
Opaque Control-Flow Integrity

Vishwath Mohan∗, Per Larsen†, Stefan Brunthaler†, Kevin W. Hamlen∗, and Michael Franz†
∗{vishwath.mohan,hamlen}@utdallas.edu

The University of Texas at Dallas
†{perl,s.brunthaler,franz}@uci.edu

University of California, Irvine

Abstract—A new binary software randomization and Control-
Flow Integrity (CFI) enforcement system is presented, which
is the first to efficiently resist code-reuse attacks launched by
informed adversaries who possess full knowledge of the in-
memory code layout of victim programs. The defense mitigates a
recent wave of implementation disclosure attacks, by which adver-
saries can exfiltrate in-memory code details in order to prepare
code-reuse attacks (e.g., Return-Oriented Programming (ROP)
attacks) that bypass fine-grained randomization defenses. Such
implementation-aware attacks defeat traditional fine-grained ran-
domization by undermining its assumption that the randomized
locations of abusable code gadgets remain secret.

Opaque CFI (O-CFI) overcomes this weakness through a
novel combination of fine-grained code-randomization and coarse-
grained control-flow integrity checking. It conceals the graph of
hijackable control-flow edges even from attackers who can view
the complete stack, heap, and binary code of the victim process.
For maximal efficiency, the integrity checks are implemented
using instructions that will soon be hardware-accelerated on
commodity x86-x64 processors. The approach is highly practical
since it does not require a modified compiler and can protect
legacy binaries without access to source code. Experiments using
our fully functional prototype implementation show that O-CFI
provides significant probabilistic protection against ROP attacks
launched by adversaries with complete code layout knowledge,
and exhibits only 4.7% mean performance overhead on current
hardware (with further overhead reductions to follow on forth-
coming Intel processors).

I. MOTIVATION
Code-reuse attacks (cf., [5]) have become a mainstay of

software exploitation over the past several years, due to the
rise of data execution protections that nullify traditional code-
injection attacks. Rather than injecting malicious payload
code directly onto the stack or heap, where modern data
execution protections block it from being executed, attackers
now ingeniously inject addresses of existing in-memory code
fragments (gadgets) onto victim stacks, causing the victim
process to execute its own binary code in an unanticipated
order [38]. With a sufficiently large victim code section, the
pool of exploitable gadgets becomes arbitrarily expressive
(e.g., Turing-complete) [20], facilitating the construction of
arbitrary attack payloads without the need for code-injection.
Such payload construction has even been automated [34]. As

Permission to freely reproduce all or part of this paper for noncommercial
purposes is granted provided that copies bear this notice and the full citation
on the first page. Reproduction for commercial purposes is strictly prohibited
without the prior written consent of the Internet Society, the first-named author
(for reproduction of an entire paper only), and the author’s employer if the
paper was prepared within the scope of employment.
NDSS ’15, 8–11 February 2015, San Diego, CA, USA
Copyright 2015 Internet Society, ISBN 1-891562-38-X
http://dx.doi.org/10.14722/ndss.2015.23271

a result, code-reuse has largely replaced code-injection as one
of the top software security threats.

This has motivated copious work on defenses against code-
reuse threats. Prior defenses can generally be categorized into:
CFI [1] and artificial software diversity [8].

CFI restricts all of a program’s runtime control-flows to a
graph of whitelisted control-flow edges. Usually the graph is
derived from the semantics of the program source code or a
conservative disassembly of its binary code. As a result, CFI-
protected programs reject control-flow hijacks that attempt
to traverse edges not supported by the original program’s
semantics. Fine-grained CFI monitors indirect control-flows
precisely; for example, function callees must return to their
exact callers. Although such precision provides the highest
security, it also tends to incur high performance overheads (e.g.,
21% for precise caller-callee return-matching [1]). Because this
overhead is often too high for industry adoption, researchers
have proposed many optimized, coarser-grained variants of
CFI. Coarse-grained CFI trades some security for better
performance by reducing the precision of the checks. For
example, functions must return to valid call sites (but not
necessarily to the particular site that invoked the callee).
Unfortunately, such relaxations have proved dangerous—a
number of recent proof-of-concept exploits have shown how
even minor relaxations of the control-flow policy can be
exploited to effect attacks [6, 11, 18, 19]. Table I summarizes
the impact of several of these recent exploits.

Artificial software diversity offers a different but com-
plementary approach that randomizes programs in such a
way that attacks succeeding against one program instance
have a very low probability of success against other (in-
dependently randomized) instances of the same program.
Probabilistic defenses rely on memory secrecy—i.e., the effects
of randomization must remain hidden from attackers. One
of the simplest and most widely adopted forms of artificial
diversity is Address Space Layout Randomization (ASLR), which
randomizes the base addresses of program segments at load-
time. Unfortunately, merely randomizing the base addresses
does not yield sufficient entropy to preserve memory secrecy
in many cases; there are numerous successful derandomization
attacks against ASLR [13, 26, 36, 37, 39, 42]. Finer-grained
diversity techniques obtain exponentially higher entropy by
randomizing the relative distances between all code points. For
example, binary-level Self-Transforming Instruction Relocation
(STIR) [45] and compilers with randomized code-generation
(e.g., [22]) have both realized fine-grained artificial diversity
for production-level software at very low overheads.

