
Translation

Processing

NS3 protease
inhibitors

Non-structural
protein

NS3

Viral receptor
engagement

E1 or E2 
receptor
binding

Cytoplasm

Endocytosis Fusion

Viral core 
release

Viral collection 
or contact

E1
E2

Core

RNA

RNA 
replication

Nucleus

Transport 
from ER

Viral release

RNA
capture

Lipid droplet

Viral budding and 
particle formation

Core

3′ 5′  

NS3 NS5B 
Helicase
inhibitors

Endoplasmic
reticulum

Polymerase
inhibitors

Core E15′ UTR E2 p7 NS2

Non-structural (viral replication) genes

The HCV genome and polyprotein

NS3 NS5BNS5ANS4BNS4A

NS3 protease cleavage sitesNS2/3 protease 
cleavage site

3′ UTR

Envelope genes

Host protease cleavage sites

Inhibition of the replicative cycle of hepatitis C virus
Richard Bethell, George Kukolj and Peter W. White

It is estimated that 170 million people globally are infected with the 
hepatitis C virus (HCV). Chronic HCV infection can result in the development 
of liver cirrhosis and hepatocellular carcinoma, and therefore represents a 
substantial public health problem. Current treatment for patients infected 
with HCV is the combination of pegylated interferon-g and ribavirin, a 
treatment that can achieve a sustained virological response, that is, a long-
term clearance of detectable virus from the plasma. However, both drugs 

have poor safety profiles, resulting in their contraindication in many patients, 
and have limited effectiveness, especially against HCV genotype 1. As a 
result, there has been considerable interest over the past 15 years in 
identifying specific inhibitors of HCV replication that could be used either  
as an adjunct to current therapy or in place of it. This poster summarizes the 
replicative cycle of HCV and the main targets for specific antiviral agents 
that are currently being developed.

Other possible drug targets
All proteins encoded in the small HCV genome are essential for 
viral propagation. Small molecules that directly or indirectly 
inhibit NS4A and NS5A function are in development, although 
no direct interactions of the molecules with these proteins have 
been demonstrated yet. Small molecules that bind to the 
internal ribosome entry site (IRES), p7 and NS4B have also been 
reported, but none has yet reached development; development 
of antisense RNAs specific for the IRES has not yet led to a  
proof of principle in clinical studies. In addition, a number of 
host-encoded targets have been identified, of which cyclophilin A  
is the most advanced. Non-immunosuppressive analogues of 
cyclosporin A that form complexes with cyclophilin A and  
do not inhibit calcineurin have clinical antiviral activity  
against HCV10.
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RNA replication targets
NS3 protease helicase. The amino-terminal third of the NS3 protein possesses serine protease activity that is essential 
for viral replication. This is the target of BILN 2061, the first small molecule inhibitor of HCV to be tested in humans3. 
Two other protease inhibitors, telaprevir and boceprevir, are in Phase III clinical trials and may become the first 
anti-HCV drugs, whereas several other protease inhibitors are in earlier-stage human trials4. The 
carboxy-terminal two-thirds of NS3 constitute the helicase domain, which is also essential for the 
replication of viral RNA. The helicase domain might stimulate the activity of NS5B polymerase, 
resolve RNA secondary structure immediately prior to replication by the polymerase and/
or separate newly synthesized double-stranded RNA into separate positive and negative 
strands. No helicase inhibitors are currently reported in clinical trials or advanced stages  
of preclinical development, although this is an active area of research.

NS5B polymerase. The NS5B RNA-dependent RNA polymerase catalyses viral RNA synthesis and genome replication. 
It shares a common fold with other nucleic acid polymerases with characteristic thumb, finger and palm domains5. A 
well-conserved active site for nucleotide and metal cofactor binding allows for selective incorporation of nucleoside 
analogues, a promising class of anti-HCV compounds. Several pockets form binding sites for allosteric inhibitors 
that interfere with conformational changes required during the initiation of RNA synthesis. 
Two loops (λ1 and λ2) bridge the fingers and the top surface of the thumb domain and 
might regulate RNA binding. Benzimidazole and indole-based inhibitors prevent the 
association of the N-terminal finger loop with the thumb domain by binding to 
thumb pocket 1, which is situated at the top of the thumb domain. 
Thiophenecarboxylic acid and dihydropyrone-based inhibitors bind to thumb 
pocket 2 at the base of the thumb domain, proximal to thumb pocket 1, and 
induce conformational changes that prevent the initiation of RNA synthesis. 
Two overlapping pockets, palm site 1 and palm site 2, are located near the 
enzyme active site. Palm site 1 binds benzothiadiazine and acylpyrrolidine 
analogues, whereas benzofuran-based derivatives bind to palm site 2.

Palm site 2

Thumb 
site 1

Palm site 1

Active 
site

Thumb site 2

Viral entry targets
Cell surface contact. The heterodimeric E1 and E2 proteins are expressed on a virus envelope that is 
associated with low and very low density lipoprotein (vLDL)1. Initial host cell contact is mediated by 
interaction with the low density lipoprotein receptor and/or glycosaminoglycans. E2 also binds to 
DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) and L-SIGN 
(liver/lymph node-specific intercellular adhesion molecule-3-grabbing integrin), which is expressed on 
hepatic endothelial cells and may augment infection1. The asialoglycoprotein receptor (ASGP-R) may 
also interact with HCV structural proteins. 

High-affinity receptors and entry. The virus subsequently binds to high-affinity receptors, including 
scavenger receptor class B type I (SR-BI) and the tetraspanin protein CD81, through the ecto-domain of 
E2. It then binds to claudin 1 (CLDN1) and occludin1,2, both of which are expressed at tight junctions of 
polarized hepatocytes. Internalization of the virus proceeds through clathrin-dependent endocytosis, 
and viral membrane fusion takes place in the acidified endosome. This releases the viral core into the 
host cytosol, where uncoating and disassembly of the virus capsid releases the RNA genome.

HCV morphogenesis targets
HCV assembly starts with recruitment of the core protein and 
NS5A to the surface of lipid droplets, followed by delivery of 
HCV RNA from the HCV replication complex to the nascent viral 
particle. The subsequent intracellular assembly of HCV particles 
resembles vLDL formation: it takes place at the endoplasmic 
reticulum and requires apolipoprotein B and the microsomal 
triglyceride transfer protein (MTP), and leads to the formation of 
particles with a range of buoyant densities6,7. Those particles with 
a low buoyant density are secreted through the secretory system 
and circulate in association with triglycerides and lipoproteins B 
and E, whereas those with higher buoyant densities appear to be 
targeted for intracellular degradation7. Other HCV proteins, such 
as p7, NS2 and NS3, participate in virus assembly, and could form 
additional targets for therapeutic intervention8,9.
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