
Gracewipe:
Secure and Verifiable Deletion under Coercion

Lianying Zhao and Mohammad Mannan
Concordia Institute for Information Systems Engineering

Concordia University, Montreal, Canada
{z lianyi, mmannan}@ciise.concordia.ca

Abstract—For users in possession of password-protected en-
crypted data in persistent storage (i.e., “data at rest”), an obvious
problem is that the password may be extracted by an adversary
through dictionary attacks or by coercing the user. Techniques
such as multi-level hidden volumes with plausible deniability, or
software/hardware-based full disk encryption (FDE) cannot ade-
quately address such an attacker. For these threats, making data
verifiably inaccessible in a quick fashion may be the preferred
choice, specifically for users such as government/corporate agents,
journalists, and human rights activists with highly confidential
secrets, when caught and interrogated in a hostile territory.
Using secure storage on a Trusted Platform Module (TPM)
and modern CPU’s trusted execution mode (e.g., Intel TXT),
we design Gracewipe to enable secure and verifiable deletion of
encryption keys through a special deletion password. An attacker
cannot distinguish between a deletion and real password. He can
guess the real password to unlock the target encryption key only
through the valid Gracewipe environment; guessing the deletion
password will trigger deletion of the real key. When coerced,
a user can fake compliance, and enter the deletion password;
and then the user can prove to the attacker that Gracewipe has
been executed and the real key is no longer available (through
a TPM quote), hoping that a reasonable adversary then will
find no reason to keep holding the victim, and may even release
her. We implement two prototypes of Gracewipe: software-based
FDE system with plausible deniability (using TrueCrypt with
hidden volume), and hardware-based FDE (using a Seagate self-
encrypting drive (SED)). Our choice of booting Windows at the
end of a Gracewipe session (for the possibility of immediate
adoption), poses some unique challenges. Through the design and
prototypes of Gracewipe, we hope to raise awareness of a special
but critical use-case of FDE systems.

I. INTRODUCTION AND MOTIVATION

Plausibly deniable encryption (PDE) schemes for file stor-
age were proposed more than a decade ago; see Anderson et
al. [5] for the first academic proposal (1998). In terms of real-
world PDE usage, TrueCrypt [54] is possibly the most-widely
used tool, available since 2004. Several other systems also have
been proposed and implemented. All these solutions share an
inherent limitation: an attacker can detect the existence of such
systems (see e.g., TCHunt [3]). A user may provide reasonable

explanation for the existence of such tools or random-looking
free space; e.g., claiming that TrueCrypt is used only as a full-
disk encryption (FDE) tool, no hidden volumes exist; or, the
random data is the after-effect of using tools that write random
data to securely erase a file/disk. However, a coercive attacker
may choose to detain and punish a suspect up until the true
password for the hidden volume is revealed, or up to a time
period as deemed necessary by the attacker. Such coercion
is also known as rubberhose cryptanalysis [37], which is
alleged to be used in some countries (e.g., Turkey [12]). The
use of multiple hidden volumes or security levels (e.g., as
in StegFS [32]), may also be of no use if the adversary is
patient. Another avenue for the attacker is to derive candidate
keys from a password dictionary, and keep trying those keys,
i.e., a classic offline dictionary attack. If the attacker possesses
some knowledge about the plaintext, e.g., the hidden volume
contains a Windows installation, such guessing attacks may
(easily) succeed against most user-chosen passwords.

Another option for the victim is to provably destroy/erase
data when being coerced. Note that such coercive situations
mandate a very quick response time from tools used for
erasure irrespective of media type (e.g., magnetic or flash);
i.e., tools such as ATA secure erase, and DBAN [15] that rely
on data overwriting are not acceptable solutions (cf. [21]).
Otherwise, the attacker can simply terminate the tool being
used by turning off power, or make a backup copy of the
target data first. The need for rapid destruction was recog-
nized by government agencies decades ago; see Slusarczuk et
al. [48]. For a quick deletion, cryptographic approaches appear
to be an appropriate solution, as introduced by Boneh and
Lipton [8] (see also [13, 39]). Such techniques have also been
implemented by several storage vendors in solid-state/magnetic
disk drives that are commonly termed as self-encrypting drives
(SEDs); see, e.g., Seagate [46], HGST/Western Digital [23]
(cf. ISO/IEC WD 27040 [27]). SEDs allow overwriting of
the data encryption key via an API call. Currently, as we are
aware of, no solutions offer pre-OS secure erase that withstand
coercive threats (i.e., with undetectable deletion trigger). Even
if such a tool is designed, still several issues remain: verifiable
deletion is not possible with SEDs alone (i.e., how to ensure
that the secure erase API has been executed); and implicit
deletion of the key without the adversary being notified is not
possible, as required in deletion under coercion (i.e., calls to
the deletion API can be monitored via SATA/IDE interface).
We use SEDs as part of our solution without directly depending
on their key deletion API.

In this paper, we discuss the design and implementation

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8-11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23258



of Gracewipe, a solution implemented on top of TrueCrypt1
and SEDs that can make the encrypted data permanently
inaccessible without exposing the victim. When coerced to
reveal her hidden volume encryption password, the victim will
use a special pre-registered password that will irrecoverably
erase the hidden volume key. The coercer cannot distinguish
the deletion password from a regular password used to unlock
the hidden volume key. After deletion, the victim can also
prove to the coercer that Gracewipe has been executed, and
the key cannot be recovered anymore. A trusted hardware chip
such as the Trusted Platform Module (TPM) alone cannot
realize Gracewipe, as current TPMs are passive (i.e., run
commands as sent by the CPU), and are unable to execute
external custom logic. To implement Gracewipe, we use TPM
along with Intel trusted execution technology (TXT), a special
secure mode available in several consumer-grade Intel CPU
versions (similar to AMD SVM).

The basic logic in Gracewipe for a PDE-enabled FDE
system (e.g., TrueCrypt) can be summarized as follows. A
user selects three passwords during the setup procedure: (i)
Password PH that unlocks only the hidden volume key; (ii)
Password PN that unlocks only the decoy volume key; and
(iii) Password PD that unlocks the decoy volume key and
overwrites the hidden volume key (multiple PDs may also be
used; cf. [11]). These passwords and volume keys are stored
as TPM-protected secrets that cannot be retrieved without
defeating TPM security. Depending on the scenario, the user
will provide the appropriate password. The attacker can coerce
the victim to reveal all three passwords, but she must rely
on the victim to identify which one will unlock the hidden
volume. Random guessing will allow a success probability
of 1/3 (if all three passwords are extracted from the victim),
but with the same probability, the data may be irrecoverably
destroyed.2 Overwrite of the hidden volume key occurs within
the hardware chip, an event we assume to be unobservable to
the attacker. Now, the attacker does not enjoy the flexibility of
password guessing without risking the data being destroyed.
For a regular FDE system (e.g., SEDs), the decoy volume
is not needed, and as such, Gracewipe will require only two
passwords (PH and PD).

The relatively simple design of Gracewipe however faced
several challenges when implemented with real-world systems
such as TrueCrypt and SEDs. As Gracewipe works in the pre-
OS stage, no ready-made TPM interfacing support is available
(especially for some complex TPM operations, see Section IV).
We have to construct TPM protocol messages on our own.
Also, as we combine multiple existing tools in a way they were
not designed for, e.g., TrueCrypt master boot record (MBR)
and Windows volume boot record (VBR; see Section III),
additional effort is necessary to satisfy each component with
the environment it expects. Furthermore, we primarily base
Gracewipe on TrueCrypt because it is open sourced. Au-
ditability is essential to security applications, and most other

1Recently, the anonymous TrueCrypt developers announced a sudden
termination of their project. However, other groups have already been
formed to continue future development, e.g., TCnext (http://truecrypt.ch)
and CipherShed (https://ciphershed.org); and the TrueCrypt audit project
(http://istruecryptauditedyet.com) is also being actively pursued. Furthermore,
other open-sourced TrueCrypt replacements, e.g., VeraCrypt (https://veracrypt.
codeplex.com) can also be adapted for Gracewipe.

2An attacker may optimize the guessing probability, which can be restricted
by using multiple deletion passwords; see Clark and Hengartner [11].

FDE solutions as we found are proprietary software/firmware
and thus verifying their design and implementation becomes
difficult for users. For this reason, we must be able to load Win-
dows after exiting TXT (as TrueCrypt FDE is only available
in Windows), which requires invocation of real-mode BIOS
interrupts. It turned out to be a major challenge for Gracewipe.
For the SED-based solution, we also choose to boot a Windows
installation from the SED disk, as Windows is still more
commonly used by everyday computer users. However, our
Windows-based prototypes require disabling DMA, and thus
suffer serious performance penalty (the system remains usable
nonetheless, for non-disk-bound tasks); the root cause appears
to be Intel TXT’s incompatibility with real-mode (switching
from protected to real-mode is required by Windows boot). In
retrospect, booting a Linux-based OS after Gracewipe would
have been easier to implement (as we could modify Linux
as needed), but that would have less utility than our current
Windows-targeted implementations.

Note that, in Gracewipe, the victim actively participates
in destroying the hidden/confidential data, and thus may still
be punished, e.g., put into jail for a significant period of time
(e.g., [52]; see also cryptolaw.org for a survey on related laws
in different jurisdictions). Gracewipe is expected to be used
in situations where the exposure of hidden data is no way
a preferable option. We assume a coercive adversary, who
may release the victim when there is no chance of recovering
the target data. Complexities of designing technical solutions
for data hiding (including deniable encryption and verifiable
destruction) are discussed in a blog post by Rescorla [40].

Authentication schemes under duress have been explored
in recent proposals, e.g., [20, 6]. Such techniques may be
integrated with Gracewipe, but they alone cannot achieve its
goals, e.g., being able to delete keys under duress.
Contributions.

1) We propose Gracewipe, a secure data deletion mechanism
to be used in coercive situations, when protecting the
hidden/confidential data is of utmost importance. To the
best of our knowledge, this is the first proposal to enable
the following features together: triggering the hidden key
deletion process in a way that is indistinguishable from
unlocking the hidden data; verification of the deletion
process; preventing offline guessing of passwords used
for data confidentiality; restricting password guessing
only to an unmodified Gracewipe environment; and tying
password guessing with the risk of key deletion.

2) We implement Gracewipe with a PDE-mode TrueCrypt
installation, and with an SED disk. Our implementation
relies on secure storage as provided by TPM chips, and
the trusted execution mode of modern Intel/AMD CPUs;
such capabilities are widely available even in consumer-
grade systems.

3) From our implementation experience with TrueCrypt and
SED, apparently the design of Gracewipe is generic
enough that it can be easily adapted for other existing
software and hardware based FDE/PDE schemes.

4) Apart from secure deletion, our pre-OS trusted execution
environment may enable other security-related checks,
e.g., verifying OS integrity as in Windows secure boot,
but through an auditable, open-source alternative.

