Although high and simulated altitude training has become an increasingly popular training method, no study has investigated the influence of acute hypoxic exposure on balance in team-sport athletes. Therefore, the purpose of this study was to investigate whether acute exposure to normobaric hypoxia is detrimental to balance performance in highly-trained basketball players. Nine elite and nine sub-elite male basketball players participated in a randomized, single-blinded, cross-over study. Subjects performed repeated trials of a single-leg balance test (SLBT) in an altitude chamber in normoxia (NOR; approximately sea level) with FiO2 20.9% and PiO2 ranging from 146.7 to 150.4 mmHg and in normobaric hypoxia (HYP; ~3,800 m above sea level) with FiO2 13.0% and PiO2 ranging from 90.9 to 94.6 mmHg. The SLBT was performed three times: 15 min after entering the environmental chamber in NOR or HYP, then two times more interspersed by 3-min rest. Peripheral oxygen saturation (SpO2) and heart rate (HR) were recorded at four time points: after the initial 15-min rest inside the chamber and immediately after each SLBT. Across the cohort, the balance performance was 7.1% better during NOR than HYP (P < 0.01, = 0.58). However, the performance of the elite group was not impaired by HYP, whereas the sub-elite group performed worse in the HYP condition on both legs (DL: P = 0.02, d = 1.23; NDL: P = 0.01, d = 1.43). SpO2 was lower in HYP than NOR (P < 0.001, = 0.99) with a significant decline over time during HYP. HR was higher in HYP than NOR (P = 0.04, = 0.25) with a significant increase over time. Acute exposure to normobaric hypoxia detrimentally affected the balance performance in sub-elite but not elite basketball players.
Keywords: high altitude training; oxygen saturation; postural control; single-leg balance test; team sports.
Copyright © 2021 Pojskić, Hanstock, Tang and Rodríguez-Zamora.