  Google Scholar 

  55. Kong, F.-F. et al. Probing intramolecular vibronic coupling through vibronic-state imaging. Nat. Commun. 12, 1280 (2021).

    Article  ADS  Google Scholar 

  56. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2003).

    Article  ADS  Google Scholar 

  57. Zou, S., Janel, N. & Schatz, G. C. Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J. Chem. Phys. 120, 10871–10875 (2004).

    Article  ADS  Google Scholar 

  58. Gieseking, R. L., Ratner, M. A. & Schatz, G. C. Semiempirical modeling of Ag nanoclusters: new parameters for optical property studies enable determination of double excitation contributions to plasmonic excitation. J. Phys. Chem. A 120, 4542–4549 (2016).

    Article  Google Scholar 

  59. Ding, W., Hsu, L.-Y., Heaps, C. W. & Schatz, G. C. Plasmon-coupled resonance energy transfer II: exploring the peaks and dips in the electromagnetic coupling factor. J. Phys. Chem. C 122, 22650–22659 (2018).

    Article  Google Scholar 

  60. Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136, 214103 (2012).

    Article  ADS  Google Scholar 

  61. Payton, J. L., Morton, S. M., Moore, J. E. & Jensen, L. A hybrid atomistic electrodynamics — quantum mechanical approach for simulating surface-enhanced Raman scattering. Acc. Chem. Res. 47, 88–99 (2014).

    Article  Google Scholar 

  62. Hu, Z., Chulhai, D. V. & Jensen, L. Simulating surface-enhanced hyper-Raman scattering using atomistic electrodynamics-quantum mechanical models. J. Chem. Theory Comput. 12, 5968–5978 (2016).

    Article  Google Scholar 

  63. Liu, P., Chulhai, D. V. & Jensen, L. Single-molecule imaging using atomistic near-field tip-enhanced Raman spectroscopy. ACS Nano 11, 5094–5102 (2017).

    Article  Google Scholar 

  64. Chen, X., Liu, P., Hu, Z. & Jensen, L. High-resolution tip-enhanced Raman scattering probes sub-molecular density changes. Nat. Commun. 10, 2567 (2019). This research article introduces a theory adopting the concept of distributed polarizability density (namely, locally integrated Raman polarizability density (LIRPD)) to show that single-molecule TERS images can be explained by local sub-molecular density changes induced by extremely confined near-field interaction, and that these determine the obtainable TERS resolution and affect the Raman selection rules.

    Article  ADS  Google Scholar 

  65. Schmidt, S. et al. Image formation properties and inverse imaging problem in aperture based scanning near field optical microscopy. Opt. Express 24, 4128–4142 (2016).

    Article  ADS  Google Scholar 

  66. Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    Article  Google Scholar 

  67. Latorre, F. et al. Spatial resolution of tip-enhanced Raman spectroscopy — DFT assessment of the chemical effect. Nanoscale 8, 10229–10239 (2016).

    Article  ADS  Google Scholar 

  68. Rodriguez, R. D. et al. Chemical enhancement vs molecule–substrate geometry in plasmon-enhanced spectroscopy. ACS Photonics 8, 2243–2255 (2021).

    Article  Google Scholar 

  69. Fiederling, K., Kupfer, S. & Gräfe, S. Are charged tips driving TERS-resolution? A full quantum chemical approach. J. Chem. Phys. 154, 034106 (2021).

    Article  ADS  Google Scholar 

  70. Fiederling, K. et al. The chemical effect goes resonant — a full quantum mechanical approach on TERS. Nanoscale 12, 6346–6359 (2020). This research article presents a theoretical study of a tin(II) phthalocyanine molecule in the presence of a single silver atom utilizing a full quantum mechanical description to reveal unique non-resonant and resonant chemical tip–molecule interactions, and the research also demonstrates that these lead to alter TERS spectra and contribute to subnanometre TERS resolution.

    Article  Google Scholar 

  71. Li, J., Li, X., Zhai, H.-J. & Wang, L.-S. Au20: a tetrahedral cluster. Science 299, 864–867 (2003).

    Article  ADS  Google Scholar 

  72. Zhao, Jensen, L. & Schatz, G. C. Pyridine–Ag20 cluster: a model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128, 2911–2919 (2006).

    Article  Google Scholar 

  73. Duan, S. et al. Theoretical modeling of plasmon-enhanced Raman images of a single molecule with subnanometer resolution. J. Am. Chem. Soc. 137, 9515–9518 (2015).