2



II. BACKGROUND, GOALS, AND THREAT MODEL

A. Background
Gracewipe leverages several existing tools and mecha-

nisms. Below, we provide a brief overview of them, to help
understand Gracewipe’s design and implementation.
Multiboot. The multiboot specification [18] is an open stan-
dard for multistage/coexistent booting of different operating
systems or virtual machine monitors (VMMs); it has been
implemented in several tools, e.g., GRUB,3 kexec tools,4 and
tboot [24]. It enforces deterministic machine state and stan-
dardized parameter passing so that each stage (e.g., bootloader)
knows what to expect from the previous stage and what to
prepare for the next stage.
Chainloading. As Windows does not support the multiboot
specification, it is chainloaded5 by Gracewipe. Chainloading
involves loading an OS/VMM as if it is being loaded at
system boot-up (which may be actually from another running
OS/VMM). The target image is loaded at a fixed memory
address in real-mode (usually at 0x0000:0x7C00). The system
jumps to the first instruction of the image without parsing
its structure (except for the recognition of an MBR). At this
time, machine state is like after a system reset, e.g., real-
mode, initialized I/O, default global/interrupt descriptor table
(GDT/IDT). We use GRUB as the bootloader for Gracewipe,
as GRUB supports both multiboot and chainloading.
Tboot. Tboot [24] is an open-source project by Intel that uses
the trusted execution technology (TXT) to perform a measured
late-launch of an OS kernel (currently only Linux) or VMM
(e.g., Xen). It can reload the platform dynamically (with the
instruction GETSEC[SENTER]) and chain the measurement
(through the TPM extend operation) of the whole software
stack for attestation, including ACM (Intel’s proprietary mod-
ule), tboot itself, and any other binaries defined in the launch
policy. The measurement outcome is checked against pre-
established known values, and if different, the booting pro-
cess may be aborted. Thereafter, the run-time environment is
guaranteed to be isolated by TXT, with external DMA access
restricted by VT-d (MMIO). Tboot can load (multiboot) ELF
image and Linux bzImage. Note that it must be preceded by
GRUB as tboot cannot be chainloaded.
TrueCrypt. The TrueCrypt on-the-fly full-disk encryption
(FDE) utility is possibly the most popular choice in its kind. It
supports plausibly deniable encryption (PDE) in the form of a
hidden volume, which appears as free space of another volume.
In the regular mode, an encrypted volume is explicitly mounted
through TrueCrypt, on demand, after the OS is already booted
up. We use its PDE-FDE mode (available only in Windows),
where the OS volume is also encrypted and the original
Windows MBR is replaced with the TrueCrypt MBR, which
prompts for a password and loads the next 40–60 sectors
(termed TrueCrypt modules) to decrypt the system volume.
Self-Encrypting Drives (SEDs). SEDs offer hardware-based
FDE as opposed to software-only FDE solutions. A major
benefit of an SED is its on-device encryption engine, which
always keeps disk data encrypted. A media encryption key

3http://www.gnu.org/software/grub/
4https://www.kernel.org/pub/linux/utils/kernel/kexec/
5https://www.gnu.org/software/grub/manual/html node/Chain

002dloading.html

(MEK) is created at provisioning time and used to encrypt
all data on the drive. MEK never leaves an SED (similar
to the SRK of a TPM), and is only accessible to the on-
device encryption engine (i.e., not exposed to RAM/CPU). An
authentication key (AK) derived from a user-chosen password
is used to encrypt the MEK. Several storage manufacturers now
offer SED-capable disks. Trusted Computing Group (TCG)
also has its open standard named Opal/Opal2 [60] for SEDs.
SEDs provide various features such as instant secure erase and
multiple user management.

With regard to the user interface for password entry, SEDs
are usually shipped with an ATA security compliant interface
as in regular drives. When a drive is powered up, it is by default
in a locked state, until the user enters the correct password to
switch it over to an unlocked state. The drive falls back to
locked state at power loss. Unlocking involves using AK to
decrypt MEK and, thus enabling decryption of disk data.

B. Goals and terminology
In this section, we specify Gracewipe’s goals, and explain

how they can be achieved. We also define the terminology as
used in the remainder of the paper.
Goals. (1) When under duress, the user should be able
to initiate key deletion in a way indistinguishable to the
adversary. The adversary is aware of Gracewipe, and knows
the possibility of key deletion, but is unable to prevent such
deletion, if he wants to try retrieving the suspected hidden
data. (2) In the case of emergency data deletion (e.g., noticing
that the adversary is close-by), the user may also want to
erase her data quickly. (3) In both cases, when the deletion
finishes, the adversary must be convinced that the hidden data
has become inaccessible and no data/key recovery is possible,
even with (forced) user cooperation. (4) The adversary must
be unable to retrieve TPM-stored volume encryption keys
by password guessing, without risking key deletion; i.e., the
adversary can attempt password guessing only through the
Gracewipe interface. Direct offline attacks on volume keys
must also be computationally infeasible.
Terminology and notation. We primarily target two types of
storage encryption systems: software-based FDE with support
for plausible deniability (termed as PDE-FDE) and hardware-
based FDE. For a PDE-FDE system (e.g., TrueCrypt under
Windows), a decoy system refers to the one appearing to be the
protected system. The user should maintain certain frequency
of using it for the purpose of deception. A hidden system is
the actual protected system, the existence of which may be
deniable and can only be accessed when the correct password
is provided. The user should avoid leaking any trace of its use
(as in TrueCrypt; cf. [14]). KN is the key needed to decrypt
the decoy system, and PN is the password for retrieving KN .
Similarly, KH is the key needed to decrypt the hidden system
and PH is the password for retrieving KH . In addition, PD
is the password to perform the secure deletion of KH; note
that there might be multiple PDs (cf. panic password [11]),
but in our current implementation, we only support one. KN
and KH are stored/sealed in TPM NVRAM, which can be
retrieved using the corresponding password, only within the
verified Gracewipe environment. For a regular FDE system
(e.g., SEDs), no decoy systems are needed, and thus no need
to set up KN and PN . We use hidden/protected/confidential
data interchangeably in this document.

3



Overview of how Gracewipe goals are achieved. For goal
(1), we introduce PD that retrieves KN but at the same time
deletes KH from TPM. Thus, if either the user/adversary
enters a PD, the hidden data will become inaccessible and
unrecoverable (due to the deletion of KH). PN , PH and
PDs should be indistinguishable, e.g., in terms of password
composition. In a usual situation, the user can use either PH
or PN to boot the corresponding system. If the user is under
duress and forced to enter PH , she may input a PD instead,
and Gracewipe will immediately delete KH (so that next time
PH only outputs a null string). Under duress, she can reveal
PN /PDs, but must refrain from exposing PH . The use of any
PD at any time (emergency or otherwise), will delete KH the
same way, and thus goal (2) can be achieved.

Goal (3) can be achieved by a chained trust model and
deterministic output of Gracewipe. The trusted environment
is established by running the deletion operation via DRTM,
e.g., using Intel TXT through tboot [24]. We assume that
Gracewipe’s functionality is publicly known and its measure-
ment (in the form of values in TPM PCRs) is available for the
target environment, so that the adversary can match the content
in PCRs with the known values, e.g., through a TPM quote
operation. Gracewipe prints a hexadecimal representation of
the quote value, and also stores it in TPM NVRAM for further
verification. A confirmation message is also displayed after the
deletion (e.g., “A deletion password has been entered and the
hidden system is now permanently inaccessible!”).

For goal (4), we use TPM’s sealing feature, to force the
adversary to use a genuine version of Gracewipe for password
guessing. Sealing also stops the adversary from modifying
Gracewipe in such a way that it does not trigger key deletion,
even when a PD is used. We use long random keys (e.g.,
128/256-bit AES keys) for actual data encryption to thwart
offline attacks directly on the keys. A side-effect of goal (4)
is that, if a Gracewipe-enabled device (e.g., a laptop) with
sensitive data is lost or stolen, the attacker is still restricted to
password guessing with the risk of key deletion.

C. Threat model and assumptions
Here we specify assumptions for Gracewipe, and list

several unaddressed attacks.
1) We assume the adversary to be hostile and coercive, but

rational otherwise (cf. [40]). He is diligent enough to
verify the TPM quote when key deletion occurs, and then
(optimistically) stop punishing the victim for password
extraction, as the hidden password is of no use at this
point. If the victim suspects severe retaliation from the
adversary, she may choose to use the deletion password
only if the protected data is extremely valuable, i.e., she is
willing to accept the consequences of provable deletion.

2) The adversary knows well (or otherwise can easily find
out) that TrueCrypt/SED disk is used, and probably there
exists a hidden volume on the system. He is also aware of
Gracewipe, and its use of different passwords for access-
ing decoy/hidden systems and key deletion. However, he
cannot distinguish PDs from other passwords on a list
that the victim is coerced to provide.

3) The adversary can have physical control of the machine
and can clone the hard drive before trying any password.
However, we assume that the adversary does not get

the physical machine when the user is using the hidden
system (i.e., KH is in RAM). Otherwise, he can use
cold-boot attacks [22] to retrieve KH; such attacks are
excluded in our threat model, but see also TRESOR [34].

4) The adversary may reset the TPM owner password
with the takeownership command, or learn the original
owner password from the victim; note that NVRAM
indices (where we seal the keys) encrypted with separate
passwords are not affected by resetting ownership, or
the exposure of the owner password. With the owner
password, the adversary can forge TXT launch policies
and allow executing a modified Gracewipe instance. Any
such attempts will fail to unlock the hidden key (KH),
as KH is sealed with the genuine copy of Gracewipe.
However, with the modifications, the attacker may try to
convince the user to enter valid passwords (PH , PN or
PD), which are then exposed to the attacker. We expect
the victim not to reveal PH , whenever the machine is
suspected to have been tampered with. We do not address
the so called evil-maid attacks [43, 30], but Gracewipe can
be extended with existing solutions against such attacks
(e.g., [36]).

5) We exclude inadvertent leakage of secrets/passwords from
human memory via side-channel attacks, e.g., the EEG-
based subliminal probing [16]; see Bonaci et al. [7]
for counter-measures. We also exclude truth-serum [62]
induced attacks; effectiveness of such techniques is also
strongly doubted (see, e.g., [45]).

6) Gracewipe facilitates secure key deletion, but relies on
FDE-based schemes for data confidentiality. For our
prototypes, we assume TrueCrypt and SED adequately
protect user data and are free of backdoors. The SED-
based Gracewipe relies on a proper implementation of
cryto-primitives and FDE on SED devices, as Gracewipe
only unlocks/erases the ATA security password from
TPM NVRAM. For the SED version, the user must
choose a real SED disk instead of a regular drive, even
though Gracewipe only uses the ATA security protocol
supported by most current hard drives. The SED disk
must ensure that MEK is encrypted properly with the
ATA security password and the user data is properly
encrypted with MEK (but see Müller et al. [35]). In
contrast to TrueCrypt’s open source nature, unknown
design/implementation vulnerabilities in a specific SED
may invalidate Gracewipe guarantees.

7) We assume the size of confidential/hidden data is signif-
icant, i.e., not memorizable by the user, e.g., a list of all
US citizens with top-secret clearances (reportedly, more
than a million citizens6). After key deletion, the victim
may be forced to reveal the nature of the hidden data, but
she cannot disclose much.

