EDGEMINER: AUTOMATICALLY
DETECTING IMPLICIT CONTROL FLOW
TRANSITIONS THROUGH THE ANDROID
FRAMEWORK

Yinzhi Cao, Yanick Fratantonio, Antonio Bianchi, Manuel Egele,
Christopher Kruegel, Giovanni Vigna, and Yan Chen

Columbia, UCSB, BU, NU

Introduction

Static analysis has been used for security and privacy.
Many analyses rely on the control flow graph.

Challenge in Android: the framework is 8.6 million
lines of code

lgnoring the framework -> incorrect control flow
graph of Android apps

Common cause for imprecision: “callbacks”, e.g., onClick

A Motivating Example

1 public class MainClass {

static String url;

public static void main(String][] args) {
MalComparator mal = new MalComparator();
MainClass.value = 42
Collections.sort(list, mal);
sendlolnternet(MainClass.valuej;

il |
10 public class MalComparator implements Comparable<Object> {
11 publicint compare(Object arg0, Object argl) {
12 MainClass.value = ; gGpSCoords

13 return 0;

14 }

15}

O o JO |1 B W N
—

Existing Approaches

Whole program analysis
State explosion
Pushing existing static analysis systems to their limits
Redundant Efforts (slow-down of static analysis)

Summary-based analysis

Manual summarization: impossible due to the high
volume of callbacks

Heuristic summarization: inaccurate

EdgeMiner: Usage Scenario

Summarize framework: list of registration-callback pairs

Android .
EdgeMiner

Y

Android - . I Analysis
Application 3 Existing Static Analyzers]

Framework
Summary

Concepts

Callback

Necessary condition: a framework method that can be
overridden by an application method

Registration

Necessary condition: a framework method that is
invokable from the application space

A Data Flow

1 public class Collections { Registration Argument
public static void|sort(List list, Comparator|comparator) {

2

3

4 Comparatorm D@%%If\’\?av}’d Data
5

6

} Anobject withthe callback 'OW Analysis
} callback

System Architecture

Android
Framework

EdgeMiner

Class
ierarch

Callback 1

Backward
Dataflow

Potential
Callbacks

Callsites)Ca”baCk 2

Analysis

Implementation

ROP intermediate representation (IR)
Well-suited for static analysis
In SSA form
Integral part of Android SDK
EdgeMiner
Built on top of ROP

Performs backward dataflow analysis
Summarizes implicit control flows through framework

Results

Number of registrations and callbacks

2.3 (APl 10) 10,998 11,044 1,926,543
3.0 (API 11) 12,019 13,391 2,606,763
4.2 (AP117) 21,388 19,647 5,125,472

Results for Android 4.2 at

http://edgeminer.org

Accuracy

False negative

Compare with dynamic approach
Incomplete but accurate

8,195 randomly selected applications
6,906 registration-callback pairs
EdgeMiner finds all pairs

False positive
Manual inspection
Eight false positives out of 200 pairs

Improving FlowDroid

Integration with FlowDroid

Synchronous callbacks: inline invocation
E.g., Collections.sort and Comparator.compare

Asynchronous callbacks: delayed invocation
E.g., setOnClickListener and onClick

Listener 155 576
Callback 19 319
On 3 509
None of the above 4 18,243

Total 181 19,647

Improving FlowDroid — Accuracy

Apps with > 1 privacy leak 285 294 (285 + 9)
Privacy leaks (in total) 46,586 51,418
Apps timeout 48 48

Run 9 new apps in TaintDroid
4 verified, 2 crash, and 3 no leak

Incorrect call graph -> missed privacy leaks

Performance

34.7 seconds one-time loading
Only 1.85% overhead added to FlowDroid

Conclusion

EdgeMiner summarizes implicit control flows in
Android framework

EdgeMiner identifies registration-callback pairs
through backward data flow analysis

Results improve state-of-the-art static Android
analyses
FlowDroid detected 9 additional apps with leaks

Thank you!
Questions?

Results are available at
http://www.edgeminer.org