Recently, a new wave of implementation disclosure at-
tacks [4, 10, 35, 40] have threatened to undermine fine-grained
artificial diversity defenses. Implementation disclosure attacks

TABLE I. OVERVIEW OF CONTROL-FLOW INTEGRITY BYPASSES

CFI [1] bin-CFI [50] CCFIR [49] kBouncer [33] ROPecker [7] ROPGuard [16] EMET [30]

DeMott [12] Feb 2014 /
Goktaş et al. [18] May 2014 / / /
Davi et al. [11] Aug 2014 / / / / /
Goktaş et al. [19] Aug 2014 / /
Carlini and Wagner [6] Aug 2014 / /

exploit information leak vulnerabilities to read memory pages of
victim processes at the discretion of the attacker. By reading the
in-memory code sections, attackers violate the memory secrecy
assumptions of artificial diversity, rendering their defenses
ineffective. Since finding and closing all information leaks
is well known to be prohibitively difficult and often intractable
for many large software products, these attacks constitute a very
dangerous development in the cyber-threat landscape; there is
currently no well-established, practical defense.

This paper presents Opaque CFI (O-CFI): a new approach
to coarse-grained CFI that strengthens fine-grained artificial
diversity to withstand implementation disclosure attacks. The
heart of O-CFI is a new form of control-flow check that conceals
the graph of abusable control-flow edges even from attackers
who have complete read-access to the randomized binary code,
the stack, and the heap of victim processes. Such access only
affords attackers knowledge of the intended (and therefore non-
abusable) edges of the control-flow graph, not the edges left
unprotected by the coarse-grained CFI implementation. Artifi-
cial diversification is employed to vary the set of unprotected
edges between program instances, maintaining the probabilistic
guarantees of fine-grained diversity.

Experiments show that O-CFI enjoys performance overheads
comparable to standard fine-grained diversity and non-opaque,
coarse-grained CFI. Moreover, O-CFI’s control-flow checking
logic is implemented using Intel x86/x64 memory-protection
extensions (MPX) that are expected to be hardware-accelerated
in commodity CPUs from 2015 onwards. We therefore expect
even better performance for O-CFI in the near future.

Our contributions are as follows:
• We introduce O-CFI, the first low-overhead code-reuse

defense that tolerates implementation disclosures.
• We describe our implementation of a fully functional

prototype that protects stripped, x86 legacy binaries
without source code.

• Analysis shows that O-CFI provides quantifiable se-
curity against state-of-the-art exploits—including JIT-
ROP [40] and Blind-ROP [4].

• Performance evaluation yields competitive overheads
of just 4.7% for computation-intensive programs.

II. THREAT MODEL
Our work is motivated by the emergence of attacks against

fine-grained diversity and coarse-grained control-flow integrity.
We therefore introduce these attacks and distill them into a
single, unified threat model.

A. Bypassing Coarse-Grained CFI
Ideally, CFI permits only programmer-intended control-flow

transfers during a program’s execution. The typical approach
is to assign a unique ID to each permissible indirect control-
flow target, and check the IDs at runtime. Unfortunately, this
introduces performance overhead proportional to the degree

of the graph—the more overlaps between valid target sets
of indirect branch instructions, the more IDs must be stored
and checked at each branch. Moreover, perfect CFI cannot be
realized with a purely static control-flow graph; for example,
the permissible destinations of function returns depend on the
calling context, which is only known at runtime. Fine-grained
CFI therefore implements a dynamically computed shadow
stack, incurring high overheads [1].

To avoid this, coarse-grained CFI implementations resort
to a reduced-degree, static approximation of the control-flow
graph, and merge identifiers at the cost of reduced security. For
example, bin-CFI [49] and CCFIR [50] use at most three IDs
per branch, and omit shadow stacks.

Recent work has demonstrated that these optimizations open
exploitable security holes. By choosing ROP gadgets that start
at a function entry point or are call-preceded, it is possible to
build ROP chains that bypass CFI [19], including subverting
CCFIR and bin-CFI. Related works [6, 11] have similarly
shown that call-preceded gadgets can bypass bin-CFI as well
as other low-overhead approaches that only check control-flow
transfers before potentially dangerous function calls [7, 16,
30, 33]. Table I maps coarse-grained CFI approaches to the
corresponding proof-of-concept bypasses. Note that the bypass
of the original CFI approach assumes that returns are not
tracked precisely using a shadow stack.
Just-In-Time Code Reuse. Until recently, most threat models
for CFI and artificial diversity defenses assumed that the
memory contents of protected processes were hidden from
attackers. The advent of Just-In-Time ROP (JIT-ROP) [40]
demonstrated that this assumption might be unrealistic in
practice due to the existence of implementation disclosure
vulnerabilities. Using heap feng shui [41], JIT-ROP places a
buffer next to a string and a button object. By overflowing the
buffer, the string length is set arbitrarily high, allowing the
attacker to read any byte in the virtual address space. Parsing the
button object through the overflowed string yields a reference
to a mapped code page.