8) We assume Intel TXT is trustworthy and cannot be com-
promised and thus ensures the calculated measurements
can be trusted (hence only genuine Gracewipe unseals the
keys); past attacks [64, 65] on TXT include exploiting the
CPU’s SMM (System Management Mode) to intercept
TXT execution. Protections against such attacks include:
Intel SMI transfer monitor (STM), and the newly pro-

6http://www.usatoday.com/story/news/2013/06/09/
government-security-clearance/2406243/

4



posed (still unavailable) Intel software guard extensions
(SGX). Additionally, we assume that hardware-based
debuggers cannot compromise Intel TXT. We could not
locate any documentation from Intel in this regard.7 As
documented [4], AMD’s SVM disables hardware debug
features of a CPU.

III. GRACEWIPE DESIGN

In this section, we expand the basic design as outlined
in Section I. We primarily discuss Gracewipe for an FDE
solution with deniable hidden volume support (i.e., PDE-
FDE), and we use TrueCrypt as a concrete example. We
provide implementation details in Sections IV, V. The FDE-
only version is simpler than the PDE-FDE design, e.g., no
decoy volume and no chainloading are needed; for details of
the FDE-only version, see Section VI. These two versions
mostly use the same design components, differing mainly in
the key unlocked by Gracewipe and the destination system that
receives the key.
Overview and disk layout. Gracewipe inter-connects several
components, including: BIOS, GRUB, tboot, TPM, wiper
(provides Gracewipe’s core functionality—see below under
“Wiper”), TrueCrypt MBR (or SED/ATA interface), and Win-
dows bootloader. See Fig. 1 for an overview of Gracewipe
components, disk layout when TrueCrypt is used, and exe-
cution control flow. The hidden data is stored encrypted on
a hard drive, as in a typical TrueCrypt hidden volume. We
assume two physical volumes: one hosting the decoy system
(regular TrueCrypt encrypted volume), and the other volume
containing the hidden system (hidden TrueCrypt volume). KN
and KH are technically TrueCrypt volume passwords for
the two volumes respectively, but we generate them from a
random source. Both are stored in TPM NVRAM, and are
not typed/memorized explicitly by the user. In the deployment
phase, they are generated in a secure way with good entropy
and configured as TrueCrypt passwords. Each valid password
(including any PD) will decrypt a corresponding key in TPM
NVRAM for a specific purpose.
Wiper. The core part of Gracewipe’s functionality includes
bridging its components, unlocking appropriate TPM-stored
keys, and deletion of the hidden volume key. We term this
part as the wiper, which is implemented as a module securely
loaded with tboot. It prompts for user password, and its
behavior is determined by the entered password (or more
precisely, by the data retrieved from TPM with that password).
Namely, if the retrieved data contains only a regular key
(KH/KN ), the wiper passes it on to TrueCrypt, or if it appears
otherwise (as designated by a deletion indicator) to have a
control block for deletion, the wiper performs the deletion
and passes the decoy key KN to TrueCrypt. We modified
TrueCrypt to directly accept input from the wiper (i.e., the
original TrueCrypt password prompt is bypassed), and boot
one of the encrypted systems.

As the wiper must operate at an early stage of system boot
and still provide support for relatively complex functionality,
it must meet several design considerations, including:

1) It must be bootable by tboot, as we need tboot for the
measured launch of the wiper. This can be achieved by

7See a related tboot discussion thread at (Aug. 2012): http://sourceforge.
net/p/tboot/mailman/message/29747527/

conforming to required file formats (e.g., ELF) and header
structures (e.g., multiboot version number).

2) It must load the TrueCrypt loader for usual operations,
e.g., decrypt the correct volume and load Windows.
This is mainly about parameter passing (e.g., TrueCrypt
assumes register DL to contain the drive number).

3) It must access the TPM chip and perform several TPM
operations including sealing/unsealing, quote generation,
and NVRAM read/write. Note that at this point, there
is no OS or trusted computing software stack (such as
TrouSerS [2]) to facilitate TPM operations.

4) It must provide an expected machine state for the compo-
nent that will be loaded after the wiper (e.g., Windows).
Both TrueCrypt and Windows assume a clean boot from
BIOS; however, Windows supports only strict chainload-
ing, failure of which causes several troubles including
system crash (see Section V).

Execution steps. Gracewipe’s execution flow is outlined in
Fig. 1. It involves the following steps: (1) The system BIOS
loads GRUB, which then loads tboot binary as the kernel,
together with other modules including the wiper, ACM SINIT
module and the policy list (see Section IV-C). (2) Tboot checks
for required support on the platform; if succeeded, tboot starts
the MLE by calling GETSEC[SENTER]. (3) All measurements
are calculated and matched with the values stored in TPM.
If the matching is successful, the wiper is loaded in the
same context as tboot; otherwise, execution is halted. (4) The
wiper prompts the user for password, and uses the entered
password to decrypt locations where we store KH/KN one
by one. If none is decrypted, it halts the system; otherwise,
the wiper copies the decrypted key (i.e., TrueCrypt password)
to a memory location to be retrieved later by TrueCrypt. (5) If
one of the PDs is entered (indicated by the decrypted data),
the wiper immediately erases KH from TPM, and performs
a quote to display the attestation string on the screen. It
either halts the system or continues loading the decoy system
according to user choice. (6) The wiper switches the system
back to real-mode, reinitializes it by mimicking what is done
by BIOS at boot time, and replaces the handler of INT 13h.
(7) TrueCrypt MBR is executed, which decompresses the
subsequent sectors from the hard drive into system memory.
TrueCrypt also inserts its filter to the handlers of INT 13h
and 15h. The corresponding volume is decrypted on-the-fly, if
the TrueCrypt password (as received from the wiper) is correct.
Then the boot record on the decrypted partition is chainloaded,
and Windows is booted.
Storing Gracewipe components. For booting the target sys-
tem, Gracewipe’s software components (GRUB, tboot, wiper,
TrueCrypt MBR) can reside on any media, including any
secondary storage. In our proof-of-concept system, we keep
these components on a secondary USB storage. The target
hard drive only contains TrueCrypt modules (except its MBR)
and all encrypted partitions. All Gracewipe components can
also be placed on the target hard drive alone, with additional
effort, including: (a) an extra partition with file system is
needed to store tboot and its modules; (b) GRUB MBR will
overwrite part of TrueCrypt, and thus either of them must be
relocated; and (c) TrueCrypt MBR must be modified not to
read the TrueCrypt modules from their predefined locations
(i.e., sector 2 of the disk).

5





IV. IMPLEMENTATION WITH TRUECRYPT

In this section, we discuss implementation details of
Gracewipe with TrueCrypt under Windows. We also imple-
mented Gracewipe with SED disks; see Section VI. Side
effects as observed from our implementation choices are dis-
cussed in Sections V and VII. Gracewipe involves primarily the
wiper and some minor changes in TrueCrypt. Approximately,
the wiper has 400 lines of code in assembly, 700 lines in C
and 1300 lines of reused code from tboot.
Machine configuration. For our prototype system, we used a
primary test machine with an Intel Core i7-3770S processor
(3.10 GHz) and Intel DQ77MK motherboard, 8GB RAM with
1TB Western Digital hard drive. We also used another machine
of similar configuration for verification of the TXT issue when
switched back to real mode (Section V). In addition, a few
non-TXT-enabled machine were also used for miscellaneous
purposes (e.g., TPM deadlock problem and TrueCrypt testing).

A. TPM I/O Access
As discussed in Section III, the wiper must access the

TPM at an early stage of system boot, i.e., right after GRUB
and tboot. Most applications access TPM through the TCG
software stack [2], by calling a set of APIs provided by a
library with a device driver, as part of the OS. However, at
boot time, no such support is available (as in our case); thus,
we must handle the communications between the TPM and
wiper, and implement a subset of (complex) functionalities of
the TCG software stack.

During our pre-boot wiper environment, there are three
options for interfacing with a TPM. (1) Port-mapped I/O
(PMIO): It is the legacy way to connect various peripher-
als with the processor, and is available in both real and
protected modes. However, it is not recommended for TPM
communications as the port assignment can be vendor-specific.
(2) TCG BIOS: TPM functionalities may be accessed using
a TCG-compliant BIOS [59], via INT 1Ah, and thus it
works only in real mode. We do not use this method as
Intel tboot/TXT requires protected-mode (more detailed in
Section V). (3) Memory-mapped I/O (MMIO): In the TPM 1.2
specification, interfacing with TPM of different vendors has
been standardized to use MMIO (legacy I/O is supported for
backward compatibility). MMIO, as opposed to port-mapped
I/O, uses the same address bus to address both memory and
I/O devices. The devices are mapped to a range of memory
and read/written as regular memory location (whereas PMIO
requires special instructions such as IN and OUT). TPM by
default is mapped to a region starting at 0xFED40000. This
only works in protected mode, since it exceeds the boundary
of memory access in real mode. As the wiper executes right
after tboot releases control, where a full MMIO-based access
to TPM is already initialized (in protected mode), we can reuse
part of the TPM functions in tboot (e.g., status check).

B. Secure Storage in TPM
In addition to I/O interfacing, construction of packets

(termed as message blobs) to communicate with TPM is an-
other consideration as we are implementing our own protocol
stack. Since tboot takes care of the measured launch, what we
need in the wiper is mainly how to securely store/access the
keys in TPM. Below, we briefly explain how to use TPM’s
secure storage and the way we store/access Gracewipe keys

in TPM. In a few cases, we reverse-engineer TPM message
blobs, due to the lack of adequate documentation.

TPM NVRAM memory is represented by an index number
plus an offset. Indices must be allocated with certain protec-
tion, either through localities or with explicit authentication.
Locality [55] defines a specific context in which an operation
takes place. TPM NVRAM operations are locality-sensitive.
For instance, an index defined as read locality 0 and write
locality 4 only permits data to be read out at 0 and written
in at 4. Explicit authentication requires a secret to protect the
index. It can either be the TPM owner password or a separately
defined secret; here, we term the former case as owner access
and the latter as authdata access.

There are three authorization levels defined to communi-
cate with TPM: non-authorized, single authorized, and dual
authorized command messages. Depending on the context and
property of the command, one or multiple authorization levels
may be required. There are three authorization tags, indicat-
ing which level the caller wants to establish: TCG TAG
RQU COMMAND, TCG TAG RQU AUTH1 COMMAND
and TCG TAG RQU AUTH2 COMMAND. They are named
literally according to the number of authorization blocks in the
message; we refer them by non-auth tag, auth1 tag and auth2
tag, respectively hereafter.

Combining the aspects above, there are three options for
storing the keys. (1) Locality-protected indices: As locality
provides only weak protection bound to the context, keys must
be encrypted before being stored in TPM, and thus requires
adding another layer of complexity. (2) Indices with owner
access: TPM owner password is shared for various functions
and cannot be dedicated to specific indices. More importantly,
as stated in Section II-C, the owner password can be reset
easily, as the adversary has physical access. Therefore, this
method is not secure at all for our key storage. (3) Indices
with authdata access: A password as authdata can be set to
protect each index; this is the option we choose to use.