    Article  Google Scholar 

  74. Duan, S., Tian, G. & Luo, Y. Theory for modeling of high resolution resonant and nonresonant Raman images. J. Chem. Theory Comput. 12, 4986–4995 (2016).

    Article  Google Scholar 

  75. Duan, S., Xie, Z., Tian, G. & Luo, Y. Effects of plasmon modes on resonant Raman images of a single molecule. J. Phys. Chem. Lett. 11, 407–411 (2020).

    Article  Google Scholar 

  76. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Article  ADS  Google Scholar 

  77. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  ADS  Google Scholar 

  78. Lin, Q. et al. Optical suppression of energy barriers in single molecule-metal binding. Sci. Adv. 8, eabp9285 (2022).

    Article  ADS  Google Scholar 

  79. Griffiths, J. et al. Resolving sub-Angstrom ambient motion through reconstruction from vibrational spectra. Nat. Commun. 12, 6759 (2021).

    Article  ADS  Google Scholar 

  80. Fiederling, K. et al. A full quantum mechanical approach assessing the chemical and electromagnetic effect in TERS. ACS Nano 17, 13137–13146 (2023).

    Article  Google Scholar 

  81. Zhang, Y., Dong, Z.-C. & Aizpurua, J. Theoretical treatment of single-molecule scanning Raman picoscopy in strongly inhomogeneous near fields. J. Raman Spectrosc. 52, 296–309 (2021). This paper introduces a simplified calculation procedure to calculate inhomogeneous field-enhanced Raman spectra from a single molecule.

    Article  ADS  Google Scholar 

  82. Giovannini, T. et al. Do we really need quantum mechanics to describe plasmonic properties of metal nanostructures? ACS Photonics 9, 3025–3034 (2022).

    Article  Google Scholar 

  83. Bursi, L., Calzolari, A., Corni, S. & Molinari, E. Quantifying the plasmonic character of optical excitations in nanostructures. ACS Photonics 3, 520–525 (2016).

    Article  Google Scholar 

  84. Ropers, C. et al. Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett. 7, 2784–2788 (2007).

    Article  ADS  Google Scholar 

  85. Berweger, S., Atkin, J. M., Olmon, R. L. & Raschke, M. Adiabatic tip-plasmon focusing for nano-Raman spectroscopy. J. Phys. Chem. Lett. 1, 3427–3432 (2010).

    Article  Google Scholar 

  86. Umakoshi, T., Saito, Y. & Verma, P. Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy. Nanoscale 8, 5634–5640 (2016).

    Article  ADS  Google Scholar 

  87. Lee, D. Y. et al. Adaptive tip-enhanced nano-spectroscopy. Nat. Commun. 12, 3465 (2021).

    Article  ADS  Google Scholar 

  88. Novotny, L., Bian, R. X. & Xie, X. S. Theory of nanometric optical tweezers. Phys. Rev. Lett. 79, 645–648 (1997).

    Article  ADS  Google Scholar 

  89. Kazemi-Zanjani, N., Vedraine, S. & Lagugne-Labarthet, F. Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light. Opt. Express 21, 25271–25276 (2013).

    Article  ADS  Google Scholar 

  90. Mueller, N. S., Juergensen, S., Höflich, K., Reich, S. & Kusch, P. Excitation-tunable tip-enhanced Raman spectroscopy. J. Phys. Chem. C 122, 28273–28279 (2018).

    Article  Google Scholar 

  91. Glebov, A. L. et al. Volume Bragg gratings as ultra-narrow and multiband optical filters. in Proc. SPIE. 8428, Micro-Optics 2012 84280C (2012).

  92. Rapaport, A. et al. Very low frequency Stokes and anti‐Stokes Raman spectra accessible with a single multichannel spectrograph and volume Bragg grating optical filters. AIP Conf. Proc. 1267, 808–809 (2010).

    Article  ADS  Google Scholar 

  93. Yano, T.-A., Ichimura, T., Kuwahara, S., Verma, P. & Kawata, S. Subnanometric stabilization of plasmon-enhanced optical microscopy. Nanotechnology 23, 205503 (2012).

    Article  ADS  Google Scholar 

  94. Yano, T.-A., Tsuchimoto, Y., Mochizuki, M., Hayashi, T. & Hara, M. Laser scanning-assisted tip-enhanced optical microscopy for robust optical nanospectroscopy. Appl. Spectrosc. 70, 1239–1243 (2016).

