
In recent years, the study of Systemic Lupus Erythemato-
sus (SLE) patients has revealed a central role for Interferon 
alpha (IFN-α) in disease pathogenesis. Furthermore, endog-
enous nucleic acids and immune complexes (IC) activate 
Toll-Like Receptors (TLRs) and provide an amplifi cation 
loop for Type I IFN production by plasmacytoid dendritic 
cells (pDCs) and for B cell activation in SLE. Indeed, a se-
ries of host factors have been recently described that modify 

self nucleic acids to gain entrance into endosomal compart-
ments within pDCs, where they activate interferogenic TLR 
signalling. The unabated production of IFN-α induces the 
transcription of molecules that further contribute to amplify 
this pathogenic loop. Polymorphisms in genes controlling 
Type I IFN production or its downstream signaling pathway, 
such as IRF5, have been recently reported as conferring ge-
netic susceptibility to SLE. 
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A. The central role of Type I IFN in SLE. 
Under the steady state, immature myeloid dendritic cells (DCs) capture apop-
totic bodies and present their autoantigens, without costimulatory molecules, 
to autoreactive T lymphocytes. This results in either their deletion or in the ex-
pansion of regulatory T cells.  Upon exposure to environmental (i.e. viruses) 
and/or endogenous (i.e. nucleic acid-containing immune complexes) triggers, 
pDCs from Systemic Lupus Erythematosus (SLE) patients produce IFN-α in 
a sustained fashion. IFN-α activates myeloid DCs, which express co-stimula-
tory molecules and trigger the expansion and differentiation of autoreactive 
CD4+ and CD8+ T cells, and possibly mature B cells, into autoreactive effec-
tors.  Cytotoxic T cells kill tissue targets thereby generating nucleosomes and 
granzyme B-dependent autoantigen fragments, which further feed the auto-
immune process. B cell tolerance check points are defective in SLE patients, 
leading to the expansion of anti-nuclear antibody expressing B cells. IFN-α,  
together with other products of activated pDCs such as IL-6, drive these auto-
reactive B cells to differentiate into plasma cells that secrete autoantibodies. 
DNA and RNA-containing immune complexes can further activate pDCs to 
release IFN-α, amplifying this pathogenic loop. IFN-α also directly promotes 
abnormal vasculogenesis, which might contribute to the development of pre-
mature atherosclerosis in SLE.

C. IFN-α signals through a heterodimer of IFN  receptor 1 
(IFNAR1) and IFNAR2. 
Following binding by Type I IFNs, signal transduction is initiated by pre-as-
sociated tyrosine kinases (JAK1 and TYK2 (tyrosine kinase 2)), which phos-
phorylate IFNAR1 leading to the recruitment and phosphorylation of the signal 
transducers and activators of transcription (STAT1 and STAT2). STAT het-
erodimers associate with IFN-regulatory factor 9 (IRF9) to form IFN-stimu-
lated gene factor 3 (ISGF3). These complexes translocate to the nucleus to 
induce IFN-stimulated genes from IFN-stimulated response elements (ISREs). 
However divergence from this simplifi ed signaling pathway can occur as Type 
I IFNs may elicit STAT homodimerization, and can also activate other STAT 
proteins. In addition to classic anti-viral proteins (i.e. ISG15, IFN-stimulated 
protein of 15 kDa; Mx, myxovirus resistance; OAS, 2’,5’-oligoadenylate syn-
thetase; PKR, protein kinase R), Type I IFN induces the transcription of genes 
that might potentially play a role in SLE pathogenesis. These include, among 
others, i) endogenous ligands (autoantigens such as Ro/SSA) and receptors 
(TLR7) that trigger Type I IFN production, ii) signaling molecules within the 
Type I IFN pathway (i.e. IRF7 and IRF5), iii) B cell activators (BlyS/BAFF) 
and iv) pro-apoptotic molecules (Fas, TRAIL) that would increase the anti-
genic (nucleosome) load and therefore contribute to the generation of Type I 
IFN-inducing TLR-ligands. 