However, authdata access is less straightforward, as con-
structing authenticated message blobs for TPM is compli-
cated. The TPM specification [56, 57, 58] provides enough
documentation for operation procedures and data structures,
but sometimes unexplained contextual information is needed
for proper implementation of auth access commands (e.g.,
the usage of different types of authdata is not clearly stated,
and often all zeros are used). To the best of our knowl-
edge, in pre-OS projects such as TrustedGRUB and tboot,
no realization for authdata accessed NVRAM interaction is
available. TrustGRUB uses TCG BIOS calls in real-mode (it
just needs PCR operations); tboot implements only TPM
NV ReadValue()/TPM NV WriteValue() (with non-auth tag).
We also explored the source code of the TCG software
stack (TrouSerS) in Linux, which is written as a full-fledged
implementation with several layers of abstraction and context-
dependent branching. At the end, it was easier to reverse-
engineer the packets (blobs) that we could observe through the
debug mode of TrouSerS. We then checked the traffic to find
inconsistencies that are not stated in the specification. Below,
we discuss a particular undocumented example case:

How to execute the object specific authorization protocol
(OSAP) to generate a shared secret, and use it to generate
encAuth is mostly undocumented (calculation of encAuth is

7



specified as depending “on the context” [57]). It is vaguely
mentioned in an example workflow of the specification. For
instance, in the case of TPM NV DefineSpace command, we
found that the NVRAM authdata (hashed) is used for encAuth,
if the parameter size is non-zero; otherwise, a 20-byte value
of all zeros is used (which implies releasing space). In both
cases, the hashed owner auth is needed.

At the end, we implemented the following TPM functions
in C: tpm nv read value auth(), tpm nv write value auth(),
tpm nv define release(), tpm loadkey2(), tpm quote2(); we
reused most other functions from tboot.

C. Measured Launch with Tboot
The root of trust measurement in Gracewipe is based

on and implemented with tboot. Here, we briefly describe
important links in our chain of trust.

The correct measurements of Gracewipe binaries are stored
in TPM NVRAM as policies. The policies are written to
indices with owner write access and enforced at boot time.
They must be generated in the configuration phase, when it
is assumed that the environment is malware-free. In tboot
terminology, there are two types of policies: MLE policy (Intel
TXT policy) and custom policy (tboot verified launch policy).
The MLE policy can take into account the software stack
required to prepare for TXT execution (see Section IV-D).
When all the modules in the MLE policy have been verified
in TXT, tboot is re-entered and ready to perform its own
measurement (custom policy). The tboot binary is included
in the MLE policy and our wiper with embedded TrueCrypt
MBR is defined in the custom policy.

Tboot must be loaded with GRUB or a similar multiboot-
compliant loader. We add entries for Gracewipe binaries in
GRUB’s menu.lst file (stored on a USB disk, simulated as
a floppy (fd0)). In tboot’s command line parameters, we add
ap wake mwait=true to deal with some TXT shutdown issues
(see Section V-D).

D. Attestation with TPM Quote
For verifying the deletion of KH , the measurement of the

executed code must be conveyed in a trusted way, e.g., via a
TPM quote. A quote operation involves generating a signature
on a requested set of PCRs, and a verifier-provided nonce with
TPM’s attestation identity key (AIK). As we assume that both
the identity of a TPM and the measurements of Gracewipe
software stack are verifiable with public information, the
integrity of the deletion process can be guaranteed by verifying
the quote result. Below, we discuss issues related to quote
generation and verification in Gracewipe.
Human-initiated attestation. During the quote generation,
the adversary’s participation in selecting a nonce is required
to prevent replay attacks. We consider two sources for the
nonce: (1) A timestamp (hashed for the same output length)
used in quoting may convince the verifier that the quote is
fresh. Gracewipe displays the timestamp used, and the verifier
can write down the short timestamp for later verification, and
match it with a separate clock. (2) We also implement a more
direct method to prompt the verifier for an arbitrary string
and use the hashed string as the nonce; this requires active
involvement of the verifier.
Generating the quote. As an advantage of the “late launch”

with Intel TXT, we only need to take into account everything
after the trusted execution starts, i.e., the authenticated code
module (SINIT ACM) together with some static fields (PCR
17), and the measured launch environment (MLE, PCR 18).
Therefore, the known good measurements are only determined
by a limited number of Intel published ACMs (processor-
specific), tboot and Gracewipe.

Note that we do not have to use either auth1 or auth2
tags, as no authentication is needed to generate a quote; so we
just used the non-auth tag. However, loading the signing key
requires an object-independent authorization protocol (OIAP)
session with the storage root key (SRK) password. In the end,
we write the 256-byte quote value into an NVRAM index and
also display it on the screen.
Transferring the quote. With Gracewipe, the adversary must
“offload” the quote from the victim’s computer as he cannot
perform an in-place verification. A straightforward way is to
display the quote on the screen for the adversary. We consid-
ered using QR code so that he can scan it with a smartphone-
like device. But we refrained from doing so because it requires
Gracewipe to enter in graphics mode. Instead, we store the
quote into a predefined NVRAM index (with no password
protection). The adversary can access it at a later time from
the victim’s computer. He can boot into an OS to perform
the verification on his own. We also display the quote on the
screen for a diligent adversary for matching purposes.

E. Changes in TrueCrypt
To make TrueCrypt aware of Gracewipe, we make some

changes in TrueCrypt. We keep such changes to a minimum
for easier maintenance and deployment. Our changes are
mostly in BootLoader.com.gz (BootMain.cpp, 9 lines added
in assembly, 6 lines added in C), and a few minor changes
in BootSector.asm. In BootSector.bin, the integrity of the rest
of TrueCrypt modules (including the decompressor) is first
verified. It calculates only the checksum (CRC32) due to the
small footprint of MBR. The checksum is generated at install
time and when we make any changes, we have to update
the corresponding checksum in the configuration area (part
of the 512-byte MBR). During development, we flipped the
corresponding bit to disable it.

In BootLoader.com.gz (TrueCrypt modules), the modifica-
tions are mainly for receiving decrypted passwords (treated as
keys in Gracewipe) from the wiper without user intervention.
As an interchange between the wiper and TrueCrypt, we use
a hard-coded memory location (0x0000:0x7E00, an address
following the wiper, and not foreseeably used).

F. Wiper Initialization
Before Gracewipe can function properly, some initial setup

must be performed in addition to initializing the platform (e.g.,
taking TPM ownership and installing TrueCrypt). Such initial
setup involves both the host OS and Gracewipe.
Preparation in the host OS. A script that works with the
TrueCrypt installer must automatically generate a strong key
(i.e., random and of sufficient length) to replace the user-
chosen password. This is done for both KN and KH . Then
the user must copy (manually or with the help of the script)
KN and KH to be used with Gracewipe. She must destroy
her copies of the two keys after the setup phase.

8



Preparation in Gracewipe. Gracewipe comes with a single
consolidated binary with two modes of operation: deployment
and normal. Modes are determined by the value (zero/non-
zero) in an unprotected NVRAM index; note that, reinitializing
Gracewipe has no security impact (beyond DoS), but still
a simple password can be set to avoid inadvertent reset. If
the value is non-zero, normal mode is entered; otherwise,
Gracewipe warns the user and enters the deployment mode.

In the deployment mode, the wiper first clears out the three
NVRAM indices corresponding to PN , PH , and PD. Then
it uses the random number generator in TPM to generate a
128-bit confounder C and seals it with the current environ-
ment measurements into an NVRAM index. The user is then
prompted for the three passwords (PN , PH and PD) of her
choice and the two keys (KN and KH) generated on the OS.
The wiper XORs C with the hashed passwords, and uses the
output to secure the three indices for storing KN and KH
(see Section III). In the end, the wiper toggles the mode value
for the next time to run in the normal mode.

V. LOADING WINDOWS AFTER TBOOT

In this section, we discuss some side effects caused by
loading Windows after running tboot and possible solutions.
Parts of them have been verified and can be applied to other
similar systems with certain adaptation, while some may be
too specific to our test machines.

A. Observations
Loading Windows after TXT (as opposed to Linux/Xen)

causes issues in two aspects:
• At boot time, the system must be switched back to real

mode (from tboot’s protected mode), as Windows assumes
that it starts at system reset (chainloading). Specifically,
Windows invokes BIOS interrupts for the most part of its
initialization. In contrast, Linux has both real/protected-
mode entries, and is multiboot compliant.

• As Windows is closed-sourced, it cannot be adapted to be
TXT-aware, as opposed to Linux (e.g., via a simple flag,
CONFIG INTEL TXT).

As of writing, we are unaware of any projects or products
that involve entering TXT and thereafter switching back to
real-mode, not to mention invoking BIOS interrupts therein.
According to Intel’s documentation [25], we can infer that
TXT is not intended for use in real-mode or preserving the
functionality for real-mode. Our observation is when the MLE
is launched successfully, and by the time our wiper chainloads
the TrueCrypt boot record, no matter whether the system is still
in TXT or has exited TXT, some I/O related BIOS calls do not
function properly. The root cause appears to be DMA-related
as observed from our two test machines (see Section V-E);
however, we could not confirm this from TXT documentation.

One of the symptoms of BIOS issues is that a disk
read operation with INT 13h returns an error code of 80h
(which means timeout), as tested with BIOS version 56P or
below (Intel DQ77MK motherboard). A system halt may also
occur with BIOS version 60. The problem appears to be non-
deterministic. As the rest of the binaries we need to load all
rely on calling INT 13h (TrueCrypt MBR, TrueCrypt modules,
BootMgr, and winload.exe), we could not proceed without
restoring such BIOS functionality.

Also, tboot is not designed for chainloading, and as we
observed, the presence of tboot as part of the loading chain
makes the environment incompatible with Windows. In the rest
of this section, we discuss our fixes to the above mentioned
Windows-specific problems.

B. Rewriting BIOS Interrupt Handler for Disk Access
We reimplement parts of the BIOS interrupt handler that

must be available until the point when Windows is fully
initialized, more precisely, until the TrueCrypt device driver
takes control.

For simplicity, we use the programmed input/output (PIO)
mode of the commonly accepted ATA specifications. Without
BIOS support, disks can still be accessed through writing to
and reading from a group of special I/O ports in a designated
sequence. The completion of an operation can be signalled
by triggering an external interrupt, or by polling the status
register. We avoid involving another layer of interrupt, and
use the polling mechanism instead.

There are two access modes that should be supported in
the INT 13h handler. CHS (Cylinder, Head and Sector [66])
is a legacy method of accessing hard disks. The caller must
be aware of the geometry of the disk being accessed. Most
boot-time programs (e.g., Windows VBR and GRUB stage1)
use this mode for simplicity and backward compatibility. By
default, INT 13h uses CHS (function codes starting with zero,
e.g., 0x02 and 0x03). LBA (logical block addressing [66])
is a more recent, widely-used linear addressing scheme; the
location of blocks of data is represented by a single integer
regardless of the actual geometry of the disk. In reality, after
the initial stage, most bootloaders switch to LBA, if it is
supported by the device (which is common nowadays). To also
simulate LBA, we need to add support for INT 13h Extensions
(function codes starting with 4, e.g., 0x42 and 0x43).