    Article  ADS  Google Scholar 

  95. Kato, R., Moriyama, T., Umakoshi, T., Yano, T.-A. & Verma, P. Ultrastable tip-enhanced hyperspectral optical nanoimaging for defect analysis of large-sized WS2 layers. Sci. Adv. 8, eabo4021 (2022).

    Article  Google Scholar 

  96. Hayazawa, N., Furusawa, K. & Kawata, S. Nanometric locking of the tight focus for optical microscopy and tip-enhanced microscopy. Nanotechnology 23, 465203 (2012).

    Article  ADS  Google Scholar 

  97. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  Google Scholar 

  98. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982).

    Article  ADS  Google Scholar 

  99. Cappella, B. & Dietler, G. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999).

    Article  ADS  Google Scholar 

  100. Karrai, K. & Tiemann, I. Interfacial shear force microscopy. Phys. Rev. B 62, 13174–13181 (2000).

    Article  ADS  Google Scholar 

  101. Hansma, P. K. et al. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 64, 1738–1740 (1994).

    Article  ADS  Google Scholar 

  102. Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    Article  ADS  Google Scholar 

  103. Xu, D., Liang, B., Xu, Y. & Liu, M. Recent advances in tip-enhanced Raman spectroscopy probe designs. Nano Res. 16, 5555–5571 (2023).

    Article  ADS  Google Scholar 

  104. Pettinger, B., Picardi, G., Schuster, R. & Ertl, G. Surface enhanced Raman spectroscopy: towards single molecule spectroscopy. Electrochemistry 68, 942–949 (2000).

    Article  Google Scholar 

  105. Yang, B., Kazuma, E., Yokota, Y. & Kim, Y. Fabrication of sharp gold tips by three-electrode electrochemical etching with high controllability and reproducibility. J. Phys. Chem. C 122, 16950–16955 (2018).

    Article  Google Scholar 

  106. Taguchi, A., Yu, J., Verma, P. & Kawata, S. Optical antennas with multiple plasmonic nanoparticles for tip-enhanced Raman microscopy. Nanoscale 7, 17424–17433 (2015). In this article, the authors theoretically and experimentally investigate the influence of multiple metal grains on the electromagnetic field enhancement.

    Article  ADS  Google Scholar 

  107. Vasconcelos, T. L. et al. Tuning localized surface plasmon resonance in scanning near-field optical microscopy probes. ACS Nano 9, 6297–6304 (2015).

    Article  Google Scholar 

  108. Vasconcelos, T. L. et al. Plasmon-tunable tip pyramids: monopole nanoantennas for near-field scanning optical microscopy. Adv. Optical Mater. 6, 1800528 (2018).

    Article  Google Scholar 

  109. Carnegie, C. et al. Room-temperature optical picocavities below 1 nm3 accessing single-atom geometries. J. Phys. Chem. Lett. 9, 7146–7151 (2018). This research article demonstrates the chemistry and dynamics of a single gold adatom, distinguishing atom dynamics in real time, to provide insights into the stability of picocavities under ambient conditions.

    Article  Google Scholar 

  110. Huang, Y.-P. et al. Shell-isolated tip-enhanced Raman and fluorescence spectroscopy. Angew. Chem. Int. Ed. 57, 7523–7527 (2018).

    Article  Google Scholar 

  111. Martín Sabanés, N., Driessen, L. M. A. & Domke, K. F. Versatile side-illumination geometry for tip-enhanced Raman spectroscopy at solid/liquid interfaces. Anal. Chem. 88, 7108–7114 (2016).

    Article  Google Scholar 

  112. Yokota, Y. et al. Systematic assessment of benzenethiol self-assembled monolayers on Au(111) as a standard sample for electrochemical tip-enhanced Raman spectroscopy. J. Phys. Chem. C 123, 2953–2963 (2019).

    Article  Google Scholar 

  113. Chen, X., Goubert, G., Jiang, S. & Van Duyne, R. P. Electrochemical STM tip-enhanced Raman spectroscopy study of electron transfer reactions of covalently tethered chromophores on Au(111). J. Phys. Chem. C 122, 11586–11590 (2018).

    Article  Google Scholar 

  114. Kumar, N., Wondergem, C. S., Wain, A. J. & Weckhuysen, B. M. In situ nanoscale investigation of catalytic reactions in the liquid phase using zirconia-protected tip-enhanced Raman spectroscopy probes. J. Phys. Chem. Lett. 10, 1669–1675 (2019).

