
DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices

Xueqiang Wang1, Kun Sun2, Yuewu Wang1, Jiwu Jing1

1Institute of Information Engineering, CAS
2College of William and Mary

Mon, Feb. 9th, 2015

2/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

3/31

Introduction

 Mobile devices are widely used for work
purposes.

 “51% of end users rely on smartphones to
perform daily business activities.”——Cisco

 “Android hit 84% smartphone share in Q3
2014”——IDC

4/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

5/31

Related Work

 Evolutionary support from Google

 Android Permission

 Coarse-grained

 All-or-nothing

 Lack of run-time configuration

 Device Administration APIs

 Only provide device-level control on password
policy, camera, device wipe, etc.

 Very limited interfaces (43 in KitKat VS 500+ in
BlackBerry)

6/31

Related Work

 Evolutionary support from Google

 Introduction of SEAndroid

 Brings flexible MAC to Android

 Middleware MAC has not been included, even in
Android 5.0

 Unavailable on legacy phones (58.7%<version 4.4)

 Incorporation of Knox APIs

 A large step towards “Android for Enterprise”

 Introduces Knox features into AOSP except
hardware-based ones

 Unavailable on legacy phones (98.4%<version 5.0)

7/31

Related Work

 Possible solutions

 Device OEMs’ API, e.g., SAFE, HTC, 3LM, LG.

 Other solutions based on source code
modification

 Extending permission, e.g., Compac[CODASPY’14].

 Introducing MAC, e.g., FlaskDroid[USENIX Security’13],
SEAndroid[NDSS’13].

 Dynamic taint tracking, e.g., TaintDroid[OSDI’10].

 Data shadowing, e.g., AppFence[CCS’11]

 Portability issue caused by tremendous source code
modification.

8/31

Related Work

 Possible solutions

 Rewriting Android apps

 Dalvik bytecode rewriting, e.g., I-ARM-
Droid[MoST’12]

 Low-level libc interposition, e.g.,
Aurasium[USENIX Security’12]

 On-the-phone instrumentation, e.g.,
AppGuard[TACAS’13]

 Require no modification to smartphone’s firmware
and require no root access

 Lack of isolation between app and monitoring
code.

9/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

10/31

 The system_server
 centralized controller for

middleware permissions

 The client-server architecture
 system services, content

providers, etc.

 Binder IPC
 RPC to services/content

providers

 Intent

 Broadcast

 Messengers

 ashmem

 …

Basic Idea-Middleware

/system/bin/mediaserver

com.android.phone

android.process.acore

android.process.media

……

system_server

configure middleware

permissions

configure middleware

behaviors

 Dynamic Memory Instrumentation

11/31

Basic Idea-Linux

zygote

app1 app2 app3

Activity

Manager

Create process that can:

• read/write sdcard

• access network

• use camera

• read contacts

 The zygote
 centralized controller for Linux

groups (a.k.a. Linux permissions)

 App works based on Linux
system calls.

configure

Linux permissions

configure

Linux behaviors

 Tracing System Calls

12/31

DeepDroid-Middleware Permission

 system_server opens a few interfaces for

middleware permission check.

Permission

Checkinter-

process

Monitoring

Code



Enterprise Policy

Repository

system_server

 Key: Java method interposition

13/31

interpreter



byte code

classes.dex

…

…

dalvik-LinearAlloc

nativeFunc

insns

accessFlags

…

 Method
…

…

…

monitoring

code

libx.so

…

…

DeepDroid-Middleware Permission

14/31

DeepDroid-Middleware Behavior

access to services

Intent

Broadcast

Messenger

ashmem

……

app

libc.so libc.so

system_server android.process.acore

libbinder.so libbinder.so

…

supervise

behaviors

upper
layers

upper
layers

Binder driver

 Transactions between apps and system services
 ioctl(binderFd, BINDER_WRITE_READ, &bwr)

 By tampering Global Offset Table (GOT) of libbinder.so

15/31

DeepDroid-Middleware Behavior

 Synchronous invocation
 E.g., getLastKnownLocation(), getDeviceId()

reply

requests

system process

BR_TRANSACTION

BC_REPLY

pairwise within a

binder thread

interfaces defined in aidl

& in .java

Primitives, IBinder,

FD, Parcelable

16/31

DeepDroid-Middleware Behavior

 Asynchronous invocation
 One-way callbacks, e.g., onLocationChanged()

data callback

get a remote

handle

system process

BC_TRANSACTION

interfaces defined in aidl

or in .java

counterpart recognization

1) servicemanager

2) IBinder instances

Primitives, IBinder, FD,

Parcelable

17/31

--runtime-init

--setuid=10028

--setgid=10028

--setgroups=1015, 3003, 1006, 1007

android.app.ActivityThread

DeepDroid-Linux Permission

 Configure Linux permissions (e.g.,
groups)

system_server

zygote app process

monitoring

fork

1: process

creation request

2: recognize

app

3: reset groups &

track until setuid

18/31

DeepDroid-Linux Behavior

 Configuration on Linux permissions is
irreversible.