We provide the required INT 13h functionality by trans-
lating the BIOS-formatted read/write and other requests into
the representation of ATA PIO specifications in assembly. This
covers eight functions of INT 13h with an approximate code
size of 350 lines in assembly; the functions are: read drive pa-
rameters (0x08), read/write sectors from/to drive (0x02/0x03),
check extensions present (0x41), extended read/write sectors
from/to drive (0x42/0x43), extended read drive parameters
(0x48) and read disk/DASD type (0x15). We observed that
function code 0x15 is used by winload.exe as a shadowed
BIOS call, which is surprising as BIOS interrupt handlers are
invalidated in protected mode and Windows kernel should not
use them (see more in Appendix A).

C. Memory Overlaps
A problem we frequently encountered is system crash,

caused by memory access violation due to memory overlaps
between tboot and Windows. Below, we discuss such access
violations and how we fixed them.

Windows is loaded by TrueCrypt modules at memory
address 0x0000:0x7C00, when the desired volume has been de-
crypted. However, Windows is totally unaware of tboot, and the
memory layout used by Windows is also unavailable to us. We
observed that when tboot is removed from Gracewipe, Win-
dows can start up successfully; however, if tboot is included
for a measured launch, Windows crashes while loading device

9



drivers in winload.exe. By checking the debug information (in
safe mode), we could not identify a specific offending module.
Then we employed a manual technique: from Windows boot
manager we chainloaded GRUB4DOS [1], where we gradually
shrunk a zeroized region using mem set() and identified an
overlapped memory region between tboot and Windows.

By default, tboot sets its starting address at 0x00800000,
and reserves its space in the E820 table. However, Windows
seems to use a region that overlaps part of the tboot
binary, as observed via Windows boot debugger (a mode of
windbg [33] for debugging Windows BootMgr): Primary
image base = 0x0086b000 Loaded module list
= 0x00905b40. This overlaps the range of 0x00800000–
0x00AC7000, the first section reserved by tboot and causes
access violations, leading to system crash.
Workaround. We first tried with the Windows boot con-
figuration data (BCD [41]) file, which provides two sets
of parameters that affect Windows memory allocation. (1)
AvoidLowMemory restricts the use of memory below the
specified value by the bootloader, but we could not verify the
effectiveness of this parameter. (2) BadMemoryList marks a list
of memory page frames (4K) as bad, and setting BadMemory-
Access to NO prevents access to bad pages. BadMemoryList
entries are enforced by the Windows memory manager that
resides in Ntoskrnl.exe. However, Ntoskrnl.exe is loaded mid-
way in winload.exe [42] and thus the enforcement comes too
late (as before Ntoskrnl.exe, other modules are already loaded).
In fact, the region where tboot resides is accessed before the
memory manager takes control.

We then tested an adhoc method with success. We assume
that Windows does not use the range starting at 0x08000000
(i.e., 0x00800000 multiplied by 16), at least before it is
fully initialized. In tboot’s config.h file, we changed TBOOT
BASE ADDR from 0x00800000 to 0x08000000 and TBOOT
START from 0x00804000 to 0x08004000. This shifts the
whole tboot binary up to a much higher location in memory,
and thus avoids the overlap.

D. Shutting down TXT
For secure deletion, we require TXT protection only for

the Gracewipe environment. As Windows is TXT unaware,
we must tear down the TXT session when leaving the wiper;
this can be easily done by calling GETSEC[SEXIT]. However,
simply executing this instruction before loading TrueCrypt
MBR crashed the system. We briefly explain the reason and a
simple solution to it.

In a multi-core environment, application processors (AP)
are waken up on demand by the OS, when the bootstrap
processor (BSP) finishes initialization. In our case, we simply
bootstrap the system and run the wiper on the BSP, and
without making use of (waking up) any APs by scheduling
an OS/VMM, we switch the system back to its initial state.
Thus, when trying to shutdown TXT at this point, while we
have 7 APs in the Wait-for-SIPI (WFS) state, SEXIT causes
a system reset; this is not so unexpected as mentioned in the
tboot documentation [29].

To avoid dealing with the state of WFS, we make use of
the MWAIT feature available in current CPU models [26].
GETSEC[SEXIT] can work if the APs are still in MWAIT.
Thus TXT is safely (from the CPU’s perspective) torn down,

and the wiper can continue to run. To enable this feature, we
only need to append a switch to tboot parameters: ap_wake_
mwait=true.

E. Additional disk access issues
As our custom INT 13h handler only supports parallel

ATA (PATA/IDE), and our machine comes with only SATA
controllers (as most off-the-shelf PCs), we manually change
the mode of SATA controllers from AHCI to IDE in the
BIOS setup. If Windows is installed with AHCI, modifying
the registry to use pciide.sys instead of msahci.sys is needed.

Even with all the above modifications, our Windows
booting still failed with UNMOUNTABLE BOOT VOLUME
(0x000000ED). The reason code of 0xC000014F indicates a
disk hardware problem, which cannot be true as we could
boot Windows without the tboot MLE. We found that the
logic of the call stack for INT 13h was apparently correct,
but the returned data contained seemingly random bytes (see
Appendix A for debugging details). We suspected the data
transfer mechanism in Windows disk driver as a possible
reason. By checking the default mode of the corresponding
ATA channel, we found it was in “Ultra DMA Mode 5”. We
changed the ATA channel to use the “PIO” mode and restarted
the system. We could see that the driver returned the correct
data, and Windows booted successfully. For the same reason,
we suspect that the original INT 13h handler also relies on
DMA to communicate with hard drives (but could not confirm
from the manufacturer’s documentation).

VI. IMPLEMENTATION WITH SED
Our Gracewipe prototype for TrueCrypt with hidden vol-

ume support is an example of Gracewipe’s applicability for
a PDE-FDE system. To show that Gracewipe’s design is
easily adapted to support hardware-based FDE, we implement
Gracewipe for a Self-Encrypting Drive (SED). This implemen-
tation shares several parts with the TrueCrypt prototype. In this
section, we discuss the parts where our SED implementation
differs from the basic architecture (Section III) and the True-
Crypt implementation (Sections IV and V).

A. Gracewipe on SED
Here we replace TrueCrypt passwords with an ATA se-

curity user password, which is actually a high entropy key
(referred as ATA key). Note that there is no hidden volume
with the SED-based Gracewipe. In the deployment mode, the
user is prompted for the ATA key (as KH) and the user-chosen
passwords (PH for KH and PD for deletion). Both PH and
PD are hashed and XOR’d with a sealed confounder (C) and
used to protect the ATA key in TPM NVRAM. In the normal
mode, the correct password PH decrypts KH from TPM, and
KH unlocks the drive by decrypting MEK. If one of the PDs
is entered, Gracewipe erases KH and goes through the same
quoting process as explained in Section IV-D.

We did not use vendor-specific APIs, e.g., Seagate’s Driv-
eTrust, to operate on MEK to achieve cryptographic deletion.
Since MEK is encrypted with a key derived from the user
password (KH), erasure of KH disables access to MEK,
and hence makes all the data protected by MEK inaccessible.
Note that the ATA Security API as we use for the password
interaction, is available on most password-protected drives.

10



However, as user data is unencrypted on regular password-
protected drives, as emphasized in Section II-C, we mandate
only SEDs to ensure that when the ATA key is erased, the user
data remains encrypted with no key to decrypt.

B. Implementation
Recall from Section V-B that when rewriting the INT 13h

handler, we communicated with ATA compliant drives through
I/O ports by sending commands and receiving responses (PIO
read ext/write ext 0x24/0x34). For unlocking ATA security,
we choose the same approach (with command 0xF2). In the
wiper, before switching back to real-mode, when the correct
ATA key is decrypted from TPM, we provide it to the hard
drive as if it is entered by the user. This is equivalent to typing
the password when prompted by BIOS at boot time.

The deletion and quoting occur before any interaction with
the ATA interface, and are therefore independent of the newly
added functions. This is how a similar framework can be kept
for SED-based implementation as with the TrueCrypt-based
one. Since unlocking occurs in protected-mode, there is no
data to be passed to the chainloading part of the wiper. Instead,
we retrieve the first sector of the unlocked disk (in place of the
TrueCrypt MBR) to simulate the behavior of a regular BIOS
that performs chainloading. The same context for loading
Windows is also created (e.g., rewritten INT 13h handlers
and disabled DMA). We were able to boot up Windows, and
the SED-based implementation required adding only about 80
lines of code to the TrueCrypt prototype.

VII. LIMITATIONS

Below, we summarize limitations originating from our
somewhat unusual way of leveraging TPM/TXT technologies.
Degraded disk I/O without DMA. As discussed in Section V,
switching back from TXT into real-mode affects DMA func-
tionality. As of writing, we have partially identified the root
cause, which we believe is Windows memory mapping being
unaware of TXT, and it is not easy to customize Windows
for such mapping due to the unavailability of Windows source
code. As a temporary fix, we turned off DMA in Windows.
Therefore, the system performs slower as in any other case
when DMA is disabled. Note that this particular DMA issue is
unrelated to Gracewipe’s design and thus can be easily avoided.
We have successfully booted up Linux with Gracewipe in TXT
without any DMA problems. Gracewipe in itself is a boot-time
tool, which does not run along-side the user OS.
TPM deadlock. By design, TPM NVRAM is intended to pro-
vide secure storage and protected access to confidential data.
Nevertheless, such protection (especially that with authdata
access) is unsuitable to be used as a general purpose encryp-
tion/decryption oracle: the key difference is that a program
accessing NVRAM is expected to supply the correct authdata
secret, and a failed attempt is considered as part of a guessing
attack or an anomaly. For a general decryption oracle, online
guessing is a non-issue, i.e., a wrong key will generate random
output but no anomaly is recorded.

As we attempt to consecutively access one to three
NVRAM indices with the same user password, i.e., until we
can unlock a key or fail at all three authdata-protected indices,
we effectively treat NVRAM authdata protection as generic
decryption. Therefore, TPM actually counts each failed attempt

as a violation and may enter a lockout state where TPM will
not respond to subsequent operations until an explicit reset
or timeout occurs; for details, see under dictionary attack
considerations in the TPM specification [56]. TPM vendors
are required to provide “some protection” against such attacks,
and actual mechanisms are vendor specific [44]; more robust
counter measures have also been proposed, see e.g., [10].

Therefore, no universal fix can be applied for the NVRAM
deadlock. TPM ResetLockValue may be used to reset the
fail counter, and temporarily put TPM back to normal; we
are however, unsure of any negative effects of issuing this
command too often. As observed, our TPM chip (Winbond,
chip version: 1.2.3.69) behaves as follows:
• If the TPM chip is in a fresh state (i.e., no recent failed at-

tempts), or it has been reset using TPM ResetLockValue,
we see more tolerance to failed attempts (the number is
between 10 and 20).

• If the TPM chip was in a lockout state, but automatically
recovered because of the timeout (approximately 10-20
minutes), it can tolerate only one failed attempt before
getting into lockout state again.