    Article  Google Scholar 

  115. Zeng, Z.-C. et al. Electrochemical tip-enhanced Raman spectroscopy. J. Am. Chem. Soc. 137, 11928–11931 (2015).

    Article  Google Scholar 

  116. Nečas, D. & Klapetek, P. Gwyddion: an open-source software for SPM data analysis. Open Phys. 10, 181–188 (2012).

    Article  ADS  Google Scholar 

  117. Kurouski, D., Mattei, M. & Van Duyne, R. Probing redox reactions at the nanoscale with electrochemical tip-enhanced Raman spectroscopy. Nano Lett. 15, 7956–7962 (2015).

    Article  ADS  Google Scholar 

  118. Zhang, Z., Deckert-Gaudig, T., Singh, P. & Deckert, V. Single molecule level plasmonic catalysis — a dilution study of p-nitrothiophenol on gold dimers. Chem. Commun. 51, 3069–3072 (2015).

    Article  Google Scholar 

  119. Zhang, Z., Richard-Lacroix, M. & Deckert, V. Plasmon induced polymerization using a TERS approach: a platform for nanostructured 2D/1D material production. Faraday Discuss. 205, 213–226 (2017).

    Article  ADS  Google Scholar 

  120. Szczerbiński, J., Metternich, J. B., Goubert, G. & Zenobi, R. How peptides dissociate in plasmonic hot spots. Small 16, 1905197 (2020).

    Article  Google Scholar 

  121. Veres, M., Füle, M., Tóth, S., Koós, M. & Pócsik, I. Surface enhanced Raman scattering (SERS) investigation of amorphous carbon. Diam. Relat. Mater. 13, 1412–1415 (2004).

    Article  ADS  Google Scholar 

  122. Yao, X. et al. Targeted suppression of peptide degradation in Ag-based surface-enhanced Raman spectra by depletion of hot carriers. Small 18, 2205080 (2022).

    Article  Google Scholar 

  123. Meng, L., Yang, Z., Chen, J. & Sun, M. Effect of electric field gradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy. Sci. Rep. 5, 9240 (2015).

    Article  ADS  Google Scholar 

  124. Sun, M., Zhang, Z., Chen, L., Sheng, S. & Xu, H. Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Adv. Optical Mater. 2, 74–80 (2014).

    Article  Google Scholar 

  125. Cao, Y. et al. Plasmonic gradient and plexcitonic effects in single-molecule tip-enhanced (resonance) Raman spectroscopy. J. Phys. Chem. C 127, 476–489 (2023).

    Article  Google Scholar 

  126. Poliani, E. et al. Breakdown of far-field Raman selection rules by light–plasmon coupling demonstrated by tip-enhanced Raman scattering. J. Phys. Chem. Lett. 8, 5462–5471 (2017).

    Article  Google Scholar 

  127. Deckert-Gaudig, T., Rauls, E. & Deckert, V. Aromatic amino acid monolayers sandwiched between gold and silver: a combined tip-enhanced Raman and theoretical approach. J. Phys. Chem. C 114, 7412–7420 (2010).

    Article  Google Scholar 

  128. Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 138, 1665–1673 (2013).

    Article  ADS  Google Scholar 

  129. Liu, S., Hammud, A., Wolf, M. & Kumagai, T. Atomic point contact Raman spectroscopy of a Si(111)-7 × 7 surface. Nano Lett. 21, 4057–4061 (2021).

    Article  ADS  Google Scholar 

  130. Yang, B. et al. Chemical enhancement and quenching in single-molecule tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 62, e202218799 (2023).

    Article  Google Scholar 

  131. Guo, S., Popp, J. & Bocklitz, T. Chemometric analysis in Raman spectroscopy from experimental design to machine learning-based modeling. Nat. Protoc. 16, 5426–5459 (2021).

    Article  Google Scholar 

  132. Gautam, R., Vanga, S., Ariese, F. & Umapathy, S. Review of multidimensional data processing approaches for Raman and infrared spectroscopy. EPJ Tech. Instrum. 2, 8 (2015).

    Article  Google Scholar 

  133. Su, W., Kumar, N., Krayev, A. & Chaigneau, M. In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale. Nat. Commun. 9, 2891 (2018). This work introduces multi-parameter microscopy to measure local electronic properties in situ by KPFM.

    Article  ADS  Google Scholar 

  134. Deckert-Gaudig, T., Pichot, V., Spitzer, D. & Deckert, V. High-resolution Raman spectroscopy for the nanostructural characterization of explosive nanodiamond precursors. ChemPhysChem 18, 175–178 (2017).