Typically, attackers need more than a single 4K page
worth of code to find enough gadgets to mount a code-reuse
attack. To discourage brute-force searches for more code pages,
artificial diversity defenses routinely mine the address space
with unmapped pages that abort the process if accessed [2]. JIT-
ROP evades these mines by disassembling the initial code page
and carefully traversing only direct references to other code
pages to recursively discover enough gadgets to mount a ROP
attack. Since gadget locations are no longer unknown to the
attacker, reliable construction of custom ROP chains becomes
possible despite the fine-grained randomization defense.
Blind ROP. While JIT-ROP targets scripting-enabled clients,
Blind Return Oriented Programming (BROP) [4] targets vul-
nerable Internet-facing services, such as web-servers, that
restart after a crash. It capitalizes on the observation that

2

child processes created with the fork system call on Linux
must be randomized in the same way as their parent in order
to continue executing. The attack uses a buffer overflow to
overwrite the stack byte-by-byte. Byte values are chosen so
that correct guesses cause the server to continue responding
as intended, while incorrect guesses solicit a crash and restart.
By distinguishing these two outcomes, attackers can remotely
infer secret stack cookie values to bypass stack guards and
discover gadget locations. Once the write system function is
located (typically in less than 4000 guesses) the entire code
section can be exfiltrated to an attacker-controlled server, after
which a traditional ROP attack can be launched against the
vulnerable system. Like JIT-ROP, the attack defeats ASLR,
DEP, stack canaries and fine-grained code randomization on
64-bit systems.
Side Channel Disclosures. Recent work has even shown that
under certain circumstances, gadget locations can be leaked
through side channels, such as timing channels [35]. This
underscores the difficulty of fully protecting software against all
implementation disclosure vulnerabilities. Complete protection
entails mitigation of all side channel information leaks, which is
widely recognized as prohibitively difficult for most non-trivial
software products.

B. Assumptions
Given these sobering realities, we adopt a conservative

threat model that assumes that attackers will eventually find
and disassemble all code pages in victim processes. Our threat
model therefore assumes that the adversary knows the complete
in-memory code layout—including the locations of any gadgets
required to launch a ROP attack. We also assume that the
attacker can read and write the full contents of the heap and
stack, as well as any data structures used by the dynamic
loader. In keeping with common practice, we assume that data
execution protection is activated, so that code page permissions
can be maintained as either writable or executable but not both.

However, we assume that attackers cannot safely perform a
comprehensive, linear scan of virtual memory, since defenders
may place unmapped guard pages at random locations. Instead,
attackers must follow references from one disclosed memory
page to another [40] or resort to guessing [4] in order to avoid
inadvertently touching one of these mined pages and alerting
defenders (e.g., triggering re-randomization). Successful attacks
against our system are therefore those that reliably traverse
control-flow edges not intended by the original program
semantics without triggering an invalid access violation.

III. O-CFI OVERVIEW
O-CFI combines insights from CFI and automated soft-

ware diversity. It extends CFI with a new, coarse-grained
CFI enforcement strategy inspired by bounds-checking, that
validates control-flow transfers without divulging the bounds
against which their destinations are checked. Bounds-checking
is fast, the bounds are easier to conceal than arbitrary gadget
locations, and the bounds are randomizable. This imbues CFI
and fine-grained software diversity with an additional layer of
protection against code-reuse attacks aided by implementation
disclosures. As a result, O-CFI enjoys performance similar
to coarse-grained CFI, with probabilistic security guarantees
similar to fine-grained artificial diversity in the absence of
implementation disclosures.

Following traditional CFI, an O-CFI policy assigns to each
indirect branch site a destination set that captures its set of
permissible destination addresses. Such a graph can be derived
from the program’s source code or (with lesser precision) a
conservative disassembly of its object code. We next reformulate
this policy as a bounds-checking problem by reducing each
destination set to only its minimal and maximal members.
This policy approximation can be efficiently enforced by
confining each branch to the memory-aligned addresses within
its destination set range. All intended destination addresses are
aligned within these bounds, so the enforcement conservatively
preserves intended control-flows. Code layout is optimized
to tighten the bounds, so that the set of unintended, aligned
destinations within the bounds remains minimal. These few
remaining unintended but reachable destinations are protected
by the artificial diversity half of our approach.

Our artificial diversity approach probabilistically protects
the aligned, in-bounds, but policy-violating control-flows by
applying fine-grained randomization to the binary code at
load-time. While the overall strategy for implementing this
randomization step is based on prior works [45], its purpose
in O-CFI is fundamentally different. Randomizing the code
layout does not conceal the new layout from attackers, since
our threat model assumes attackers can read all the randomized
code. Rather, its purpose is to randomize the bounds to which
each branch is constrained. The bounds imposed upon each
branch are not disclosed by the binary code since bounds values
are stored in protected memory, not expressed as immediate
instruction arguments. Thus, attackers who can read the binary
code must nevertheless guess which control-flow hijacks trigger
an out-of-bounds branch violation and which do not.

Reformulating CFI in this way forces attackers to change
their plan of attack. The recent attacks against coarse-grained
CFI succeed by finding exploitable code that is reachable due
to policy-relaxations needed for acceptable performance. These
relaxations admit an alarming array of false-positives: instead
of identifying the actual caller, all call-preceded instructions
are incorrectly identified as permitted branch destinations. Such
instructions saturate a typical address space, giving attackers
too much wiggle room to build attacks. O-CFI counters this by
changing the approximation approach: each branch destination
is restricted to a relatively short span of aligned addresses,
with all the bounds chosen pseudo-randomly at load-time. This
greatly narrows the field of possible hijacks, and it removes the
opportunity for attackers to analyze programs ahead of time for
viable ROP gadget chains. In O-CFI, no two program instances
admit the same set of ROP payloads, since the bounds are all
randomized every time the program is loaded.

Since the security of coarse-grained CFI depends in part
on the precision of its policy approximation, it is worthwhile
to improve the precision by tightening the bounds imposed
upon each branch. This effectively reduces the space of attacker
guesses that might succeed in hijacking any given branch. To
reduce this space as much as possible, we introduce a novel
binary code optimization, called portals, that minimizes the
distance covered by the lowest and greatest element of each
indirect branch’s destination set.