 Tracking system calls of Application

Monitoring

Code

App

Process

--

syscall

ptrace

enforce

19/31

DeepDroid-Properties

 Fine-grained access control

 Both permission and behavior level

 Portable

 Based on stable system architecture, e.g.,
system services, permission mechanism, binder.

 Dynamic instrumentation

 Reduce the work on system customization

20/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

21/31

Evaluated Resources

Resource Permission Group Permission
Enforcement

Behavior
Enforcement

IMEI READ_PHONE_STATE package
com.android.phone

Phone # READ_PHONE_STATE package

location ACCESS_FINE_LOCATION package system_server

contacts READ_CONTACTS package android.process.acore

camera CAMERA camera package/
Process Creation

mediaserver

account GET_ACCOUNTS package system_server

logs READ_LOGS log Process Creation
app process

network INTERNET inet package/
Process Creation

SMS SEND_SMS package com.android.phone

22/31

Evaluated Devices

Device Android OS

Nexus S(Samsung) 2.3.6

Sony LT29i 4.1.2
4.2.2

Galaxy Nexus(Samsung) 4.0

Samsung Galaxy Note
II

4.1

Samsung Galaxy Note 3 4.3

Nexus 5(LG) 4.4

Meizu MX II Flyme 3.2
(4.2.1)

Huawei Honor 3c 4.2

23/31

Performance

0

2

4

6

8

10

12

14

16

18

20

phone_state contacts SMS message

m
s

Overhead of Sensitive RPC

Normal Mode (Success) DeepDroid Mode (Success)

Normal Mode (Fail) DeepDroid Mode (Fail)

24/31

Performance

0

20

40

60

80

100

120

MX II LT29i Nexus S

m
s

Zygote Overhead (Time of startService)

Normal Zygote Traced Zygote

25/31

Performance

Normal
Quadrant

Traced
Quadrant

MX II 2508.5 2507.6

LT29i 4653.8 4553.6

Nexus S 1750.0 1705.6

Quadrant Scores

Normal
CaffeineMark

Traced
CaffeineMark

MX II 6367.2 6207.5

LT 29i 14125.5 13998.5

Nexus S 5982.8 5959.9

CaffeineMark Scores

26/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

27/31

Discussion

 Root access
 Required to instrument system components and trace

zygote.

 DeepDroid is a self-contained app and can be easily
inserted as a system component.

 DeepDroid carries little burden on vendor
customization.

 Compared to other solutions
 SEAndroid is enforced on Android 4.4.

 Knox is fully supported only on some Samsung
devices.

 DeepDroid is based on stable architecture of Android,
therefore, it can be easily adopted on phones from
other OEMs and legacy phones.

28/31

Discussion

 policy misuse
 We used software-based scheme to protect policies.

 On future devices, we can adopt some hardware-
based schemes (e.g., TrustZone-based integrity
checking scheme).

29/31

Outline

 Introduction

 Related Work

 DeepDroid

 Evaluation

 Discussion

 Conclusion

30/31

Conclusion

 We propose a dynamic security policy enforcement
scheme named DeepDroid.

 DeepDroid enables fine-grained control on both
permission and apps’ behavior.

 DeepDroid is relatively portable on different
devices compared to direct system customization.

31/31

Thank You

32/31

References
 Compac[CODASPY’14]: “Compac: enforce component-level access

control in android”

 FlaskDroid[USENIX Security’13]: “Flexible and Fine-Grained
Mandatory Access Control on Android for Diverse Security and Privacy
Policies”

 SEAndroid[NDSS’13]: “Security Enhanced (SE) Android: Bringing
Flexible MAC to Android”

 TaintDroid[OSDI’10]: “TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones”

 AppFence[CCS’11]: “These aren't the droids you're looking for:
retrofitting android to protect data from imperious applications”

 I-ARM-Droid[MoST’12]: “I-ARM-Droid: A Rewriting Framework for In-
App Reference Monitors for Android Applications”

 Aurasium[USENIX Security’12]: “Aurasium: Practical Policy
Enforcement for Android Applications”

 AppGuard[TACAS’13]: “AppGuard: Enforcing User Requirements on
Android Apps”