    Article  Google Scholar 

  135. Dou, T., Li, Z., Zhang, J., Evilevitch, A. & Kurouski, D. Nanoscale structural characterization of individual viral particles using atomic force microscopy infrared spectroscopy (AFM-IR) and tip-enhanced Raman spectroscopy (TERS). Anal. Chem. 92, 11297–11304 (2020).

    Article  Google Scholar 

  136. Hermelink, A. et al. Towards a correlative approach for characterising single virus particles by transmission electron microscopy and nanoscale Raman spectroscopy. Analyst 142, 1342–1349 (2017).

    Article  ADS  Google Scholar 

  137. Huang, S.-C. et al. Electrochemical tip-enhanced Raman spectroscopy: an in situ nanospectroscopy for electrochemistry. Annu. Rev. Phys. Chem. 72, 213–234 (2021). This research article provides a review on electrochemical TERS.

    Article  Google Scholar 

  138. Yokota, Y., Hong, M., Hayazawa, N. & Kim, Y. Electrochemical tip-enhanced Raman spectroscopy for microscopic studies of electrochemical interfaces. Surf. Sci. Rep. 77, 100576 (2022).

    Article  Google Scholar 

  139. Pfisterer, J. H. K. & Domke, K. F. Unfolding the versatile potential of EC-TERS for electrocatalysis. Curr. Opin. Electrochem. 8, 96–102 (2018).

    Article  Google Scholar 

  140. Martín Sabanés, N., Ohto, T., Andrienko, D., Nagata, Y. & Domke, K. F. Electrochemical TERS elucidates potential-induced molecular reorientation of adenine/Au(111). Angew. Chem. Int. Ed. 56, 9796–9801 (2017).

    Article  Google Scholar 

  141. Fiocco, A. et al. Electrochemical tip-enhanced Raman spectroscopy for the elucidation of complex electrochemical reactions. Anal. Chem. 96, 2791–2798 (2024).

    Google Scholar 

  142. Smithe, K. K. H. et al. Nanoscale heterogeneities in monolayer MoSe2 revealed by correlated scanning probe microscopy and tip-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 1, 572–579 (2018).

    Article  Google Scholar 

  143. Bonhommeau, S., Cooney, G. S. & Huang, Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem. Soc. Rev. 51, 2416–2430 (2022). This review article focuses specifically on TERS applications related to biomatter, and it critically discusses challenges related to this field.

    Article  Google Scholar 

  144. Talaga, D. et al. PIP2 phospholipid-induced aggregation of tau filaments probed by tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 57, 15738–15742 (2018).

    Article  Google Scholar 

  145. Lipiec, E. et al. Nanoscale hyperspectral imaging of amyloid secondary structures in liquid. Angew. Chem. Int. Ed. 60, 4545–4550 (2021). This recent TERS study comprises the successful integration of liquid TERS for probing the secondary structure of amyloid fibrils in situ.

    Article  Google Scholar 

  146. Wood, B. R. et al. Tip-enhanced Raman scattering (TERS) from hemozoin crystals within a sectioned erythrocyte. Nano Lett. 11, 1868–1873 (2011).

    Article  ADS  Google Scholar 

  147. Mrđenović, D., Ge, W., Kumar, N. & Zenobi, R. Nanoscale chemical imaging of human cell membranes using tip-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 61, e202210288 (2022).

    Article  Google Scholar 

  148. Tabatabaei, M., Caetano, F. A., Pashee, F., Ferguson, S. S. G. & Lagugné-Labarthet, F. Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines. Analyst 142, 4415–4421 (2017).

    Article  ADS  Google Scholar 

  149. Stepanenko, T. et al. Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) in label-free characterization of erythrocyte membranes and extracellular vesicles at the nano-scale and molecular level. Analyst 149, 778–788 (2024).

    Article  ADS  Google Scholar 

  150. Alexander, K. D. & Schultz, Z. D. Tip-enhanced Raman detection of antibody conjugated nanoparticles on cellular membranes. Anal. Chem. 84, 7408–7414 (2012).

    Article  Google Scholar 

  151. Xiao, L., Wang, H. & Schultz, Z. D. Selective detection of RGD-integrin binding in cancer cells using tip enhanced Raman scattering microscopy. Anal. Chem. 88, 6547–6553 (2016).

    Article  Google Scholar 

  152. Domke, K., Zhang, D. & Pettinger, B. Tip-enhanced Raman spectra of picomole quantities of DNA nucleobases at Au (111). J. Am. Chem. Soc. 129, 6708–6709 (2007).