Our fine-grained artificial diversity implementation is an
adaptation and extension of binary stirring [45]. Binary stirring
randomizes the ordering of basic blocks within code sections
each time a program binary is loaded into memory. The
stirring has the effect of randomizing bounds to defeat attackers

3

TABLE II. PSEUDO-CODE TO CONSTRAIN BRANCH BOUNDS.

Description Original code Rewritten code

Indirect
branches

call/jmp 〈dest〉 t := 〈dest〉
t := t& align_mask
(bmin,bmax) := blt[branch_id]
if not bmin ≤ t ≤ bmax:

abort(#BR);
call/jmp t

Returns ret 〈n〉 [esp] := [esp]& align_mask
(bmin,bmax) := blt[branch_id]
if not bmin ≤ [esp] ≤ bmax:

abort(#BR);
ret 〈n〉

armed with implementation knowledge, and affords even
higher probabilistic protections against attackers who lack such
knowledge. Thus, O-CFI offers security that strictly subsumes
and exceeds traditional fine-grained code randomization.

To protect against information leaks that might disclose
bounds information, our implementation is carefully designed
to keep all bounds opaque to external threats. They are randomly
chosen at load-time (as a side-effect of binary stirring) and
stored in a bounds lookup table (BLT) located at a randomly
chosen base address. The table size is very small relative to the
virtual address space, and attackers cannot safely perform brute-
force scans of the full address space (see §II-B), so guessing
the BLT’s location is probabilistically infeasible for attackers.
No code or data sections contain any pointer references to BLT
addresses; all references are computed dynamically at load-time
and stored henceforth exclusively in protected registers.

A. Bounding the Control Flow
For each indirect branch site with (non-empty) destination

set D, O-CFI guards the branch instruction with a bounds-check
that continues execution only if the impending target t satisfies
t ∈ [minD,maxD]. Indirect branch instructions include
all control-flow transfer instructions that target computed
destinations, including return instructions. Failure of the bounds-
check solicits immediate process termination with an error code
(for easier debugging). Termination could be replaced with a
different intervention if desired, such as an automated attack
analysis or alarm, followed by restart and re-randomization.

The bounds-check implementation first loads the pair
(minD,maxD) from the BLT into registers via an indirect,
indexed memory reference. The load instruction’s arguments
and syntax are independent of the BLT’s location, concealing
its address from attackers who can read the checking code.
The impending branch target t is then checked against the
loaded bounds. If the check succeeds, execution continues;
otherwise the process immediately terminates with a bounds
range (#BR) exception. The #BR exception helps distinguish
between crashes and guessing attacks. To resist guessing attacks
(e.g., BROP), web servers and other services should use this
exception to trigger re-randomization as they restart.

Table II contains pseudocode for the guards. The BLT
securely stores (minD,maxD) pairs for all branches, and
is indexed using unique branch IDs (branch id in Table II).

Following the approaches of PittSFIeld [29], NaCl [48],
and Reins [46], O-CFI also aligns all policy-permitted indirect
branch destinations to power-of-two addresses, and masks
the low-order bits of all indirect branch arguments to force
their targets to aligned addresses. This prevents attackers from
diverting control to misaligned instructions that are not intended

to be reachable by any legitimate flow of the original program.
This is important since any gadgets formed from misaligned
instructions do not receive bounds checks.

To bypass these checks, an attacker must craft a payload
whose every gadget is properly aligned and falls within the
bounds of the preceding gadget’s conclusory indirect branch.
The odds of guessing a reachable series of such gadgets decrease
exponentially with the number of gadgets in the desired payload.

B. Opacifying Control-flow Bounds
Diversifying bounds. The bounds introduced by O-CFI
constitute a coarse-grained CFI policy. Section II warns that
such coarse granularity can lead to vulnerabilities. However,
to exploit such vulnerabilities, attackers must discover which
control-flows adhere to the CFI policy and which do not.
To make the impermissible flows opaque to attackers, we
use diversity. Our prototype uses a modified version of the
technique outlined by Wartell et al. [45], which shuffles the
basic block order at program load-time. The general approach
could alternatively be implemented as a compiler-based defense
for software whose source codes are available.

Performing fine-grained code randomization at load-time
indirectly randomizes the ranges used to bound the control-flow.
In contrast to other CFI techniques, attackers therefore do not
have a priori knowledge of the control-flow bounds.
Preventing Information Leaks. Attackers bypass fine-grained
diversity using information leaks, such as those described in
§II-A. Were O-CFI’s control-flow bounds expressed as constants
in the instruction stream, attackers could bypass O-CFI via such
leaks. To avoid this, we instead confine bounds information to
an isolated data page, the BLT. The BLT is initialized at a ran-
dom virtual address at load-time, and there are no pointer refer-
ences (obfuscated or otherwise) to any BLT address in any code
or data page in the process. This keeps it hidden from attackers.

We also take several additional steps to prevent accidental
BLT disclosure via pointer leaks. Our prototype stores BLT
base addresses in segment selectors—a legacy feature of all
x86/x64 processors. Each load from the BLT indexes the gs
selector to read the bounds. We only use gs in bounds checking
instructions, so there are no other instructions that adversaries
can reuse to learn its value. Attackers are also prevented from
executing instructions that reveal segment register values, since
such instructions are privileged.

To succeed, attackers must therefore (i) guess branch
ranges, or (ii) guess the base address of the BLT. The odds of
correctly guessing the location of the BLT are low enough to
provide probabilistic protection. On 32-bit Windows systems,
for instance, the chances of guessing the base address are

1

231/212
=

1

524,288

and on 64-bit Windows, the chances are
1

243/212
=

1

2,147,483,648

or less than one in two billion. Incorrect guesses alert defenders
and trigger re-randomization with high probability (by accessing
an unallocated memory page).