We relied on TPM ResetLockValue and time-out during
our development. On the positive side, the anti-guessing mech-
anisms raise the bar for the adversary, if he wants to mount
a dictionary attack on Gracewipe passwords (of course, with
the existing risk of entering the deletion password).

VIII. SECURITY ANALYSIS

In this section, we extend the discussion from Section II-C,
and analyze possible attacks that may affect the correct
functionality of Gracewipe. Note that, the verifiability of
Gracewipe’s execution comes from a regular TPM attestation
process. Since the good values (publicly available) only rely
on Intel’s SINIT modules, tboot binaries and Gracewipe, as
long as the PCR values (via quoting) are verified to match
them, it can be guaranteed that the desired software stack has
been run.
(a) Attacks on TPM. Although TPMs offer some physical
tamper-resistance, they have been successfully attacked in the
past (e.g., [28, 51, 49, 31, 63]). As Gracewipe relies on TPM,
such attacks may affect its functionality. In a TPM reset
attack [28, 49], a TPM’s LRESET pin is grounded, which
causes a hardware reset and thus reinitializes PCR values
without rebooting the computer. This exploits the low speed of
the LPC bus. It has been verified with SRTM but no proof of
effectiveness can be found yet with DRTM. If feasible, it may
have two impacts. (a) The adversary will be able to attest to
any forged Gracewipe binary as genuine due to the PCR values
of his choice. However, as he is the verifier in this scenario,
he has no incentive to do so. (b) The attacker can also unseal
C (with the forged correct measurements). This allows him
to mount an offline dictionary attack against PH/PD/PN ,
equivalent to when no C is used.

TPM pins can also reveal the data being transferred, if not
encrypted. In TPM 1.2, encrypted communication is supported;
however, metadata and command ordinals are still in the
cleartext. Therefore, the adversary may detect the deletion
attempt (by filtering certain commands) and interrupt it, e.g.,
cutting the power, or punish the victim (see an experiment by
Kursawe et al. [31]). This attack can be addressed in two ways:

11



use a TPM chip that does not expose pins to probing (e.g.,
integrated TPM in SuperIO [53]); or, perform an NVRAM
write (as required in our deletion operation), each time a
password is entered, i.e., effectively making Gracewipe always
behave the same on all entered passwords.
(b) Evil-maid attacks. In 2009, Rutkowska demonstrated the
possibility of an evil-maid attack [43] (also termed as bootkit
by Kleissner [30] in a similar attack) against software-based
FDEs. The key insight is that the MBRs must remain unen-
crypted even for FDE disks, and thus can be tampered with. We
consider two situations directly applicable to Gracewipe: 1) In
normal operation (i.e., not under duress), the user may expose
her password for the hidden system (PH). As soon as such an
attack is suspected (e.g., when PH fails to unlock the hidden
volume), users must reinitialize Gracewipe, and change PH
(and other attempted passwords); note that, the user is still in
physical control of the machine to reset it, or physically destroy
the data. 2) Under duress, we assume that the user avoids
revealing PH in any case. However, the adversary may still
learn valid PN /PDs as entered by the user without the risk
of losing the data (due to the lack of Gracewipe protection).
The use of multiple valid PDs can limit this attack. Note that
if an attacker copies encrypted hidden data, and then collects
the hidden password through an evil-maid attack, the plaintext
data will still remain inaccessible to the attacker due to the
use of TPM-bound secrets (see under “Sealing in NVRAM” in
Section III). The attacker must steal the user machine (at least,
the motherboard and disk) and launch the evil-maid attack
through a look-alike machine. Existing mechanisms against
evil-maid attacks, e.g., STARK [36] and MARK [19] can also
be integrated with Gracewipe.
(c) Attacks on SED. Müller et al. [35] adapted several
existing attacks on software-based FDEs (e.g., DMA-based,
cold-boot, and evil-maid attacks), and show that these attacks
are still effective against SED disks. They also identified a new,
simple hot plug attack that can be summarized as follows.
As SED conforms to the legacy ATA security standard, an
SED drive is in a status of either locked or unlocked. When
unlocked, although data is encrypted (write) and decrypted
(read) on the fly, the output is always plaintext; thus, as long
as the power cable is connected, the drive is never relocked,
and accessible through another computer’s SATA connection.
This attack may succeed even when the victim computer is
in a standby mode. Therefore, we mandate shutting down the
computer before entering a possibly coercive environment.

Another possible attack is capturing the cleartext ATA
password from the IDE/SATA interface. The password may
be extracted by probing the interface with a logic analyzer.
In a coercive situation, the user is expected only to enter
the deletion password, which will erase the TPM-stored ATA
password, instead of sending it to the IDE/SATA interface.
(d) Undetectable deletion trigger. As discussed under “Seal-
ing in NVRAM” in Section III, sealing prevents guessing
attacks without risking key deletion. Sealing also prevents
an attacker from determining which user-entered passwords
may trigger deletion, before the actual deletion occurs. If the
adversary alters Gracewipe, any password, including the actual
deletion password, will fail to unseal the hidden volume key
from NVRAM. Since the deletion indicator (i.e., a special
bit/index) lies only within the sealed data in NVRAM, the
adversary will be unable to detect whether an entered password

is for deletion or not (e.g., by checking the execution of a
branch instruction triggered by the deletion indicator).
(e) Quoting for detecting spoofed environment. In the
current implementation of Gracewipe, we only generate a
quote in the case of secure deletion. However, in normal
operations, the user may want to discern when a special
type of evil-maid attack has happened, e.g., when the whole
software stack is replaced with a similar environment (e.g.,
OS and applications). For this purpose, we can generate a
quote each time Gracewipe is run and store it in NVRAM. By
checking the last generated quote value, the user can find out
if Gracewipe has been altered or not. In both secure deletion
and normal operation, the selection of a proper nonce is of
great importance. We currently support both arbitrary user-
chosen strings and timestamps. Nevertheless, the use of a
timestamp is susceptible to a pre-play attack, where one party
can approximately predict (especially, if the other party is not
paying attention) the time of the next use, and pre-generate a
quote while actually running an altered binary. This is feasible
because the malicious party has physical access, and thus, is
able to use TPM to sign the well-known good PCR values
for Gracewipe and the timestamp he predicts. Therefore, for
spoofed environment detection, we recommend the use of user-
chosen strings during quote generation, although it requires
user intervention.
(f) Booting from non-Gracewipe media. The attacker may
try to bypass Gracewipe by booting from other media. For an
SED-based implementation, such attempts cannot proceed (i.e.,
the disk cannot be mounted). Even if he can mount the disk,
e.g., with a copy of Gracewipe-unaware TrueCrypt, he must
use the unmodified version of Gracewipe to try passwords that
are guessed or extracted from the user (e.g., under coercion), as
TrueCrypt volumes are now encrypted with long random keys
(e.g., 256-bit AES keys), as opposed to password-derived keys.
Brute-forcing such long keys is assumed to be infeasible even
for state-level adversaries.
(g) User diligence. We require users to understand how
security goals are achieved in Gracewipe, and diligently choose
which password to use depending on a given context. If the
deletion password is entered accidentally, the protected data
will be lost without any warning, or requiring any confirma-
tion. Note that, we do not impose any special requirement
on password choice; i.e., users can choose any generally-
acceptable decent passwords (e.g., 20 bits of entropy may
suffice). We do not mandate strong passwords, as the adversary
is forced to guess passwords online, and always faces the risk
of guessing the deletion password. Also, the user must reliably
destroy her copy of the TrueCrypt keys or ATA keys when
passing them to configure TrueCrypt or SED devices. We can
automate this key setup step at the cost of enlarging the trusted
computing base. However, we believe that even if the whole
process is without any user intervention, the adversary may
still suspect the victim to have another copy of the key or the
confidential data. Here we only consider destroying the copy
that the adversary has captured.

IX. RELATED WORK

Solutions related to secure deletion have been explored
extensively both by the research community and the industry;
see e.g., the recent survey [38]. However, we are unaware
of solutions that target verifiability of the deletion procedure,

12



and unobservability and indistingushability of the triggering
mechanism—features that are particularly important in the
threat model we assumed. Here we summarize proposals
related to secure deletion and coercive environment.
Limited-try approach [40]. In a blog post, Rescorla [40]
discusses technical and legal problems of data protection under
coercion. Limitations of existing approaches including deni-
able encryption (such as TrueCrypt hidden volumes), verifiable
destruction (Vanish [17]) have been discussed. He also pro-
poses possible solutions, one of which is based on leveraging
a hardware security module (HSM) with a limited-try scheme.
The HSM will delete the encryption key if wrong keys are
entered a limited number of times. As mentioned [40], such
a system cannot be software-only as the destruction feature
can be easily bypassed. Essentially, Gracewipe combines TPM
and TXT to achieve HSM-like guarantees, i.e., isolated and
secure execution with secure storage (albeit limited tamper-
resistance), without requiring HSMs.
Authentication under duress. Clark and Hengartner [11]
explore panic passwords for authentication under duress. They
discuss limitations of schemes involving two passwords (reg-
ular/panic), introduce a comprehensive threat model that con-
siders the attacker’s persistence (iterated and randomized se-
quence of attempts), and propose new panic password schemes.
Gracewipe prototypes currently have been implemented to use
only one deletion password. We plan to incorporate some of
their new schemes to provide support for multiple deletion
passwords; however, we are still unsure about how current
TPM NVRAM access restrictions may affect such extensions
(see under “TPM deadlock” in Section VII). As discussed [11],
the use of a panic password, either by the victim or the
adversary, must be undetectable; we also require this feature
in Gracewipe. The outcome of an entered panic password
must also be unobservable, e.g., a submitted vote with a panic
password appears to be cast but is actually discarded by the
server-end. However, in Gracewipe, after the key deletion has
been performed, we enable the victim to prove to a reasonable
adversary that Gracewipe has been executed with deletion, and
further questioning the victim is of no use.

