Abstract
Holotomography (HT) represents a 3D, label-free optical imaging methodology that leverages refractive index as an inherent quantitative contrast for imaging. This technique has recently seen notable advancements, creating novel opportunities for the comprehensive visualization and analysis of living cells and their subcellular organelles. It has manifested wide-ranging applications spanning cell biology, biophysics, microbiology and biotechnology, substantiating its vast potential. In this Primer, we elucidate the foundational physical principles underpinning HT, detailing its experimental implementations and providing case studies of representative research employing this methodology. We also venture into interdisciplinary territories, exploring how HT harmonizes with emergent technologies, such as regenerative medicine, 3D biology and organoid-based drug discovery and screening. Looking ahead, we engage in a prospective analysis of potential future trajectories for HT, discussing innovation-focused initiatives that may further elevate this field. We also propose possible future applications of HT, identifying opportunities for its integration into diverse realms of scientific research and technological development.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 /Â 30Â days
cancel any time
Subscribe to this journal
We are sorry, but there is no personal subscription option available for your country.
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Robertson, L. A. van Leeuwenhoek microscopes â where are they now? FEMS Microbiol. Lett. 362, fnv056 (2015).
Wiedenmann, J., Oswald, F. & Nienhaus, G. U. Fluorescent proteins for live cell imaging: opportunities, limitations, and challenges. IUBMB Life 61, 1029â1042 (2009).
Ghosh, B. & Agarwal, K. Viewing life without labels under optical microscopes. Commun. Biol. 6, 559 (2023).
Shaked, N. T., Boppart, S. A., Wang, L. V. & Popp, J. Label-free biomedical optical imaging. Nat. Photon. 17, 1031â1041 (2023).
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 12, 578â589 (2018).
Ledwig, P. & Robles, F. E. Epi-mode tomographic quantitative phase imaging in thick scattering samples. Biomed. Opt. Express 10, 3605â3621 (2019).
Lee, M. J. et al. Long-term three-dimensional high-resolution imaging of live unlabeled small intestinal organoids using low-coherence holotomography. Preprint at bioRxiv https://doi.org/10.1101/2023.09.16.558039 (2023).
Hugonnet, H. et al. Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution. Adv. Photon. 3, 026004 (2021).
Merola, F. et al. Tomographic flow cytometry by digital holography. Light Sci. Appl. 6, e16241 (2017).
Sung, Y. et al. Three-dimensional holographic refractive-index measurement of continuously flowing cells in a microfluidic channel. Phys. Rev. Appl. 1, 014002 (2014).
Pirone, D. et al. Stain-free identification of cell nuclei using tomographic phase microscopy in flow cytometry. Nat. Photon. 16, 851â859 (2022).
Lee, C. et al. Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. Lab Chip 21, 494â501 (2021).
Tebon, P. J. et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat. Commun. 14, 3168 (2023).
Jo, Y. et al. Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning. Nat. Cell Biol. 23, 1329â1337 (2021).
Yasuhiko, O. & Takeuchi, K. In-silico clearing approach for deep refractive index tomography by partial reconstruction and wave-backpropagation. Light Sci. Appl. 12, 101 (2023).
Park, J. et al. Quantification of structural heterogeneity in H&E stained clear cell renal cell carcinoma using refractive index tomography. Biomed. Opt. Express 14, 1071â1081 (2023).
Lee, A. J. et al. Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. Biomed. Opt. Express 12, 6928â6939 (2021).
Wang, Z. et al. Spatial light interference tomography (SLIT). Opt. Express 19, 19907â19918 (2011).
Oh, J. et al. Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomed. Opt. Express 11, 1257â1267 (2020).
Kim, G. et al. Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. Light Sci. Appl. 11, 190 (2022).
Wolf, E. Three-dimensional structure determination of semi-transparent objects from holographic data. Opt. Commun. 1, 153â156 (1969).
Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (SIAM, 2001).
Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156â160 (1982).
Yamaguchi, I. & Zhang, T. Phase-shifting digital holography. Opt. Lett. 22, 1268â1270 (1997).
Kim, K. et al. Diffraction optical tomography using a quantitative phase imaging unit. Opt. Lett. 39, 6935â6938 (2014).
ZdaÅkowski, P. et al. Common-path intrinsically achromatic optical diffraction tomography. Biomed. Opt. Express 12, 4219â4234 (2021).
Kim, Y. et al. Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells. Opt. Express 22, 10398â10407 (2014).
Bon, P., Maucort, G., Wattellier, B. & Monneret, S. Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells. Opt. Express 17, 13080â13094 (2009).
Baek, Y. & Park, Y. Intensity-based holographic imaging via space-domain KramersâKronig relations. Nat. Photon. 15, 354â360 (2021).
Ling, R., Tahir, W., Lin, H.-Y., Lee, H. & Tian, L. High-throughput intensity diffraction tomography with a computational microscope. Biomed. Opt. Express 9, 2130â2141 (2018).
Gbur, G. & Wolf, E. Hybrid diffraction tomography without phase information. J. Opt. Soc. Am. A 19, 2194â2202 (2002).