The likelihood of successfully guessing a reachable gadget
chain is a function of the length of the chain and the span of
the bounds. The next section therefore focuses on reducing the
average bounds span.

4

TABLE III. MPX INSTRUCTIONS USED IN O-CFI

Syntax Description

bndmov bnd, m64 Move upper and lower bound from
m64 to bound register bnd.

bndcl bnd, r/m32 Generate a #BR if r/m32 is less
than the lower bound in bnd.

bndcu bnd, r/m32 Generate a #BR is r/m32 is higher
than the upper bound in bnd.

2) SFI and Randomization Framework: To prevent attacks
from jumping over the guards that constrain branch ranges,
the new code segment is split into power-of-two sized basic-
blocks called chunks [29]. Guard instructions and the branches
they guard are always co-located within a common chunk, and
branch targets are confined to chunk boundaries, with padding
inserted where necessary to preserve this property. Confining
branches to chunk boundaries is efficiently realized as a single
and instruction per branch, which clears the lower i bits of
the target address (where the size of a chunk is 2i+1 bytes).

Thus, control-flow within a chunk is linear, passing over
every instruction from start to end. This chunking and masking
regimen ensures that control-flow guards execute before every
indirect branch. Additionally, it prevents jumps to misaligned
(and hence unguarded) instruction sequences, reducing the
attack surface to the set of statically disassembled (and hence
protected) gadgets.

Direct branches are statically rewritten to reference their
new target addresses. Indirect branches require extra effort,
since their exact targets are only known at runtime. At runtime,
there are two common cases: (a) the impending target is already
within the .tnew section (e.g., it was pushed by a call), or
(b) the impending target is a stale pointer that points into the
.told section (e.g., it was loaded from a method dispatch
table in the heap, which the static rewriter does not modify).
The first case requires no special treatment; the second solicits
an efficient dynamic lookup and redirection of the stale pointer
to its new location [45]. Specifically, we check for the tag byte
at the target address, and if present, substitute the current target
with the address stored after the tag, which points to the block’s
new location in the .tnew section. The tag byte is chosen to
be an illegal instruction encoding, so that no non-stale code
pointer ever points to such a byte.

The stale pointer redirection mechanism is not relied upon
for security. Like all indirect branch targets, redirected pointers
undergo a mask and bounds-check before becoming control-
flow destinations. Thus, corrupting or defeating the redirection
mechanism does not circumvent the security policy.

The ability to redirect code pointers lays the foundation for
load-time randomization. Once the new randomized locations
for basic blocks have been finalized, updating the values in the
.told section allows our redirection mechanism to correctly
redirect all indirect branches to the new, randomized block
locations. Direct branches are simply modified in-place.

3) Branch Instrumentation: The above techniques enforce
SFI and fine-grained randomization. This protects against
traditional ROP attacks, but not against implementation-aware
attacks, which require the additional hardening implemented
by O-CFI’s bounds-checking. Bounds-checking is applied after
stale pointer redirection alongside masking, to further limit
the set of accessible gadgets. SFI enforcement prevents attack
payloads from circumventing these bounds checks.

Algorithm 1 CreateClusters(S): Cluster basic blocks to place
the targets of indirect branches as close together as possible.
Input: S {the set of the basic blocks in the code segment}
Output: C {a set of clusters, one per indirect branch. Each
c ∈ C is a block set containing all targets of a specific
branch, plus an empty nexus for later portal insertion.}
C ← ∅
for all b ∈ Branches(S) do

c← ∅
for all t ∈ Targets(b) do

b′ ← GetBasicBlock(t)
if b′ /∈

⋃
C then c← c ∪ {b′}

end for
{The nexus is an empty basic block to hold portals.}
C ← C ∪ {(c ∪ CreateNexus())}

end for
{Add unclaimed basic-blocks into a single final cluster.}
C ← C ∪ {(S −

⋃
C)}

Furthermore, due to randomization, the bounds remain
unknown to implementation-aware attackers, and vary from
program instance to program instance. Attacks cannot statically
pre-compute bounds ranges because the runtime randomization
phase changes bounds values on each execution. They also
cannot dynamically leak the bounds, all of which are stored
securely in the BLT and never leaked to the stack or heap.
Attackers must therefore hazard guesses as to which gadget
chains are safely accessible for any given program instance.

Our bounds-checking logic is detailed in Table II. The
MPX implementation of this logic is assisted by the fast MPX
instructions [24] summarized in Table III. On 32-bit systems,
each BLT entry consists of two 32-bit pointers.

4) Accurate Target Identification: To ensure that we identify
all intended targets of indirect branches, we employ disassembly
heuristics that identify a superset of potential targets. As an
example, we follow the following sequence of steps to identify
the set of potential targets for a return instruction:

1) Identify all code references to the function that
contains the return. This includes direct and indirect
branches to the function entry point, as well as to any
basic block within the function.

2) For each identified branch that is not a call, find all
code references that flow into it.

3) Recursively traverse all non-call references until a
fixed point is reached (i.e., a set with only calls).

4) The instruction immediately after each call forms the
target set for that return.

Our heuristics are tuned to prefer false positives (non-targets
treated as possibly valid destinations), since such errors do not
significantly affect the operation of our system. In particular,
each such error only marginally weakens the system’s security
(by admitting an unnecessary control-flow link that remains
guarded by randomization) and slightly increases generated
code size. A compiler-side solution could be more precise, at the
cost of requiring source code and recompilation of programs.