Beyond panic passwords, recently, two other proposals
explore comprehensive mechanisms for authentication under
duress. Gupta and Gao [20] propose to use skin conductance
to derive authentication secrets such as passwords or keys.
Experimental results show that skin conductance changes
significantly between normal and stressed situations, implying
that when under duress a victim cannot reveal the actual key,
even if she wants to cooperate. However, the effects of using
relaxation drugs on the victim by an adversary have not been
explored. Bojinov et al. [6] propose to use implicitly learned
passwords, which cannot be revealed by an user (due to no
explicit knowledge); the passwords are implicitly learned by
a user through the use of a specially crafted game. Both
enrolment and authentication phases require significantly more
time than regular authentication mechanisms (30–45 minutes
and 5–6 minutes, respectively in their experiments).
Secure deletion survey [38]. Reardon et al. provide a com-
prehensive survey of existing solutions for secure deletion of
user data on physical media, including flash, and magnetic
disks/tapes. Solutions are categorized and compared based on
how they are interfaced with the physical media (e.g., via user-

level applications, file system, physical/controller layers), and
the features they offer (e.g., deletion latency, target adversary
and device wear). However, SED-based solutions were not
evaluated, which is of significance to secure deletion. The
authors also presented a taxonomy of adversaries that a secure
deletion approach is faced with. The adversary in Gracewipe
can be classified as bounded coercive as he can detain the
victim, and keep the device for as long as he needs with all
hardware tools available, but cannot decrypt the Gracewipe-
protected data without the proper key. Reardon et al. also
discuss a few solutions involving encrypting user data and
making it inaccessible by deleting the keys. The authors sug-
gested to be more cautious about such cryptographic deletion
and consider the adversary’s true computational bound (which
would be rather high for a state-level adversary).
STARK [36]. Müller et al. propose techniques for mutual
authentication between humans and computers, arguing that
forged bootloader can trick the user to leak her password
(cf. [43, 30]). However, even with TPM sealing, attacks aiming
to just obtain the user secret can still occur, as demonstrated by
the tamper-and-revert attack to BitLocker [61]. STARK allows
the user to set up a sealed user-chosen message, which should
be unsealed by the machine before it authenticates the user.
The user can then verify if it is her message. Nevertheless, if
the attacker stealthily turns on the machine and notes down the
unsealed secret, he can still forge the bootloader. As a counter-
measure, after each successful login, STARK replaces the old
message with a new user-chosen one to prevent such replay
attacks (hence the message is termed as monce, as a message
counterpart of nonce). In addition, the monce is stored on a
separate USB disk that serves as a physical key to bootstrap
the process credibly. Gracewipe may be extended with such
techniques to defeat evil-maid attacks.
DriveCrypt Plus Pack [47]. DCPP can be considered the
closest prior art to Gracewipe. It is a closed-source FDE
counterpart of TrueCrypt, with several interesting features,
such as deniable storage (hidden volumes), the use of USB
tokens for multi-factor authentication, UEFI support, destruc-
tion passwords and security by obfuscation. A user can define
one or two destruction passwords (when two are defined, both
must be used together), which, if entered, can immediately
cause erasure of some regions of the hard drive, including
where the encryption keys are stored. What DCPP is obviously
still missing is a trusted environment for deletion trigger, and
measurement for the deletion environment. The adversary may
also alter DCPP (e.g., through binary analysis) to prevent the
deletion from happening. More seriously, the adversary can
clone the disk before allowing any password input.

X. CONCLUSION

We consider a special case of data security: making data
permanently inaccessible when under coercion. We want to en-
able such deletion with additional guarantees: (1) verification
of the deletion process; (2) indistingushability of the deletion
trigger from the actual key unlocking process; and (3) no
password guessing without risking key deletion. If key deletion
occurs through a user supplied deletion password, the user may
face serious consequences (legal or otherwise). Therefore, such
a deletion mechanism should be used only for very high-value
data, which must not be exposed at any cost, and where even
accidental deletion is an acceptable risk (i.e., the data may be

13



backed up at locations beyond the adversary’s reach). We de-
sign and implement Gracewipe for two widely-available real-
world FDE schemes: TrueCrypt with hidden volume support
and SED; both prototypes eventually boot Windows, which
poses some additional challenges. We introduce no additional
hardware/architectural requirements. We use TPM for secure
storage and enforcing loading of an untampered Gracewipe
environment. For secure and isolated execution, we rely on
Intel TXT. Millions of consumer-grade machines are already
equipped with a TPM chip and TXT/SVM capable CPU.
Thus, Gracewipe can immediately benefit its targeted user
base. The source code of our prototypes can be obtained via:
https://madiba.encs.concordia.ca/software.html.

ACKNOWLEDGEMENT

We are grateful to anonymous NDSS2015 reviewers, Jonathan
McCune, N. Asokan, Thomas Nyman, and Jeremy Clark for
their insightful suggestions and advice. We also thank the
members of Concordia’s Madiba Security Research Group for
their enthusiastic discussion on this topic. The second author is
supported in part by an NSERC Discovery Grant and FRQNT
Programme établissement de nouveaux chercheurs.

REFERENCES

[1] GRUB4DOS. http://sourceforge.net/projects/grub4dos/.
[2] TrouSerS: The open-source TCG software stack. Version:

0.3.8. http://trousers.sourceforge.net/.
[3] 16s.us. TCHunt. Tool for detecting encrypted hidden

volumes (version: 1.6, release date: Jan. 29, 2014). http:
//16s.us/software/TCHunt/.

[4] AMD.com. AMD64 architecture programmer’s man-
ual volume 2: System programming. Oct. 2013. http:
//support.amd.com/TechDocs/24593.pdf.

[5] R. Anderson, R. Needham, and A. Shamir. The stegano-
graphic file system. In International Workshop on Infor-
mation Hiding (IH’98), Portland, OR, USA, 1998.

[6] H. Bojinov, D. Sanchez, P. Reber, D. Boneh, and
P. Lincoln. Neuroscience meets cryptography: Designing
crypto primitives secure against rubber hose attacks. In
USENIX Security Symposium, Bellevue, WA, USA, Aug.
2012.

[7] T. Bonaci, J. Herron, C. Matlack, and H. J. Chizeck. Se-
curing the exocortex: A twenty-first century cybernetics
challenge. In IEEE Conference on Norbert Wiener in the
21st Century, Boston, MA, USA, June 2014.

[8] D. Boneh and R. J. Lipton. A revocable backup system.
In USENIX Security Symposium, San Jose, CA, USA,
July 1996.

[9] G. Chappell. The x86 BIOS emulator.
http://www.geoffchappell.com/studies/windows/km/
hal/api/x86bios/index.htm?tx=7.

[10] L. Chen and M. Ryan. Attack, solution and verification
for shared authorisation data in TCG TPM. In Formal
Aspects in Security and Trust (FAST’09), Eindhoven, The
Netherlands, Nov. 2009.

[11] J. Clark and U. Hengartner. Panic passwords: Authenti-
cating under duress. In USENIX Workshop on Hot Topics
in Security (HotSec’08), San Jose, CA, USA, July 2008.

[12] CNet.com. Turkish police may have beaten encryption

key out of TJ Maxx suspect. News article (Oct. 24, 2008).
http://news.cnet.com/8301-13739 3-10069776-46.html.

[13] G. D. Crescenzo, N. Ferguson, R. Impagliazzo, and
M. Jakobsson. How to forget a secret (extended abstract).
In Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’99), Trier, Germany, Mar. 1999.

[14] A. Czeskis, D. J. S. Hilaire, K. Koscher, S. D. Gribble,
T. Kohno, and B. Schneier. Defeating encrypted and
deniable file systems: TrueCrypt v5.1a and the case of
the tattling OS and applications. In USENIX HotSec’08,
San Jose, CA, USA, 2008.

[15] Dban.org. Darik’s boot and nuke. Open-source tool for
hard-drive disk wipe and clearing. http://www.dban.org.

[16] M. Frank, T. Hwu, S. Jain, R. Knight, I. Martinovic,
P. Mittal, D. Perito, and D. Song. Subliminal probing for
private information via EEG-based BCI devices. Tech-
report (Dec. 20, 2013). http://arxiv.org/abs/1312.6052.

[17] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy.
Vanish: Increasing data privacy with self-destructing data.
In USENIX Security Symposium, Montreal, Canada, Aug.
2009.

[18] Gnu.org. The multiboot specification. http://www.gnu.
org/software/grub/manual/multiboot/multiboot.html.

[19] J. Götzfried. Mutual authentication to resist keylog-
ging. Version: 0.2, Oct. 2013. https://www1.informatik.
uni-erlangen.de/filepool/projects/mark/index.html.

[20] P. Gupta and D. Gao. Fighting coercion attacks in key
generation using skin conductance. In USENIX Security
Symposium, Washington, DC, USA, Aug. 2010.

[21] P. Gutmann. Secure deletion of data from magnetic and
solid-state memory. In USENIX Security Symposium, San
Jose, CA, USA, July 1996.

[22] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman, J. Ap-
pelbaum, and E. W. Felten. Lest we remember: Cold
boot attacks on encryption keys. In USENIX Security
Symposium, San Jose, CA, USA, 2008.

[23] HGST.com. Data security from the inside out. http://
www.hgst.com/hard-drives/self-encrypting-drives.

[24] Intel.com. Trusted boot (tboot). Version: 1.8.0. http://
tboot.sourceforge.net/.

[25] Intel.com. Intel 64 and IA-32 Architectures Software
Developer’s Manual, September 2014. Volume 2C:
Instruction Set Reference.

[26] Intel.com. Intel 64 and IA-32 Architectures Software
Developer’s Manual, September 2014. Volume 2A:
Instruction Set Reference, A–M.

[27] ISO.org. ISO/IEC FDIS 27040: Information technology
– security techniques – storage security. Target publi-
cation: Apr. 21, 2015. http://www.iso.org/iso/home/store/
catalogue tc/catalogue detail.htm?csnumber=44404.

[28] B. Kauer. OSLO: Improving the security of trusted
computing. In USENIX Security Symposium, Boston,
MA, USA, Aug. 2007.

[29] Kernel.org. Trusted boot (tboot) documentation. https:
//www.kernel.org/doc/Documentation/intel txt.txt.

[30] P. Kleissner. Stoned bootkit. Black
Hat USA (July 2009). http://www.blackhat.

14



com/presentations/bh-usa-09/KLEISSNER/
BHUSA09-Kleissner-StonedBootkit-PAPER.pdf.

[31] K. Kursawe, D. Schellekens, and B. Preneel. Analyzing
trusted platform communication. In ECRYPT Workshop,
CRASH – CRyptographic Advances in Secure Hardware,
Leuven, Belgium, Sept. 2005.

[32] A. D. McDonald and M. G. Kuhn. StegFS: A stegano-
graphic file system for Linux. In International Workshop
on Information Hiding (IH’99), Dresden, Germany, 1999.

[33] Microsoft.com. Windows kernel debugger.
http://msdn.microsoft.com/en-us/library/windows/
hardware/dn745912(v=vs.85).aspx.

[34] T. Müller, F. C. Freiling, and A. Dewald. TRESOR runs
encryption securely outside RAM. In USENIX Security
Symposium, San Francisco, CA, USA, Aug. 2011.

[35] T. Müller, T. Latzo, and F. Freiling. Self-encrypting
disks pose self-decrypting risks: How to break hardware-
based full disk encryption. Technical report, Friedrich
Alexander University, 2012. http://www1.cs.fau.de/sed.

[36] T. Müller, H. Spath, R. Mäckl, and F. C. Freiling.
STARK tamperproof authentication to resist keylogging.
In Financial Cryptography and Data Security (FC’13),
Okinawa, Japan, Apr. 2013.

[37] M. J. Ranum. Cryptography and the law...
Newsgroup post at sci.crypt (Oct. 16, 1990).
https://groups.google.com/forum/#!msg/sci.crypt/
W1VUQlC99LM/ANkI5zdGQIYJ.

[38] J. Reardon, D. Basin, and S. Capkun. SoK: Secure data
deletion. In IEEE Symposium on Security and Privacy,
San Francisco, CA, USA, May 2013.

[39] J. Reardon, S. Capkun, and D. Basin. Data node en-
crypted file system: Efficient secure deletion for flash
memory. In USENIX Security Symposium, Bellevue, WA,
USA, Aug. 2012.