    Article  Google Scholar 

  153. Watanabe, H., Ishida, Y., Hayazawa, N., Inouye, Y. & Kawata, S. Tip-enhanced near-field Raman analysis of tip-pressurized adenine molecule. Phys. Rev. B 69, 155418 (2004).

    Article  ADS  Google Scholar 

  154. Bailo, E. & Deckert, V. Tip-enhanced Raman spectroscopy of single RNA strands: towards a novel direct-sequencing method. Angew. Chem. Int. Ed. 47, 1658–1661 (2008).

    Article  Google Scholar 

  155. Lin, X. et al. Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering. Preprint at https://doi.org/10.48550/arXiv.1604.06598 (2016).

  156. Hennemann, L. E., Meixner, A. J. & Zhang, D. Surface- and tip-enhanced Raman spectroscopy of DNA. Spectroscopy 24, 119–124 (2010).

    Article  Google Scholar 

  157. Treffer, R., Lin, X.-M., Bailo, E., Deckert-Gaudig, T. & Deckert, V. Distinction of nucleobases — a tip-enhanced Raman spectroscopy approach. Beilstein J. Nanotechnol. 2, 628–637 (2011).

    Article  Google Scholar 

  158. Najjar, S. et al. Tip-enhanced Raman spectroscopy of combed double-stranded DNA bundles. J. Phys. Chem. C 118, 1174–1181 (2013).

    Article  Google Scholar 

  159. Zhang, R. et al. Distinguishing individual DNA bases in a network by non-resonant tip-enhanced Raman scattering. Angew. Chem. Int. Ed. 56, 5561–5564 (2017).

    Article  Google Scholar 

  160. He, Z. et al. Tip-enhanced Raman imaging of single-stranded DNA with single base resolution. J. Am. Chem. Soc. 141, 753–757 (2019). This TERS study proves subnanometre resolution under ambient conditions by direct nucleic acid sequencing of a phage ssDNA at a step size of 0.5 nm.

    Article  Google Scholar 

  161. He, Z. et al. Resolving the sequence of RNA strands by tip-enhanced Raman spectroscopy. ACS Photonics 8, 424–430 (2021).

    Article  Google Scholar 

  162. Deckert, V. et al. Laser spectroscopic technique for direct identification of a single virus I: FASTER CARS. Proc. Natl Acad. Sci. USA 117, 27820–27824 (2020).

    Article  ADS  Google Scholar 

  163. Olschewski, K. et al. A manual and an automatic TERS based virus discrimination. Nanoscale 7, 4545–4552 (2015).

    Article  ADS  Google Scholar 

  164. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  165. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  ADS  Google Scholar 

  166. Malard, L. M. et al. Studying 2D materials with advanced Raman spectroscopy: CARS, SRS and TERS. Phys. Chem. Chem. Phys. 23, 23428–23444 (2021).

    Article  Google Scholar 

  167. Rahaman, M. et al. Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy. Nano Lett. 17, 6027–6033 (2017).

    Article  ADS  Google Scholar 

  168. Vantasin, S. et al. Tip-enhanced Raman scattering of the local nanostructure of epitaxial graphene grown on 4H-SiC (000\(\bar{1}\)). J. Phys. Chem. C 118, 25809–25815 (2014).

    Article  Google Scholar 

  169. Su, W., Kumar, N., Mignuzzi, S., Crain, J. & Roy, D. Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy. Nanoscale 8, 10564–10569 (2016).

    Article  ADS  Google Scholar 

  170. Kato, R., Umakoshi, T., Sam, R. T. & Verma, P. Probing nanoscale defects and wrinkles in MoS2 by tip-enhanced Raman spectroscopic imaging. Appl. Phys. Lett. 114, 073105 (2019).

    Article  ADS  Google Scholar 

  171. Huang, T.-X. et al. Probing the edge-related properties of atomically thin MoS2 at nanoscale. Nat. Commun. 10, 5544 (2019). This research article demonstrates how TERS is used to probe the unique electronic property of defects in MoS2.

    Article  ADS  Google Scholar 

  172. Beams, R., Cançado, L. G., Jorio, A., Vamivakas, A. N. & Novotny, L. Tip-enhanced Raman mapping of local strain in graphene. Nanotechnology 26, 175702 (2015).

    Article  ADS  Google Scholar 

  173. Cançado, L. G., Beams, R., Jorio, A. & Novotny, L. Theory of spatial coherence in near-field Raman scattering. Phys. Rev. X 4, 031054 (2014).

