Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Soroush Karami (University of Illinois at Chicago), Panagiotis Ilia (University of Illinois at Chicago), Konstantinos Solomos (University of Illinois at Chicago), Jason Polakis (University of Illinois at Chicago)

With users becoming increasingly privacy-aware and browser vendors incorporating anti-tracking mechanisms, browser fingerprinting has garnered significant attention. Accordingly, prior work has proposed techniques for identifying browser extensions and using them as part of a device's fingerprint. While previous studies have demonstrated how extensions can be detected through their web accessible resources, there exists a significant gap regarding techniques that indirectly detect extensions through behavioral artifacts. In fact, no prior study has demonstrated that this can be done in an automated fashion. In this paper, we bridge this gap by presenting the first fully automated creation and detection of behavior-based extension fingerprints. We also introduce two novel fingerprinting techniques that monitor extensions' communication patterns, namely outgoing HTTP requests and intra-browser message exchanges. These techniques comprise the core of Carnus, a modular system for the static and dynamic analysis of extensions, which we use to create the largest set of extension fingerprints to date. We leverage our dataset of 29,428 detectable extensions to conduct a comprehensive investigation of extension fingerprinting in realistic settings and demonstrate the practicality of our attack. Our experimental evaluation against a state-of-the-art countermeasure confirms the robustness of our techniques as 87.92% of our behavior-based fingerprints remain effective.

Subsequently, we aim to explore the true extent of the privacy threat that extension fingerprinting poses to users, and present a novel study on the feasibility of inference attacks that reveal private and sensitive user information based on the functionality and nature of their extensions. We first collect over 1.44 million public user reviews of our detectable extensions, which provide a unique macroscopic view of the browser extension ecosystem and enable a more precise evaluation of the discriminatory power of extensions as well as a new deanonymization vector. We also automatically categorize extensions based on the developers' descriptions and identify those that can lead to the inference of personal data (religion, medical issues, etc.). Overall, our research sheds light on previously unexplored dimensions of the privacy threats of extension fingerprinting and highlights the need for more effective countermeasures that can prevent our attacks.

View More Papers

FUSE: Finding File Upload Bugs via Penetration Testing

Taekjin Lee (KAIST, ETRI), Seongil Wi (KAIST), Suyoung Lee (KAIST), Sooel Son (KAIST)

Read More

IMP4GT: IMPersonation Attacks in 4G NeTworks

David Rupprecht (Ruhr University Bochum), Katharina Kohls (Ruhr University Bochum), Thorsten Holz (Ruhr University Bochum), Christina Poepper (NYU Abu Dhabi)

Read More

A Practical Approach for Taking Down Avalanche Botnets Under...

Victor Le Pochat (imec-DistriNet, KU Leuven), Tim Van hamme (imec-DistriNet, KU Leuven), Sourena Maroofi (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Tom Van Goethem (imec-DistriNet, KU Leuven), Davy Preuveneers (imec-DistriNet, KU Leuven), Andrzej Duda (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG), Wouter Joosen (imec-DistriNet, KU Leuven), Maciej Korczyński (Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG)

Read More

Genotype Extraction and False Relative Attacks: Security Risks to...

Peter Ney (University of Washington), Luis Ceze (University of Washington), Tadayoshi Kohno (University of Washington)

Read More