[40] E. Rescorla. Protecting your encrypted data in
the face of coercion. Blog post (Feb. 11, 2012).
http://www.educatedguesswork.org/2012/02/protecting
your encrypted data.html.

[41] M. Russinovich. Inside the Windows Vista kernel: Part
3. Microsoft TechNet Magazine, Apr. 2007.

[42] M. Russinovich, D. A. Solomon, and A. Ionescu. Win-
dows Internals Part 1. Microsoft Press, 2012.

[43] J. Rutkowska. Evil maid goes after TrueCrypt! Online
report (Oct. 16, 2009). http://theinvisiblethings.blogspot.
ca/2009/10/evil-maid-goes-after-truecrypt.html.

[44] A.-R. Sadeghi, M. Selhorst, C. Stüble, C. Wachsmann,
and M. Winandy. TCG inside? – a note on TPM specifica-
tion compliance. In ACM Workshop on Scalable Trusted
Computing (STC’06), Alexandria, VA, USA, Nov. 2006.

[45] Salon.com. James Holmes and the ethics of “truth
serum”: Putting the Aurora shooter through a narcolana-
lytic interview won’t provide truth or prove sanity. News
article (Mar. 13, 2013). http://www.salon.com/2013/03/
13/james holmes the ethics efficacy of truth serum/.

[46] Seagate.com. Protect your data with Seagate secure self-
encrypting drives. http://www.seagate.com/tech-insights/.

[47] SecurStar.com. DriveCrypt Plus Pack. http://www.
securstar.com/disk encryption.php.

[48] M. M. G. Slusarczuk, W. T. Mayfield, and S. R.
Welke. Emergency destruction of information stor-
ing media. Institute for Defense Analyses Report R-
321 (Dec. 1987). http://www.dtic.mil/cgi-bin/GetTRDoc?
AD=ADA202147.

[49] E. R. Sparks. A security assessment of trusted platform
modules. Technical report, Dartmouth College, 2007.
http://www.cs.dartmouth.edu/reports/TR2007-597.pdf.

[50] R. Strong. BIOS enhanced disk drive services
4.0. Technical report, Intel.com, 2008.
http://www.t13.org/documents/UploadedDocuments/
docs2008/e08134r1-BIOS Enhanced Disk Drive
Services 4.0.pdf.

[51] C. Tarnovsky. Security failures in secure
devices. Black Hat DC (Feb. 2008).
https://www.blackhat.com/presentations/bh-dc-08/
Tarnovsky/Presentation/bh-dc-08-tarnovsky.pdf.

[52] TheRegister.co.uk. Computing student jailed after failing
to hand over crypto keys. News article (July 8, 2014).
http://www.theregister.co.uk/2014/07/08/christopher
wilson students refusal to give up crypto keys jail
sentence ripa/.

[53] ThinkWiki.org. Integrated TPM in SuperIO chip.
http://www.thinkwiki.org/wiki/Embedded Security
Subsystem.

[54] TrueCrypt.org. Free open source on-the-fly disk encryp-
tion software. Version 7.1a (July 2012). http://www.
truecrypt.org/.

[55] Trusted Computing Group. TCG PC Client Specific TPM
Interface Specification (TIS). Specification Version 1.3
(March 21, 2013).

[56] Trusted Computing Group. TPM Main: Part 1 Design
Principles. Specification Version 1.2, Level 2 Revision
116 (March 1, 2011).

[57] Trusted Computing Group. TPM Main: Part 2 TPM
Structures. Specification Version 1.2, Level 2 Revision
116 (March 1, 2011).

[58] Trusted Computing Group. TPM Main: Part 3 Com-
mands. Specification Version 1.2, Level 2 Revision 116
(March 1, 2011).

[59] Trusted Computing Group. TCG PC Client Specific Im-
plementation Specification for Conventional BIOS, Febru-
ary 2012.

[60] Trusted Computing Group. TCG Storage Security Sub-
system Class: Opal, February 2012.

[61] S. Türpe, A. Poller, J. Steffan, J.-P. Stotz, and
J. Trukenmüller. Attacking the BitLocker boot process.
In Trusted Computing (Trust’09), Oxford, UK, Apr. 2009.

[62] A. Winter. The making of “truth serum,” 1920-1940.
Bulletin of the History of Medicine, 79(3):500–533, 2005.

[63] J. Winter and K. Dietrich. A hijacker’s guide to commu-
nication interfaces of the trusted platform module. Com-
puters and Mathematics with Applications, 65(5):748–
761, Mar. 2013.

[64] R. Wojtczuk and J. Rutkowska. Attacking
Intel trusted execution technology. Black
Hat DC (Feb. 2009). http://www.blackhat.com/
presentations/bh-dc-09/Wojtczuk Rutkowska/
BlackHat-DC-09-Rutkowska-Attacking-Intel-TXT-slides.

15



pdf.
[65] R. Wojtczuk, J. Rutkowska, and A. Tereshkin. An-

other way to circumvent Intel trusted execution tech-
nology. Technical report, Invisible Things Lab,
2009. http://invisiblethingslab.com/resources/misc09/
Another%20TXT%20Attack.pdf.

[66] X3T10 Technical Committee. Information Tech-
nology - AT Attachment Interface with Extensions
(ATA-2), March 1996. http://www.t13.org/Documents/
UploadedDocuments/project/d0948r4c-ATA-2.pdf.

APPENDIX A
DEBUGGING CONSIDERATIONS

We faced several issues while debugging our prototypes,
as Gracewipe works at an early stage during system boot, and
involves several existing tools/components, which are unaware
of each other. Here, we briefly discuss few selected challenges
and how we derived fixes for them.

The debugging complexity partly arises from the diverse
forms of Gracewipe components, specifically: (i) the TrueCrypt
modules are gzip’ed and written on contiguous sectors follow-
ing the MBR, and only extracted at run-time; (ii) different
boot loaders (e.g., Windows VBR) are located on encrypted
volumes, and only available after run-time decryption; (iii)
unavailability of source code (e.g., Windows BootMgr); and
(iv) invocation of our BIOS interrupt handler in different caller
contexts. Also, as of writing, no x86 emulator with TXT
support exists, and thus it is infeasible to rely on simulation-
based debuggers.

A. Debugging methods and tools
We use a combination of different methods/tools. From

the time tboot gets control before the wiper switches to real-
mode for chainloading, we print debug information on the
screen (similar to tboot). Around the mode switch (about 30
lines of assembly), we rely on less efficient dead loops to
locate a failing point (i.e., using “jmp $” to halt the system
and moving this instruction around suspicious code). When
Windows takes over, we make use of WinDbg [33]. It has
two modes, Windows Boot Debugger for debugging Windows
BootMgr, and Windows Kernel Debugger when connected to
the Windows kernel.

We need an out-of-band measure and simulation-based
debugging to identify effects of TXT on Windows loading.
Since no support for TXT exists in off-the-shelf emulators,
we managed to carefully separate the function sets that can be
tested without TXT. For instance, if we load the wiper right
after GRUB, instead of invoking tboot and disable all TXT
related operations in the first stage of the wiper, we can execute
the whole solution in QEMU and boot Windows there. In this
way, gdb can be used to connect to QEMU via TCP/IP (locally)
and debug components other than tboot. When Windows starts
up normally, we can add the measurement back with tboot on
a physical machine. What we have achieved in QEMU still
helps, in the sense that by comparing the behaviors we can
tell how tboot contributes to the difference (because the one
without tboot already works).

For smaller-sized binary components, we managed to dis-
assemble and analyze them directly (e.g., Windows VBR, 512
bytes). For TrueCrypt modules which are more complicated,

we made use of the .cod files generated in TrueCrypt project
to correlate the source and the binary (i.e., mapping assembly
blocks to C functions).

B. Example debugging scenarios
Here we list a few typical situations that we addressed.

Interpreting BIOS interrupt return codes. During loading
Windows VBR, we received a message “A disk read error
occurred, Press Ctrl+Alt+Del to restart” and the system was
halted. Till this point, the TrueCrypt hidden volume has been
successfully mounted and accessible through regular INT 13h
calls. Technically, Windows 7/Vista must be run with INT
13h Extensions (function codes 0x4X instead of 0x0X). It
is queried through function code 0x41, and if supported, CF
should be cleared with BX set to 0xAA55. However, in addi-
tion to checking CF and BX, the VBR also specifically verifies
whether CX is 1 (TEST CX,0001), which implies that the
extension supports device access using the packet structure,
the way LBA works. We worked around it by restoring the
original INT 13h handler and reverse-engineered (with gdb
and QEMU) the return of function 0x41. We had to set CX
to 7 (0b111) to stop VBR from complaining. As the value 7
also includes BIOS enhanced disk drive services [50] (EDD)
that supports 64-bit LBA as part of the extension (0b100), we
believe Windows mandates EDD.
Dealing with Windows BootMgr and Shadowed BIOS.
BootMgr runs in protected-mode and is considered as the
bootloader of Windows. Right after we selected an item
in BootMgr, a system halt occurred with only one line of
message: “BlInitializeLibrary failed 0xc0000001”. With the
help of Windows Boot Debugger, we identified and solved
this problem by adding the support of function code 0x15 (cf.
Section V-B).

To our surprise, Windows still invokes our interrupt
handler even in winload.exe (which loads the kernel) with
hal!x86BiosExecuteInterruptShadowed. Windows has a mech-
anism called “Shadowed BIOS” that allows to continue using
BIOS calls while it is initializing in protected-mode, perhaps
before some necessary drivers have been loaded (see [9]).
Debugging TrueCrypt kernel driver in Windows. As soon as
winload.exe finishes loading the kernel and boot-class device
drivers, multithreading and other large Windows modules make
black-box debugging impossible. The Windows Driver Kit
(WDK8) allows us to insert debug output into the source
of truecrypt.sys to be printed at the console of Windows
Kernel Debugger; note that truecrypt.sys is the Windows
driver that takes over the job of INT 13h filter for real-time
decryption/encryption. In function MountDrive(), we printed
out the variables and the buffer read as the volume header
from the disk. We could clearly see how the data read
with DMA differed from the PIO mode, which caused the
mismatch of the TrueCrypt boot drive signature. This solved
the UNMOUNTABLE BOOT VOLUME error as discussed
in Section V-E.

8http://www.microsoft.com/en-ca/download/details.aspx?id=11800

16


	Introduction and Motivation
	Background, Goals, and Threat Model
	Background
	Goals and terminology
	Threat model and assumptions

	Gracewipe Design
	Implementation with TrueCrypt
	TPM I/O Access
	Secure Storage in TPM
	Measured Launch with Tboot
	Attestation with TPM Quote
	Changes in TrueCrypt
	Wiper Initialization

	Loading Windows after Tboot
	Observations
	Rewriting BIOS Interrupt Handler for Disk Access
	Memory Overlaps
	Shutting down TXT
	Additional disk access issues

	Implementation with SED
	Gracewipe on SED
	Implementation

	Limitations
	Security Analysis
	Related Work
	Conclusion
	Appendix A: Debugging Considerations
	Debugging methods and tools
	Example debugging scenarios