5) Bounds Range Minimization: As discussed in §III-C,
we use a combination of clustering and portals to reduce
bounds ranges. While the portals themselves are created only at
binary load-time, it is in the static phase that branch targets are
clustered together and empty nexuses created. Algorithm 1 gives

7

TABLE IV. SUMMARY OF CODE TRANSFORMATIONS

Description Original Code Rewritten Code (MPX-mode) Rewritten Code (Legacy-mode)

Indirect Branches call/jmp r/[m] 1: mov [esp-4], eax
2: mov eax, r/[m]
3: cmp byte ptr [eax], 0xF4
4: cmovz eax, [eax+1]

— chunk boundary —
5: bndmov bnd1, gs:[branch_id]
6: bndcu bnd1, eax
7: jmp 9

— chunk boundary —
8: xor eax, eax
9: and al, align_mask
10: bndcl bnd1, eax
11: xchg eax, [esp-4]
12: call/jmp [esp-4]

1: push ecx
2: push eax
3: mov eax, r/[m]
4: cmp byte ptr [eax], 0xF4
5: cmovz eax, [eax+1]

— chunk boundary —
6: mov ecx, branch_id
7: cmp eax, gs:[ecx]
8: jb 10
9: cmp gs:[ecx+4], eax

10: jbe
— chunk –/

— boundary ——
abort

11: and al, align_mask
12: xchg eax, [esp]
13: pop ecx
14: pop ecx
15: call/jmp [esp-8]

Returns ret 〈n〉 — chunk boundary —
1: xchg eax, [esp]
2: and al, align_mask
3: bndmov bnd1, gs:[branch_id]
4: jmp 6
— chunk boundary —
5: xor eax, eax
6: bndcu bnd1, eax
7: bndcl bnd1, eax
8: xchg eax, [esp]
9: ret 〈n〉

— chunk boundary —
1: xchg eax, [esp]
2: cmp eax, gs:[branch_id]
3: jb 9

4: and al,
—— chunk —/

— boundary ——
align_mask

5: cmp eax, gs:[branch_id + 4]
6: jae 9
7: xchg eax, [esp]
8: ret 〈n〉
— chunk boundary —
9: jmp abort

a high level overview of our clustering algorithm. Each cluster
created in this step gets an empty nexus. In our implementation,
all nexuses are homogeneous in size, but more sophisticated
implementations could tailor nexus sizes to individual branches
based on the size of their statically determined target set.

Organizing the code into power-of-two sized chunks (for
SFI enforcement) impacts portals. In the absence of chunking,
the size of each portal is the five bytes required for a direct
jump; but chunking rounds this up to the nearest multiple of
the chunk-size. In our implementation, this makes each portal
16 bytes long. Though this slightly increases both file and code
sizes, it only marginally affects the average bounds size, and
does not noticeably impact performance. Section V-D contains
a detailed breakdown of how bounds sizes vary with the number
of portals per cluster.

B. Accelerated Bounds Checks
To optimize performance, we leverage the Intel memory-

protection extensions (MPX) for x86/64 architectures to store
and check bounds. MPX instructions will be supported in Intel
processors from 2015 onwards, so our approach will benefit
from hardware acceleration in the near future. MPX instructions
execute as NOPs on legacy processors.

MPX provides hardware-accelerated bounds checking in-
structions and registers, for protection against buffer overflow
or underflow attacks. The eight new bounds registers each
hold two pointers, and can be used to store both the lower
and upper bounds associated with a pointer value. New MPX
instructions allow for quick loading and testing of these bounds
registers. We use the three MPX instructions shown in Table III.
Instruction bndmov loads bounds from the BLT into bounds
register bnd, and bndcl and bndcu verify that the target
address is within the loaded bounds.

To secure binaries intended for use on non-MPX systems,
O-CFI also has a legacy mode that uses the cmp and jcc
instructions to guard branches. Although the lack of dedicated

range checking instructions makes these guards less efficient
than their MPX-enabled counterparts, binaries rewritten in this
mode receive the same level of protection.

Table IV shows the final consolidated sequence of instruc-
tions that enforces bounds, prevents execution of unintended in-
structions, and allows fine-grained randomization. Column three
shows the instructions used when targeting MPX-compatible
platforms, while column four shows those used on non-MPX,
legacy processors. Chunks are 16 bytes each. In each listing,
instructions appearing before the first chunk boundary are
appended to the preceding chunk, or wherever they best fit.
Subsequent instructions are confined to dedicated chunks in
order to maintain security.
MPX Mode. In MPX mode, lines 1 and 11 of the guard code
for indirect branches preserve the eax register, which is used as
a scratch space. Lines 3 and 4 implement the dynamic lookup
and redirection mechanism for stale code pointers. Lines 5, 6,
and 10 load the bounds associated with this branch into bounds
register bnd1 and then compare it against the target address.
If the target address is outside the bounds, a #BR exception is
raised, and the program halted. Line 9 masks the target address,
forcing it to a chunk boundary.

Line 8 foils hijackers who attempt to abuse the final chunk
as a gadget. The earlier chunk boundary (above line 5) needs
no such protection because all logic above it is strictly for
preserving program functionality, not for enforcing security.
Thus, jumping to that boundary during a code-reuse attack does
not help the attacker—the resulting gadget implements a fully
guarded jump.