Lee, J. et al. High-precision and low-noise dielectric tensor tomography using a micro-electromechanical system mirror. Opt. Express 32, 23171â23179 (2024).
Choi, W. et al. Tomographic phase microscopy. Nat. Methods 4, 717â719 (2007).
Lauer, V. New approach to optical diffraction tomography yielding a vector equation of diffraction tomography and a novel tomographic microscope. J. Microsc. 205, 165â176 (2002).
Kim, K. et al. High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. J. Biomed. Opt. 19, 011005 (2014).
Park, C., Lee, K., Baek, Y. & Park, Y. Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light modulator. Opt. Express 28, 39649â39659 (2020).
Shin, S., Kim, K., Yoon, J. & Park, Y. Active illumination using a digital micromirror device for quantitative phase imaging. Opt. Lett. 40, 5407â5410 (2015).
Charrière, F. et al. Cell refractive index tomography by digital holographic microscopy. Opt. Lett. 31, 178â180 (2006).
Habaza, M., Gilboa, B., Roichman, Y. & Shaked, N. T. Tomographic phase microscopy with 180 rotation of live cells in suspension by holographic optical tweezers. Opt. Lett. 40, 1881â1884 (2015).
Lee, K., Shin, S., Yaqoob, Z., So, P. T. C. & Park, Y. Low-coherent optical diffraction tomography by angle-scanning illumination. J. Biophotonics 12, e201800289 (2019).
Streibl, N. Three-dimensional imaging by a microscope. J. Opt. Soc. Am. A 2, 121â127 (1985).
Chen, M., Tian, L. & Waller, L. 3D differential phase contrast microscopy. Biomed. Opt. Express 7, 3940â3950 (2016).
Hugonnet, H., Lee, M. & Park, Y. Optimizing illumination in three-dimensional deconvolution microscopy for accurate refractive index tomography. Opt. Express 29, 6293â6301 (2021).
Soto, J. M., Rodrigo, J. A. & Alieva, T. Label-free quantitative 3D tomographic imaging for partially coherent light microscopy. Opt. Express 25, 15699â15712 (2017).
Kim, T. et al. White-light diffraction tomography of unlabelled live cells. Nat. Photon. 8, 256â263 (2014).
Nguyen, T. H., Kandel, M. E., Rubessa, M., Wheeler, M. B. & Popescu, G. Gradient light interference microscopy for 3D imaging of unlabeled specimens. Nat. Commun. 8, 210 (2017).
Li, J. et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy. Light Sci. Appl. 11, 154 (2022).
Phillips, Z. F., Chen, M. & Waller, L. Single-shot quantitative phase microscopy with color-multiplexed differential phase contrast (cDPC). PLoS ONE 12, e0171228 (2017).
Lee, C. et al. Single-shot refractive index slice imaging using spectrally multiplexed optical transfer function reshaping. Opt. Express 31, 13806â13816 (2023).
Lee, M., Hugonnet, H. & Park, Y. Inverse problem solver for multiple light scattering using modified Born series. Optica 9, 177â182 (2022).
Yasuhiko, O., Takeuchi, K., Yamada, H. & Ueda, Y. Multiple-scattering suppressive refractive index tomography for the label-free quantitative assessment of multicellular spheroids. Biomed. Opt. Express 13, 962â979 (2022).
Bruning, J. H. et al. Digital wavefront measuring interferometer for testing optical surfaces and lenses. Appl. Opt. 13, 2693â2703 (1974).
Born, M. & Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light 7th edn (Cambridge Univ. Press, 1999).
Sung, Y. et al. Optical diffraction tomography for high resolution live cell imaging. Opt. Express 17, 266â277 (2009).
Rienzi, L., Vajta, G. & Ubaldi, F. Predictive value of oocyte morphology in human IVF: a systematic review of the literature. Hum. Reprod. Update 17, 34â45 (2010).
Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2012).
Shin, S. et al. Tomographic measurement of dielectric tensors at optical frequency. Nat. Mater. 21, 317â324 (2022).
Saba, A., Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. Polarization-sensitive optical diffraction tomography. Optica 8, 402â408 (2021).
Yeh, L.-H. et al. uPTI: uniaxial permittivity tensor imaging of intrinsic density and anisotropy. in Biophotonic Congress 2021 NM3C.4 (Optica Publishing Group, 2021).
Jenkins, M. H. & Gaylord, T. K. Three-dimensional quantitative phase imaging via tomographic deconvolution phase microscopy. Appl. Opt. 54, 9213â9227 (2015).
Hugonnet, H., Lee, M. J. & Park, Y. K. Quantitative phase and refractive index imaging of 3D objects via optical transfer function reshaping. Opt. Express 30, 13802â13809 (2022).
Bon, P., Aknoun, S., Monneret, S. & Wattellier, B. Enhanced 3D spatial resolution in quantitative phase microscopy using spatially incoherent illumination. Opt. Express 22, 8654â8671 (2014).
Lim, J., Ayoub, A. B., Antoine, E. E. & Psaltis, D. High-fidelity optical diffraction tomography of multiple scattering samples. Light Sci. Appl. 8, 82 (2019).
