This paper presents the detailed evaluation and classification of Surface Electromyogram (SEMG) signals at different upper arm muscles for different operations. After acquiring the data from selected locations, interpretation of signals was done for the estimation of parameters using simulated algorithm. First, different types of arm operations were analysed; then statistical techniques were implemented for investigating muscle force relationships in terms of amplitude estimation. The classification (Artificial Neural Network) based results have been presented for detecting different pre-defined arm motions in order to discriminate SEMG signals. The outcome of research indicates that a neural network classifier performs best with an average classification rate of 92.50%. Finally, the result also inferred the operations which were observed to be easy for arm recognition and the study is a step forward to develop powerful, flexible and efficient prosthetic designs.
Keywords: ANOVA; Myoelectric controls; neural networks; signal processing; simulation; surface electromyogram.