The process is shorter for returns, since returns do not
require stale pointer correction. The full return guard code
therefore fits within two 16-byte chunks.
Legacy Mode. To protect binaries executing on processors
without MPX support, O-CFI emits legacy mode guards. This
mode uses comparison (cmp) instructions (lines 7 and 9 of the

8

Algorithm 2 RuntimeSetup(C,BLT): Perform runtime ran-
domization, and bounds range setup and optimization.
Input: C {clustered code segment}, BLT {bounds table}
Output: C {randomized, bounds optimized code segment}

RandomizeCode(C)
CreateAllPortals(C)
UpdateDirectBranches(C)
UpdateJumpTable(C)
UpdateBoundsTable(BLT)
SetupSegmentedAccess(BLT) {Move the bounds table to
a random page and set up segmented memory access to it
via the gs register.}

Algorithm 3 RandomizeCode(C,Shuffle): Randomize basic
blocks in a cluster-aware manner.
Input: C {clustered code segment}, Shuffle {a method that

takes a set as input and outputs a random ordering}
Output: a randomized code segment
{Shuffle basic-blocks within the cluster.}
R← ∅
for all c ∈ C do

R← R ∪ {Shuffle(c)}
end for
{Shuffle the order of clusters within the code segment.}
return Shuffle(R)

indirect branch code, and lines 2 and 5 of the return code) to
compare the target address against both bounds. A conditional
jump immediately following each comparison transfers control
to an abort function if any check fails. The abort function halts
(and optionally re-randomizes and restarts) the program.

Some creativity is required to squeeze the lengthier legacy
guards into a small number of chunks, while avoiding the
introduction of gadgets (at chunk boundaries) abusable by
attackers. For example, the short-jump instructions (at line 8
of the indirect branch code, and lines 3 and 6 of the return
code) take circuitous routes to the abort function, but have
shorter encodings than long-jumps, saving space. (Since the
jumps are never taken during a policy-satisfying run, there
is no performance downside.) The indirect branch code uses
ecx as a temp register for indexing the BLT in lines 7 and 9,
achieving shorter encodings of those instructions.

To prevent abuse of the second chunk boundary as a
jump target during an attack, the legacy guard instructions
are carefully arranged so that the second boundary splits an
instruction’s encoding, and the bytes falling after the boundary
decode to an illegal opcode. In the return code listing, the
align mask argument (0xF0) decodes to an illegal opcode
prefix. In the indirect branch code listing, the destination
argument of the conditional jump in line 10 (abort) is chosen
so that its first byte is an illegal instruction.1 (As in MPX
mode, the first chunk boundary requires no protection, since
the instructions that follow it implement a fully guarded jump.)

C. Dynamic Randomization and Protection
The dynamic phase of our system proceeds at load-time,

before the binary executes. In this phase the basic blocks are

1The argument to jbe is a 32-bit, little-endian, relative offset, so we prefix
our abort function implementation with a 256-byte sled of NOPs, allowing
jump offsets to it to have an arbitrary least-significant byte (e.g., 0xF4).

Algorithm 4 CreatePortal(N, t): Create a portal to t from
nexus N .
Input: N {a nexus}, t {target address}
Output: Add a direct jump to t in the first available slot in
N , and returns its address.
for i = 1 to Capacity(N) do

if N [i] is an empty slot then
N [i]← CreateDirectJump(t)
return Address(N [i])

end if
end for
return null {Return null if insufficient capacity.}

Algorithm 5 CreateAllPortals(C): Fill each nexus with
portals to targets until (a) there are no more targets for that
branch, or (b) the nexus capacity is reached.
Input: C {the ordered set of clusters, post randomization}
Output: Fill nexuses with portals.

for all c ∈ C do
for i = 1 to Capacity(c.nexus) do

b ← GetParentBranch(c)
f ← FarthestTarget(c, b)
q ← CreatePortal(c.nexus, f)
if q 6= null then

UpdateTargets(b, f , q)
end if

end for
end for

randomized for diversity, bounds on indirect branches are fixed,
and bounds ranges are further minimized. O-CFI uses a runtime
library for this purpose, which it injects into the Import Address
Table (IAT) of the rewritten binary during the static phase.

The Windows load order guarantees that all statically linked
libraries initialize before the modules that link to them. The
dynamic phase is thus carried out by the intermediate library
in its initialization code. Algorithm 2 describes the order of
steps taken by the initialization code.

First, the two-step process detailed in Algorithm 3 is used
to randomize the code segment without affecting bounds ranges.
Next, each nexus is populated using a greedy algorithm that
creates portals to the farthest targets of its parent branch step-
by-step, until its capacity is exhausted. Algorithm 5 shows the
pseudo-code for this process while Algorithm 4 details how
individual portals are created.

Once the targets of all branches have been finalized, direct
branch operands are relocated to their correct locations and
all jump-table entries in the .told section are updated with
their new addresses. The BLT is also updated to reflect the
new ranges for each branch, after which it is then moved to a
random page of memory. Finally, the gs segment register is
updated to point to the new base address of the BLT.

D. Platform Support and Infrastructure
We have implemented O-CFI for 32-bit versions of Windows

(XP/Vista/7/8). Our O-CFI approach however, is not OS specific
and is also applicable to 64-bit versions of Windows as well
as Linux and OS X.

The implementation consists of three parts: (i) a static
rewriter, (ii) an intermediate library, and (iii) an API hooking

9

TABLE VI. GADGET CHAIN LENGTHS ACROSS SPEC BENCHMARKS

Gadget Chain Size Chance (%)

2 2.0
3 0.8
4 0.01
5 –

of each gadget. (Section III-B examines the probability of
guessing the address of the BLT itself.)