    Google Scholar 

  174. Publio, B. C. et al. Inclusion of the sample-tip interaction term in the theory of tip-enhanced Raman spectroscopy. Phys. Rev. B 105, 235414 (2022).

    Article  ADS  Google Scholar 

  175. Beams, R., Cançado, L. G., Oh, S.-H., Jorio, A. & Novotny, L. Spatial coherence in near-field Raman scattering. Phys. Rev. Lett. 113, 186101 (2014).

    Article  ADS  Google Scholar 

  176. Rabelo, C. et al. Linkage between micro- and nano-Raman spectroscopy of defects in graphene. Phys. Rev. Appl. 14, 024056 (2020).

    Article  ADS  Google Scholar 

  177. Alencar, R. S. et al. Probing spatial phonon correlation length in post-transition metal monochalcogenide gas using tip-enhanced Raman spectroscopy. Nano Lett. 19, 7357–7364 (2019).

    Article  ADS  Google Scholar 

  178. Nadas, R. B. et al. Spatially coherent tip-enhanced Raman spectroscopy measurements of electron–phonon interaction in a graphene device. Nano Lett. 23, 8827–8832 (2023).

    Article  ADS  Google Scholar 

  179. Piscanec, S., Lazzeri, M., Mauri, F., Ferrari, A. C. & Robertson, J. Kohn anomalies and electron-phonon interactions in graphite. Phys. Rev. Lett. 93, 185503 (2004).

    Article  ADS  Google Scholar 

  180. Das, A. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008).

    Article  Google Scholar 

  181. Gadelha, A. C. et al. Localization of lattice dynamics in low-angle twisted bilayer graphene. Nature 590, 405–409 (2021).

    Article  ADS  Google Scholar 

  182. Gadelha, A. C., Vasconcelos, T. L., Cançado, L. G. & Jorio, A. Nano-optical imaging of in-plane homojunctions in graphene and MoS2 van der Waals heterostructures on talc and SiO2. J. Phys. Chem. Lett. 12, 7625–7631 (2021).

    Article  Google Scholar 

  183. Lee, K. S. et al. MicrobioRaman: an open-access web repository for microbiological Raman spectroscopy data. Nat. Microbiol. 9, 1152–1156 (2024).

    Article  Google Scholar 

  184. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  ADS  Google Scholar 

  185. Stanciu, C., Sackrow, M. & Meixner, A. J. High NA particle- and tip-enhanced nanoscale Raman spectroscopy with a parabolic-mirror microscope. J. Microsc. 229, 247–253 (2008).

    Article  MathSciNet  Google Scholar 

  186. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004).

    Article  ADS  Google Scholar 

  187. Gramotnev, D. K. & Bozhevolnyi, S. I. Nanofocusing of electromagnetic radiation. Nat. Photonics 8, 13–22 (2014). This review article provides an overview on the physical principles, developments and applications of nanofocusing in plasmonic nanostructures.

    Article  ADS  Google Scholar 

  188. Lindquist, N. C., Nagpal, P., Lesuffleur, A., Norris, D. J. & Oh, S.-H. Three-dimensional plasmonic nanofocusing. Nano Lett. 10, 1369–1373 (2010).

    Article  ADS  Google Scholar 

  189. Taguchi, K., Umakoshi, T., Inoue, S. & Verma, P. Broadband plasmon nanofocusing: comprehensive study of broadband nanoscale light source. J. Phys. Chem. C 125, 6378–6386 (2021).

    Article  Google Scholar 

  190. Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat. Rev. Methods Primers 1, 68 (2021).

    Article  Google Scholar 

  191. Umakoshi, T., Kawashima, K., Moriyama, T., Kato, R. & Verma, P. Tip-enhanced Raman spectroscopy with amplitude-controlled tapping-mode AFM. Sci. Rep. 12, 12776 (2022).