B. In SLE, both environmental (i.e. virus-derived) as well 
as endogenous (i.e dsDNA, snRPs) nucleic acids can trig-
ger Type I IFN secretion from pDCs.  
Nucleic acids of endogenous origin are released upon cell death (i.e. kerati-
nocyte exposure to UV light). Several host factors have been implicated in 
converting self DNA into triggers of pDC activation, including DNA and/or 
RNA-containing immune complexes, the antimicrobial peptide LL37 and high 
mobility group box 1 protein (HMGB1). A direct link between LL37 and pDC 
activation in psoriasis was recently described.  LL37 binds self-DNA frag-
ments forming large aggregated structures that are resistant to extracellular 
nuclease degradation. Self-DNA–LL37 complexes can enter pDCs through 
lipid-raft  endocytosis. Aggregated self-DNA–LL37 complexes are retained in 
the early endosomes of pDCs, and as described for A-type CpG ODNs, trigger 
the TLR9–MyD88–IRF7 pathway of Type I IFN production without inducing 
pDC maturation. Dying cells also release HMGB1, which binds aggregated 
self-DNA–LL37 complexes and promotes their association with Toll-Like 
Receptor 9 (TLR9) in early endosomes by binding to RAGE (receptor for 
advanced glycation end-products). In SLE, DNA-specifi c IgG autoantibodies 
produced by autoreactive B cells bind self-DNA–LL37–HMGB1 complexes 
and increase their translocation to TLR9-containing early endosomes through 
binding to FcγRIIA (low-affi nity receptor for IgG). Similar mechanisms are 
likely to operate to induce Type I IFN production by pDCs in response to 
RNA-containing complexes, which in turn will bind TLR7 in early endo-
somes. Whether snRNPs associate with other endogenous proteins and can be 
internalized into early endosomes via lipid rafts is not known.

Prolonged TLR9/TLR7 signaling in the early endosome activates MyD88 
(myeloid differentiation primary-response gene 88) and IRF7 (interferon-
regulatory factor 7), which translocates to the nucleus and promotes effi cient 
Type I interferon (IFN) transcription. Conversely, nucleic acids adopting less 
complex (linear) conformations quickly traffi c through the early endosomes 
into the more acidic late endosomes or lysosomes. This presumably activates 
a different set of signal mediators, particularly NF-κB (nuclear factor-κB) and 
probably MAPKs (mitogen-activated protein kinases) and IRF5, leading to a 

distinct outcome of pDC activation and maturation and limited 
secretion of Type I IFN. The differential contribution of these 

two pDC cellular compartments to SLE remains to be fully 
elucidated. Late endosomal TLR7 and TLR9 activation by 
nucleic acids internalized via specifi c surface Ig receptors 
is likely to also represent an important mechanism of au-
toreactive B cell activation in SLE.
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BAFF, B cell activating factor; BLK, B cell lymphocyte 
kinase; BLys, B lymphocyte stimulator; FcγRIIA, low af-
fi nity Fc receptor for IgG; HMGB1, high mobility group 
box 1; IFN, interferon; IFNAR, IFN-receptor; IgG, 
immunoglobulin G; IRAK, IL-1R-associated kinase; 
IRF, interferon-regulatory factor; ISGF3, IFN-stimulated 
regulatory factor 3; IL-6, interleukin 6; ISRE, IFN-stimu-
lated response element; ITAM, Immunoreceptor tyrosine-
based activation motif; LAMP1, lysosomal-associated 

membrane protein 1; MAPKs, mitogen-activated protein 
kinases; Mx, myxovirus resistance; MyD88, myeloid dif-
ferentiation primary response gene; NF-κB, nuclear fac-
tor-kappaB; OAS, 2’,5’-oligoadenylate synthetase; Opn, 
osteopontin; pDC, plasmacytoid dendritic cell; PKR, 
protein kinase R; RAGE; receptor for advanced glycation 
end-products; STAT, signal transducers and activators of 
transcription; TAK1, transforming growth factor-β–ac-
tivated kinase 1; TLR, Toll-like receptor; TNF, tumor 
necrosis factor; TRAF, TNF receptor–associated factor.  
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