Kamilov, U. S. et al. Learning approach to optical tomography. Optica 2, 517â522 (2015).
Pham, T.-A. et al. Versatile reconstruction framework for diffraction tomography with intensity measurements and multiple scattering. Opt. Express 26, 2749â2763 (2018).
Chen, M., Ren, D., Liu, H.-Y., Chowdhury, S. & Waller, L. Multi-layer born multiple-scattering model for 3D phase microscopy. Optica 7, 394â403 (2020).
Soubies, E., Pham, T.-A. & Unser, M. Efficient inversion of multiple-scattering model for optical diffraction tomography. Opt. Express 25, 21786â21800 (2017).
Hugonnet, H., Lee, M., Shin, S. & Park, Y. Vectorial inverse scattering for dielectric tensor tomography: overcoming challenges of reconstruction of highly scattering birefringent samples. Opt. Express 31, 29654â29663 (2023).
Lim, J. et al. Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Opt. Express 23, 16933â16948 (2015).
Gerchberg, R. Super-resolution through error energy reduction. Opt. Acta Int. J. Opt. 21, 709â720 (1974).
LaRoque, S. J., Sidky, E. Y. & Pan, X. Accurate image reconstruction from few-view and limited-angle data in diffraction tomography. J. Opt. Soc. Am. A 25, 1772â1782 (2008).
Lustig, M., Donoho, D. & Pauly, J. M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58, 1182â1195 (2007).
Rudin, L. I., Osher, S. & Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonli. Phenom. 60, 259â268 (1992).
Lefkimmiatis, S., Ward, J. P. & Unser, M. Hessian Schatten-norm regularization for linear inverse problems. IEEE Trans. Image Process. 22, 1873â1888 (2013).
Pham, T.-A et al. Three-dimensional optical diffraction tomography with LippmannâSchwinger model. IEEE Trans. Comput. Imaging 6, 727â738 (2020).
Delaney, A. H. & Bresler, Y. Globally convergent edge-preserving regularized reconstruction: an application to limited-angle tomography. IEEE Trans. Image Process. 7, 204â221 (1998).
Sung, Y., Choi, W., Lue, N., Dasari, R. R. & Yaqoob, Z. Stain-free quantification of chromosomes in live cells using regularized tomographic phase microscopy. PLoS ONE 7, e49502 (2012).
Charbonnier, P., Blanc-Féraud, L., Aubert, G. & Barlaud, M. Deterministic edge-preserving regularization in computed imaging. IEEE Trans. Image Process. 6, 298â311 (1997).
Krauze, W. Optical diffraction tomography with finite object support for the minimization of missing cone artifacts. Biomed. Opt. Express 11, 1919â1926 (2020).
Hugonnet, H., Shin, S. & Park, Y. Regularization of dielectric tensor tomography. Opt. Express 31, 3774â3783 (2023).
Chung, H., Huh, J., Kim, G., Park, Y. K. & Ye, J. C. Missing cone artifact removal in ODT using unsupervised deep learning in the projection domain. IEEE Trans. Comput. Imaging 7, 747â758 (2021).
Zhou, K. C. & Horstmeyer, R. Diffraction tomography with a deep image prior. Opt. Express 28, 12872â12896 (2020).
Ryu, D. et al. DeepRegularizer: rapid resolution enhancement of tomographic imaging using deep learning. IEEE Trans. Med. Imaging 40, 1508â1518 (2021).
Yang, F., Pham, T.-A, Gupta, H., Unser, M. & Ma, J. Deep-learning projector for optical diffraction tomography. Opt. Express 28, 3905â3921 (2020).
Tam, K. C. & Perez-Mendez, V. Tomographical imaging with limited-angle input. J. Opt. Soc. Am. 71, 582â592 (1981).
Medoff, B. P., Brody, W. R., Nassi, M. & Macovski, A. Iterative convolution backprojection algorithms for image reconstruction from limited data. J. Opt. Soc. Am. 73, 1493â1500 (1983).
McNally, J. G., Preza, C., Conchello, J.-A. & Thomas, L. J. Artifacts in computational optical-sectioning microscopy. J. Opt. Soc. Am. A 11, 1056â1067 (1994).
Andersen, A. H. & Kak, A. C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm. Ultrason. Imaging 6, 81â94 (1984).
Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413â431 (2003).
Moser, S., Jesacher, A. & Ritsch-Marte, M. Efficient and accurate intensity diffraction tomography of multiple-scattering samples. Opt. Express 31, 18274â18289 (2023).
Xu, J., Zhao, Y., Li, H. & Zhang, P. An image reconstruction model regularized by edge-preserving diffusion and smoothing for limited-angle computed tomography. Inverse Probl. 35, 085004 (2019).
Chen, M., Mi, D., He, P., Deng, L. & Wei, B. A CT reconstruction algorithm based on L 1/2 regularization. Comput. Math. Methods Med. 2014, 862910 (2014).
Yu, W. & Zeng, L. â0 gradient minimization based image reconstruction for limited-angle computed tomography. PLoS ONE 10, e0130793 (2015).
Deng, X., Liu, X., & Li, H. Limited-angle CT Reconstruction with âp Regularization. in Proceedings of the Third International Symposium on Image Computing and Digital Medicine 182â186 (ACM, 2019).
Zuo, C., Sun, J., Li, J., Asundi, A. & Chen, Q. Wide-field high-resolution 3D microscopy with Fourier ptychographic diffraction tomography. Opt. Lasers Eng. 128, 106003 (2020).
Horstmeyer, R., Chung, J., Ou, X., Zheng, G. & Yang, C. Diffraction tomography with Fourier ptychography. Optica 3, 827â835 (2016).
Syga, Å., Spakman, D., Punter, C. M. & Poolman, B. Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking. Sci. Rep. 8, 1â12 (2018).
Lee, P. J., Helman, N. C., Lim, W. A. & Hung, P. J. A microfluidic system for dynamic yeast cell imaging. Biotechniques 44, 91â95 (2008).
Lee, S. S., Vizcarra, I. A., Huberts, D. H., Lee, L. P. & Heinemann, M. Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc. Natl Acad. Sci. USA 109, 4916â4920 (2012).
Shin, J., Kim, G., Park, J., Lee, M. & Park, Y. Long-term label-free assessments of individual bacteria using three-dimensional quantitative phase imaging and hydrogel-based immobilization. Sci. Rep. 13, 46 (2023).
Peddie, C. J. et al. Volume electron microscopy. Nat. Rev. Methods Primers 2, 51 (2022).
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).
Seifert, T. S. et al. Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope. Sci. Adv. 6, eabc5511 (2020).
Jensen, E. C. Use of fluorescent probes: their effect on cell biology and limitations. Anat. Rec. 295, 2031â2036 (2012).
Kim, K. et al. Optical diffraction tomography techniques for the study of cell pathophysiology. J. Biomed. Photon. Eng. 2, 020201 (2016).
Elmer-Dixon, M. M. & Bowler, B. E. Rapid quantification of vesicle concentration for DOPG/DOPC and cardiolipin/DOPC mixed lipid systems of variable composition. Anal. Biochem. 553, 12â14 (2018).
Tasic, A. Z., Djordjevic, B. D., Grozdanic, D. K. & Radojkovic, N. Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J. Chem. Eng. Data 37, 310â313 (1992).
Kim, K. et al. Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Sci. Rep. 6, 36815 (2016).
Rodrigo, J. A., Soto, J. M., & Alieva, T. Fast label-free optical diffraction tomography compatible with conventional wide-field microscopes. Optical Methods for Inspection, Characterization, and Imaging of Biomaterials IV 11060, 139â148 (2019).
Lee, S. et al. Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Sci. Rep. 7, 1039 (2017).
Pachitariu, M. & Stringer, C. Cellpose 2.0: how to train your own model. Nat. Methods 19, 1634â1641 (2022).
Ma, J. et al. Segment anything in medical images. Nat. Commun. 15, 654 (2024).
Berg, S. et al. ilastik: interactive machine learning for (bio) image analysis. Nat. Methods 16, 1226â1232 (2019).
Barer, R. & Tkaczyk, S. Refractive index of concentrated protein solutions. Nature 173, 821â822 (1954).
Barer, R. Refractometry and interferometry of living cells. J. Opt. Soc. Am. 47, 545â556 (1957).
Lee, S. Y., Park, H. J., Best-Popescu, C., Jang, S. & Park, Y. K. The effects of ethanol on the morphological and biochemical properties of individual human red blood cells. PLoS ONE 10, e0145327 (2015).
Hur, J., Kim, K., Lee, S., Park, H. & Park, Y. Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Sci. Rep. 7, 9306 (2017).
Lee, H. J., Lee, S., Park, H., Park, Y. & Shin, J. Three-dimensional shapes and cell deformability of rat red blood cells during and after asphyxial cardiac arrest. Emerg. Med. Int. 2019, 6027236 (2019).
Choi, S. Y., Oh, J., Jung, J., Park, Y. & Lee, S. Y. Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state. Proc. Natl Acad. Sci. USA 118, e2103956118 (2021).
Park, C., Shin, S. & Park, Y. Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. J. Opt. Soc. Am. A 35, 1891â1898 (2018).
Schürmann, M. et al. Threeâdimensional correlative singleâcell imaging utilizing fluorescence and refractive index tomography. J. Biophotonics 11, e201700145 (2018).
Kim, K. & Guck, J. The relative densities of cytoplasm and nuclear compartments are robust against strong perturbation. Biophys. J. 119, 1946â1957 (2020).
Bakhshandeh, S. et al. Optical quantification of intracellular mass density and cell mechanics in 3D mechanical confinement. Soft Matter 17, 853â862 (2021).
Roffay, C. et al. Passive coupling of membrane tension and cell volume during active response of cells to osmosis. Proc. Natl Acad. Sci. USA 118, e2103228118 (2021).
Yoon, J. et al. Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomed. Opt. Express 6, 3865â3875 (2015).
Banani, S. F., Lee, H. O., Hyman, A. A. & Rosen, M. K. Biomolecular condensates: organizers of cellular biochemistry. Nat. Rev. Mol. Cell Biol. 18, 285â298 (2017).
Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).
Kim, T.-K., Lee, B.-W., Fujii, F., Kim, J. K. & Pack, C.-G. Physicochemical properties of nucleoli in live cells analyzed by label-free optical diffraction tomography. Cells 8, 699 (2019).
Kim, Y. et al. Characterizing organelles in live stem cells using label-free optical diffraction tomography. Mol. Cell 44, 851 (2021).
Kim, T.-K. et al. Mitotic chromosomes in live cells characterized using high-speed and label-free optical diffraction tomography. Cells 8, 1368 (2019).
Biswas, A., Kim, K., Cojoc, G., Guck, J. & Reber, S. The Xenopus spindle is as dense as the surrounding cytoplasm. Dev. Cell 56, 967â975.e5 (2021).
Sandoz, P. A., Tremblay, C., van der Goot, F. G. & Frechin, M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 17, e3000553 (2019).
Dong, D. et al. Super-resolution fluorescence-assisted diffraction computational tomography reveals the three-dimensional landscape of the cellular organelle interactome. Light Sci. Appl. 9, 11 (2020).
Kim, K. et al. Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomed. Opt. Express 8, 5688â5697 (2017).
Simon, B., Debailleul, M., Beghin, A., Tourneur, Y. & Haeberlé, O. Highâresolution tomographic diffractive microscopy of biological samples. J. Biophoton. 3, 462â467 (2010).
Chowdhury, S., Eldridge, W. J., Wax, A. & Izatt, J. A. Structured illumination microscopy for dual-modality 3D sub-diffraction resolution fluorescence and refractive-index reconstruction. Biomed. Opt. Express 8, 5776â5793 (2017).
Shin, S., Kim, D., Kim, K. & Park, Y. Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Sci. Rep. 8, 9183 (2018).
Guo, R., Barnea, I. & Shaked, N. T. Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. Biomed. Opt. Express 12, 1869â1881 (2021).
Paidi, S. K. et al. Coarse Raman and optical diffraction tomographic imaging enable label-free phenotyping of isogenic breast cancer cells of varying metastatic potential. Biosens. Bioelectron. 175, 112863 (2021).
Hsieh, C.-M. et al. Regulation of lipid droplets in live preadipocytes using optical diffraction tomography and Raman spectroscopy. Opt. Express 27, 22994â23008 (2019).
Oh, S. et al. Protein and lipid mass concentration measurement in tissues by stimulated Raman scattering microscopy. Proc. Natl Acad. Sci. USA 119, e2117938119 (2022).
Bailey, M. et al. Predicting the refractive index of tissue models using light scattering spectroscopy. Appl. Spectrosc. 75, 574â580 (2021).
Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132â1134 (2015).
SchlüÃler, R. et al. Mechanical mapping of spinal cord growth and repair in living zebrafish larvae by Brillouin imaging. Biophys. J. 115, 911â923 (2018).
Hauck, N. et al. PNIPAAm microgels with defined network architecture as temperature sensors in optical stretchers. Mater. Adv. 3, 6179â6190 (2022).
SchlüÃler, R. et al. Correlative all-optical quantification of mass density and mechanics of subcellular compartments with fluorescence specificity. eLife 11, e68490 (2022).
Abuhattum, S. et al. Adipose cells and tissues soften with lipid accumulation while in diabetes adipose tissue stiffens. Sci. Rep. 12, 1â17 (2022).
Kolb, J. et al. Small leucine-rich proteoglycans inhibit CNS regeneration by modifying the structural and mechanical properties of the lesion environment. Nat. Commun. 14, 6814 (2023).
Youle, R. J. & Van Der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062â1065 (2012).
Meyer, P. & Dworkin, J. Applications of fluorescence microscopy to single bacterial cells. Res. Microbiol. 158, 187â194 (2007).
Costerton, J. The role of electron microscopy in the elucidation of bacterial structure and function. Annu. Rev. Microbiol. 33, 459â479 (1979).
Joyner, R. P. et al. A glucose-starvation response regulates the diffusion of macromolecules. eLife 5, e09376 (2016).
Rappaz, B. et al. Noninvasive characterization of the fission yeast cell cycle by monitoring dry mass with digital holographic microscopy. J. Biomed. Opt. 14, 034049 (2009).
Odermatt, P. D. et al. Variations of intracellular density during the cell cycle arise from tip-growth regulation in fission yeast. eLife 10, e64901 (2021).
Randazzo, A. et al. Optimal turnaround time for direct identification of microorganisms by mass spectrometry in blood culture. J. Microbiol. Methods 130, 1â5 (2016).
Mukherjee, A. & Koller, M. Polyhydroxyalkanoate (PHA) biopolyesters â emerging and major products of industrial biotechnology. EuroBiotech. J. 6, 49â60 (2022).
Peters, V. & Rehm, B. H. In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases. FEMS Microbiol. Lett. 248, 93â100 (2005).
Tian, J., Sinskey, A. J. & Stubbe, J. Kinetic studies of polyhydroxybutyrate granule formation in Wautersia eutropha H16 by transmission electron microscopy. J. Bacteriol. 187, 3814â3824 (2005).
Park, H. et al. Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Sci. Rep. 6, 34257 (2016).
Kim, G., Jo, Y., Cho, H., Min, H.-S. & Park, Y. Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosens. Bioelectron. 123, 69â76 (2019).
Yoon, J. et al. Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Sci. Rep. 7, 6654 (2017).
Lee, S., Jang, S. & Park, Y. Measuring three-dimensional dynamics of platelet activation using 3-D quantitative phase imaging. Preprint at bioRxiv https://doi.org/10.1101/827436 (2019).
Stanly, T. A. et al. Quantitative optical diffraction tomography imaging of mouse platelets. Front. Physiol. 11, 568087 (2020).
Mathiowetz, A. J. & Olzmann, J. A. Lipid droplets and cellular lipid flux. Nat. Cell Biol. https://doi.org/10.1038/s41556-024-01364-4 (2024).
Fam, T. K., Klymchenko, A. S. & Collot, M. Recent advances in fluorescent probes for lipid droplets. Materials 11, 1768 (2018).
Kähärä, I. et al. Phototoxicity of BODIPY in long-term imaging can be reduced by intramolecular motion. Photochem. Photobiol. Sci. 21, 1677â1687 (2022).
Bumpus, T. W. & Baskin, J. M. Clickable substrate mimics enable imaging of phospholipase D activity. ACS Cent. Sci. 3, 1070â1077 (2017).
Sandoz, P. A. et al. Label free 3D analysis of organelles in living cells by refractive index shows pre-mitotic organelle spinning in mammalian stem cells. Preprint at bioRxiv https://doi.org/10.1101/407239 (2018).
Silva, L. M. et al. Besnoitia besnoiti infection alters both endogenous cholesterol de novo synthesis and exogenous LDL uptake in host endothelial cells. Sci. Rep. 9, 6650 (2019).
Park, S. et al. Label-free tomographic imaging of lipid droplets in foam cells for machine-learning-assisted therapeutic evaluation of targeted nanodrugs. ACS Nano 14, 1856â1865 (2020).
Nuiyen, A. et al. Lack of Nck1 protein and NckâCD3 interaction caused the increment of lipid content in Jurkat T cells. BMC Mol. Cell Biol. 23, 1â14 (2022).
Brangwynne, C. P. et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324, 1729â1732 (2009).
Li, P. et al. Phase transitions in the assembly of multivalent signalling proteins. Nature 483, 336â340 (2012).
Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215â235 (2021).
Boija, A., Klein, I. A. & Young, R. A. Biomolecular condensates and cancer. Cancer Cell 39, 174â192 (2021).
Mathieu, C., Pappu, R. V. & Taylor, J. P. Beyond aggregation: pathological phase transitions in neurodegenerative disease. Science 370, 56â60 (2020).
Kim, T. et al. RNA-mediated demixing transition of low-density condensates. Nat. Commun. 14, 2425 (2023).
Posey, A. E., Holehouse, A. S. & Pappu, R. V. Methods in Enzymology Vol. 611, 1â30 (Elsevier, 2018).
Hong, Y. et al. Labelâfree quantitative analysis of coacervates via 3D phase imaging. Adv. Opt. Mater. 9, 2100697 (2021).
McCall, P. et al. Label-free composition determination for biomolecular condensates with an arbitrarily large number of components. Preprint at bioRxiv https://doi.org/10.1101/2020.10.25.352823 (2023).
Guillén-Boixet, J. et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation. Cell 181, 346â361.e17 (2020).
Qian, X. et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat. Protoc. 13, 565â580 (2018).
Yoon, K.-J. et al. Zika-virus-encoded NS2A disrupts mammalian cortical neurogenesis by degrading adherens junction proteins. Cell Stem Cell 21, 349â358.e6 (2017).
Nishimura, K. et al. Live-cell imaging of subcellular structures for quantitative evaluation of pluripotent stem cells. Sci. Rep. 9, 1777 (2019).
Orozco-Fuentes, S. et al. Quantification of the morphological characteristics of hESC colonies. Sci. Rep. 9, 17569 (2019).
Wakui, T. et al. Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells. J. Med. Imaging 4, 044003 (2017).
Jiang, H. et al. Reconstruction of bovine spermatozoa substances distribution and morphological differences between Holstein and Korean native cattle using three-dimensional refractive index tomography. Sci. Rep. 9, 8774 (2019).
Dardikman-Yoffe, G., Mirsky, S. K., Barnea, I. & Shaked, N. T. High-resolution 4-D acquisition of freely swimming human sperm cells without staining. Sci. Adv. 6, eaay7619 (2020).
Chowdhury, S. et al. High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6, 1211â1219 (2019).
Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571â584 (2020).
StÄpieÅ, P. et al. Numerical refractive index correction for the stitching procedure in tomographic quantitative phase imaging. Biomed. Opt. Express 13, 5709â5720 (2022).
Yang, F. et al. Robust phase unwrapping via deep image prior for quantitative phase imaging. IEEE Trans. Image Process. 30, 7025â7037 (2021).
Park, D. et al. Cryobiopsy: a breakthrough strategy for clinical utilization of lung cancer organoids. Cells 12, 1854 (2023).
Artegiani, B. et al. Fast and efficient generation of knock-in human organoids using homology-independent CRISPRâCas9 precision genome editing. Nat. Cell Biol. 22, 321â331 (2020).
Roshanzadeh, A. et al. Surface charge-dependent cytotoxicity of plastic nanoparticles in alveolar cells under cyclic stretches. Nano Lett. 20, 7168â7176 (2020).
Larrazabal, C., Hermosilla, C., Taubert, A. & Conejeros, I. 3D holotomographic monitoring of Ca++ dynamics during ionophore-induced Neospora caninum tachyzoite egress from primary bovine host endothelial cells. Parasitol. Res. 121, 1169â1177 (2021).
Balk, M. et al. Cellular SPION uptake and toxicity in various head and neck cancer cell lines. Nanomaterials 11, 726 (2021).
Kim, E. H. et al. Self-luminescent photodynamic therapy using breast cancer targeted proteins. Sci. Adv. 6, eaba3009 (2020).
Park, S. et al. Detection of intracellular monosodium urate crystals in gout synovial fluid using optical diffraction tomography. Sci. Rep. 11, 10019 (2021).
Sohn, M., Lee, J. E., Ahn, M., Park, Y. & Lim, S. Correlation of dynamic membrane fluctuations in red blood cells with diabetes mellitus and cardiovascular risks. Sci. Rep. 11, 1â10 (2021).
Ziemczonok, M., KuÅ, A., Wasylczyk, P. & KujawiÅska, M. 3D-printed biological cell phantom for testing 3D quantitative phase imaging systems. Sci. Rep. 9, 18872 (2019).
Park, Y. et al. Refractive index maps and membrane dynamics of human red blood cells parasitized by Plasmodium falciparum. Proc. Natl Acad. Sci. USA 105, 13730â13735 (2008).
Kim, G. et al. Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Sci. Rep. 8, 9192 (2018).
Choi, I., Lee, K. & Park, Y. Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration. Opt. Express 25, 30771â30779 (2017).
Ryu, D. et al. Deep learning-based optical field screening for robust optical diffraction tomography. Sci. Rep. 9, 15239 (2019).
Choi, G. et al. Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction tomography. Opt. Express 27, 4927â4943 (2019).
Wang, Z. et al. Spatial light interference microscopy (SLIM). Opt. Express 19, 1016â1026 (2011).
Charrière, F. et al. Shot-noise influence on the reconstructed phase image signal-to-noise ratio in digital holographic microscopy. Appl. Opt. 45, 7667â7673 (2006).
Ghiglia, D. C. & Romero, L. A. Minimum Lp-norm two-dimensional phase unwrapping. J. Opt. Soc. Am. A 13, 1999â2013 (1996).
Lee, D. et al. High-fidelity optical diffraction tomography of live organisms using iodixanol refractive index matching. Biomed. Opt. Express 13, 6404â6415 (2022).
Kostencka, J., Kozacki, T., KuÅ, A., Kemper, B. & KujawiÅska, M. Holographic tomography with scanning of illumination: space-domain reconstruction for spatially invariant accuracy. Biomed. Opt. Express 7, 4086â4101 (2016).
Chung, Y. et al. Labelâfree histological analysis of retrieved thrombi in acute ischemic stroke using optical diffraction tomography and deep learning. J. Biophotonics 16, e202300067 (2023).
Zheng, Y. et al. A graph-transformer for whole slide image classification. IEEE Trans. Med. Imaging 41, 3003â3015 (2022).
Lee, Y. et al. Derivation of prognostic contextual histopathological features from whole-slide images of tumours via graph deep learning. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00923-0 (2022).
Schelkens, P. et al. Compression strategies for digital holograms in biomedical and multimedia applications. Light Adv. Manuf. 3, 601â621 (2022).
Lim, J., Ayoub, A. B. & Psaltis, D. Three-dimensional tomography of red blood cells using deep learning. Adv. Photon. 2, 026001 (2020).
Ryu, D. et al. Label-free white blood cell classification using refractive index tomography and deep learning. BME Front. 2021, 9893804 (2021).
Hassaan, M. et al. Breast cancer diagnosis using spatial light interference microscopy. J. Biomed. Opt. 20, 111210 (2015).
Tu, H. et al. Stain-free histopathology by programmable supercontinuum pulses. Nat. Photon. 10, 534â540 (2016).
Lee, M. et al. Label-free optical quantification of structural alterations in Alzheimerâs disease. Sci. Rep. 6, 31034 (2016).
Zhuo, W., Gabriel, P., Krishnarao, V. T. & Andre, B. Tissue refractive index as marker of disease. J. Biomed. Opt. 16, 116017 (2011).
Rivenson, Y. et al. PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning. Light Sci. Appl. 8, 23 (2019).
Costantini, I., Cicchi, R., Silvestri, L., Vanzi, F. & Pavone, F. S. In-vivo and ex-vivo optical clearing methods for biological tissues. Biomed. Opt. Express 10, 5251â5267 (2019).
Kandel, M. E. et al. Reproductive outcomes predicted by phase imaging with computational specificity of spermatozoon ultrastructure. Proc. Natl Acad. Sci. USA 117, 18302â18309 (2020).
Herrero, J. & Meseguer, M. Selection of high potential embryos using time-lapse imaging: the era of morphokinetics. Fertil. Steril. 99, 1030â1034 (2013).
Dimitriadis, I., Zaninovic, N., Badiola, A. C. & Bormann, C. L. Artificial intelligence in the embryology laboratory: a review. Reprod. BioMedicine Online 44, 435â448 (2022).
Barnes, J. et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digital Health 5, e28âe40 (2023).
Acknowledgements
This work was supported by the National Research Foundation of Korea (2015R1A3A2066550, 2022M3H4A1A02074314), Institute for Information and Communications Technology Planning and Evaluation (IITP; 2021-0-00745) grant funded by the Ministry of Science and ICT, Republic of Korea, the Korea Health Technology R&D Project through the Korea Health Industry Development Institute, funded by the Ministry of Health and Welfare, Republic of Korea (HI21C0977, HR22C1605), the Korean Fund for Regenerative Medicine (KFRM) grant funded by the Korea government (the Ministry of Science and ICT and the Ministry of Health & Welfare) (21A0101L0), Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Republic of Korea (RS-2023-00241278).
Author information
Authors and Affiliations
Contributions
Introduction (Y.K.P. and G.K.); Experimentation (Y.K.P. and H.H.); Results (Y.K.P., G.K., H.H., K.K., J.-H.L., S.S.L., J.H., C.L., H.P., K.-J.Y., Y.S., G.C., I.H., L.M., J.H.K., T.H.H., S.L., P.O., B.-K.K. and J.G.); Applications (Y.K.P., G.K., K.K., J.-H.L., S.S.L., J.H., C.L., H.P., K.-J.Y., Y.S., G.C., I.H., L.M., J.H.K., T.H.H., S.L., P.O., B.-K.K. and J.G.); Reproducibility and data deposition (Y.K.P. and G.K.); Limitations and optimizations (Y.K.P. and H.H.); Outlook (Y.K.P. and G.K.); overview of the Primer (Y.K.P.).
Corresponding author
Ethics declarations
Competing interests
H.H., K.K. and Y.K.P. have financial interests in Tomocube Inc., a company that commercializes holotomography instruments. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Kevin Tsia, Thomas Zangle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisherâs note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Biomolecular condensates
-
Membrane-less assemblies of proteins and nucleic acids, characterized by inhomogeneous, non-stoichiometric molecular arrangements, encompassing structures such as nucleoli, nuclear speckles, heterochromatin, cytoplasmic stress granules, germ granules and others.
- Coherent HT
-
A holotomography (HT) technique that uses a coherent light source such as a laser for angle-scanned illumination.
- Coherent light illumination
-
Light with well-defined propagation angle that can be described by a plane wave.
- Fourier diffraction theorem
-
A theorem that states that the Fourier transform of the aperture function of an object is proportional to the far-field diffraction pattern, linking the spatial domain with the frequency domain and enabling the reconstruction of 3D refractive index tomogram via the analysis inverse wave scattering and propagation.
- KramersâKronig relations
-
A fundamental principle in physics that describes the relationship between the real and imaginary parts of a complex function, used in holotomography to retrieve phase information from intensity measurements.
- Lipid droplets
-
Subcellular organelles primarily involved in the storage and regulation of lipids, serving as energy reservoirs and playing a role in cellular lipid metabolism and signalling pathways within cells.
- MachâZehnder interferometric techniques
-
Optical techniques that split a laser beam into two distinct paths, which are then recombined to form interference patterns, providing an optical field with detailed amplitude and phase information.
- Missing cone problem
-
The issue in tomographic imaging in which certain angles cannot be sampled owing to geometric or physical constraints, resulting in a loss of information and potentially leading to inaccuracies in the reconstructed images.
- Non-negativity
-
In regularization algorithms addressing the missing cone problem, the non-negativity is a constraint applied during reconstruction that ensures all predicted values for the missing data are greater than or equal to zero.
- Refractive index
-
A dimensionless number given by the ratio of speed of light in a medium to that in vacuum.
- Spatially low-coherence HT
-
A holotomography (HT) technique that exploits spatially low-coherent light source for illumination and axially scans the sample.
- Temporally low-coherence HT
-
A holotomography (HT) technique that exploits temporally low-coherent light sources such as light-emitting diode for angle-scanned illumination.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Kim, G., Hugonnet, H., Kim, K. et al. Holotomography. Nat Rev Methods Primers 4, 51 (2024). https://doi.org/10.1038/s43586-024-00327-1
Accepted:
Published:
DOI: https://doi.org/10.1038/s43586-024-00327-1
This article is cited by
-
Integrating holotomography and deep learning for rapid detection of NPM1 mutations in AML
Scientific Reports (2024)