    Article  ADS  Google Scholar 

  192. Bartolomeo, G. L., Zhang, Y., Kumar, N. & Zenobi, R. Molecular perturbation effects in AFM-based tip-enhanced Raman spectroscopy: contact versus tapping mode. Anal. Chem. 93, 15358–15364 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

V.D. and C.H. acknowledge funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) — CRC 1278 PolyTarget, project number 316213987 (project B04) and SFB 1375 (39881677, project C2). S.G. gratefully acknowledges funding from the European Research Council (ERC) under the European’s Horizon 2020 research and innovation programme — QUEM-CHEM (grant number 772676), ‘Time- and space-resolved ultrafast dynamics in molecular plasmonic hybrid systems’ and by the DFG (German Research Foundation) — SFB 1375 (39881677, project A4). A.J. acknowledges support from FAPEMIG (APQ-01860-2229868, RED0008123) and CNPq (307619/2023-0, APQ-04852-23, 421469/2023-4), Brazil. J.A. acknowledges support from grant PID2022-139579NB-I00 of the Spanish Ministry of Science and Innovation and grant number IT 1526-22 from the Department of Education of the Basque Government. C.H. and Z.Z. acknowledge support from the National Natural Science Foundation of China (numbers U22A6005 and 12304426) and the Natural Science Foundation of Shaanxi Province (numbers 2024JC-JCQN-07 and 22JSZ010).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.H., S.G., S.K., J.A. and V.D.); Experimentation (C.H., H.C., Z.Z. and V.D.); Results (C.H. and V.D.); Applications (C.H., A.J., H.C., Z.Z. and V.D.); Reproducibility and data deposition (C.H. and V.D.); Limitations and optimizations (C.H. and V.D.); Outlook (C.H., J.A., H.C., S.G., A.J., S.K., Z.Z. and V.D.); overview of the Primer (C.H., J.A., H.C., S.G., A.J., S.K., Z.Z. and V.D.).

Corresponding author

Correspondence to Volker Deckert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Adaptive optics

A technical approach to improve the quality of an optical system by reducing the wavefront distortions (increasing the phase matching) imposed by diffractive optical elements, light scattering in thick samples and the variation in the index of refraction along the light path by using deformable mirrors or liquid crystal spatial light modulators.

Boundary element methods

Methods to solve Maxwell’s equation, which relies on the discretization of the surface elements of a configuration, wherein the boundary conditions are applied to each finite element of the elements of the interface.

Chemical effects

Stem from close-range and site-specific interactions between the surface-immobilized sample and the metallic nanoparticle and comprises non-resonant and resonant contributions and charge-transfer phenomena between the sample and the plasmonic nanoparticle.

Coherence length

The distance an electromagnetic wave can travel in a material and keeps its coherence, or maintain its phase.

Electromagnetic effect

Responsible for the locally confined and enhanced electric field and field gradients near the plasmonic particle.

Finite-difference time-domain methods

Grid-based differential numerical methods that allow to solve Maxwell’s equations in an iterative scheme.

Finite element methods

Numerical approaches that can solve partial differential equations by dividing the system into a certain number of smaller subsystems (finite elements).

Force–volume AFM spectroscopy

An advanced imaging atomic force microscopy (AFM) mode enabling a quantification of certain nanomechanical properties (adhesion, stiffness, Young’s modulus, dissipation and viscoelasticity) of a sample by recording entire extend-and-retract force–distance curves for each image pixel.

GPAW

A python implementation of the time-dependent density functional theory approach based on the projector augmented wave method.

Kohn anomaly

An anomaly in the phonon dispersion relation of graphene and metals, which arises from electron–phonon interaction, leading to a failure of the Born–Oppenheimer approximation.

Picocavity

Atomic-scale structure constituted by one or few metallic atoms protruding from the surface, which enables localization of light onto the atomic scale, often phrased as ‘atomic protrusion’.

Polarizability tensor

Describes the induced dipole moment along one direction as a function of the local electric field in any given direction; according to the general selection rules in Raman spectroscopy, a vibration is Raman active only if the polarizability changes along the displacement vector of the specific vibrational normal mode.

Rayleigh line

Corresponds to the peak in a spectrum that arises from elastic scattering of the incident light in a sample, that is, at a frequency or energy corresponding to the incident light.

Spatial field confinement

The ability of a plasmonic nanostructure to convert free propagating radiation into localized energy, that is, the obtained spatial extension of the formed secondary electromagnetic filed at the tip apex.

Strain solitons

Nonlinear quasi-stationary localized strain waves in solids that occur at boundaries of symmetry-broken stacking domains (in the case of graphene, AB and BA stacking domains).

Synergistic TERS

A terminology to summarize comparative approaches pairing tip-enhanced Raman scattering (TERS) as a pivotal method with a secondary, ideally complementary analytical technique.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Höppener, C., Aizpurua, J., Chen, H. et al. Tip-enhanced Raman scattering. Nat Rev Methods Primers 4, 47 (2024). https://doi.org/10.1038/s43586-024-00323-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s43586-024-00323-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing