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equations and data visualization. These integrative approaches chart
the key components and interactions of biological systems over scales
ranging from single pathways to whole cells to entire populations of
individuals. Major applications of systems biology to biomedical
research are to identify genetic risk factors for disease, allow for
model-based personalized diagnostics and treatment regimens and
suggest new avenues for drug discovery.

Systems biology is the study of biology through systematic perturbation,
global read-out of the multifaceted response and integration of these
data to formulate predictive models'. Here, we highlight the key steps

in the systems biology approach, with a focus on how global data sets
are assembled into models of system structure and function. Techniques
for model assembly span many layers of abstraction, including statistical
mining, alignment across data sets, probabilistic inference, differential

Model assembly by data synthesis and integration Network visualization Pharmaceutical and clinical endpoints
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descriptive, predictive and executable.

Genetic risk factors

Genetic association studies link
genomic loci to disease risk but
may fall short of pinpointing the
causal gene or variant.
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Model refinement and validation

An iterative process by which cellular models
are refined based on the goodness-of-fit
between predictions and data, giving rise to
further experimentation.
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Meeting the challenges of an integrated approach

Agilent is uniquely positioned to help scientists overcome the technical and
logistical challenges of an integrated approach to biology and generate the
deeper insights that come from taking a broader view of biological systems.

Simplified data collection. With products and expertise across the four major
omics — genomics, transcriptomics, proteomics and metabolomics — and
automation platforms for more reproducible results with less hands-on time,
we offer researchers the tools they need to obtain reliable, high-quality data.

Cause—-effect relationships

Genetic perturbation (gene

knockout, RNAI) followed by
phenotyping (microarrays,
cellularimaging); trans eQTLs
(expression quantitative trait loci)

Powerful data analysis, visualization and integration. Our bioinformatics
tools are flexible and easy-to-use, implementing both in-house and
publically available algorithms for rigorous analysis, visualization and

integration of your data.

Through our collaborations with leading omics scientists, we are converting
the latest technological advances into robust products that provide clear
and reproducible results, leading you to answers you can trust.

See the full picture with Agilent’s multi omics solutions for integrated
biology — visit www.agilent.com/lifesciences/biology.
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pathways affected by an
existing drug, either to predict
the mode of action or to suggest
drug repurposing in which drugs
developed for one purpose can
be reused to treat related
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