Under these assumptions, we carry out two experiments.
First, we evaluate the statistical likelihood of chaining gadgets
without violating branch bounds. Second, we attempt to use
post-randomization gadget addresses to manually craft practical
attacks against rewritten binaries, and evaluate how O-CFI
resists implementation disclosure in practice.

1) Chaining Gadgets: We use the Mona ROP-generation
tool [9] to identify all gadgets in a secured binary after the load-
time phase, simulating full disclosure of the code segment. To
simulate an attacker’s attempts to guess branch ranges, payload
chains are created by randomly selecting gadgets from the
discovered gadget set. When a selected gadget falls outside
the bounds of the previous gadget in the chain, the chain is
terminated and its length is considered the payload length for
that run. By repeating this process over multiple runs, we
estimate the probability of successfully crafting payloads of
various lengths.

This procedure estimates the probability of success of
disclosure attacks resembling JIT-ROP, where a failure (such as
a #BR violation) results in program termination and subsequent
re-randomization of code and re-selection of bounds ranges.

BROP-like attacks, on the other hand, exploit the lack
of re-randomization when binaries are respawned via the
fork system call. A crucial advantage of our system against
such attacks is the fact that a bounds violation does not
automatically crash the program; rather, it invokes the registered
#BR exception handler. The exception handler responds to the
attack by forcing re-randomization, leaving BROP attacks on
the same footing as JIT-ROP attacks.

In our experiments, we ran 100,000 runs of the experimental
methodology (for each benchmark), and then measured the
mean chance of success at crafting payloads of increasing
lengths. This evaluates the security of O-CFI against disclosure
attacks. The results are reported in Table VI.

Disclosure attacks in our experiments are unsuccessful at
chaining more than four gadgets from any of the binaries.
Moreover, the chance of chaining even a four-gadget payload
is about 0.01% on average—a strong indicator that O-CFI
offers powerful probabilistic protection against such attacks.

2) Crafting Practical Attacks: Mona is capable of building
practical gadget chains based on a heuristic search. In particular,
it can look for the gadgets necessary for attackers to (i) gain
execute permissions, (ii) disable DEP, and (iii) allocate a new
page with execute permissions.

To evaluate security against a more practical disclosure
attack, we leveraged this capability, and tried to build chains
using gadgets from both the original and rewritten binaries. For
the rewritten binaries, we filtered any chains that resulted in
bounds range exceptions.

Mona found partial chains (i.e., chains that incorporate
some additional gadgets from dynamically linked modules) for
all original binaries, and found full chains for some. However,
no complete or partial chains could be found for any of the

TABLE VII. BOUNDS RANGE REDUCTION FACTORS WITH PORTALS

Nexus Capacity
Binary
Program 3 6 9 12 15 18 ∞

gzip 3.11 4.34 5.01 5.99 6.96 8.60 288.19
twolf 2.70 3.61 4.42 5.51 6.82 7.96 310.67
vpr 2.75 4.17 5.54 6.95 9.23 10.68 287.79
gap 2.11 2.57 3.05 3.49 3.94 4.37 255.46
equake 2.90 5.73 6.93 10.47 12.94 16.94 352.73
art 3.33 5.22 6.80 8.60 13.55 16.93 368.97
mcf 3.37 6.09 6.86 9.58 12.63 18.94 353.72
bzip2 2.87 4.38 6.32 7.43 8.52 13.34 277.88
parser 2.87 4.65 5.38 6.05 6.91 9.15 275.49

median 2.89 4.53 5.59 7.12 9.05 11.88 307.88

rewritten binaries. This provides additional evidence of the
effectiveness of O-CFI against implementation disclosures.

D. Portal Efficacy
We also tested the O-CFI’s effectiveness at reducing bounds

ranges. Table VII shows the factor by which average bounds
sizes reduce as the nexus capacity varies from 3 to 18, and
when the capacity is left unbounded. The bounds for each case
are compared against a baseline binary that has a nexus capacity
of zero. Across most binaries, with the exception of gap, the
bounds sizes decrease roughly linearly as the number of portals
increases. When the capacity is left unbounded, the bounds
reduce by a factor of almost 308. In other words, the average
bounds range for a binary with unbounded nexus capacities is
only about 0.3% of the range for a binary that does not use
portals.

As mentioned earlier, our implementation uses a nexus
capacity of 12, which reduces bounds by a factor of about
7, while only marginally affecting code size or runtime
performance. Figure 6 is a histogram of bounds sizes across
all the benchmarks when the capacity is set to 12, with the
counts measured on a logarithmic scale. Although there is a
fairly wide variance in ranges, the overwhelming majority of
bounds have span less than 15K in size.

E. Security against Theoretical Full-Knowledge Attack
In the previous section, we evaluated whether a ROP

generation tool (Mona) can construct effective attacks for
attackers who have not located the BLT (cf., §II-B). Although
we protect the BLT from memory disclosure, we now consider
an extraordinarily capable attacker who either (a) discovers
all code pages, disassembles their contents, and infers all
bounds from full knowledge of the program control flow, or
(b) somehow locates and reads the BLT.

To the explore such an attacker’s capabilities, we extended
and adapted the Frankenstein mutation engine [31] to search
for a ROP chain that implements the VirtualAlloc or
VirtualProtect payloads from §V-C2 without violating
any bounds. Frankenstein uses a constraint-solving algorithm
to find gadget chains that realize a user-specified goal state.
The goal processor state for our payloads was expressed as the
stack layout needed for a protection-disabling system API call.
Our tool has basic semantic understanding of a subset of x86
instruction sequences, mainly pertaining to their effect on the
stack. It leverages this understanding to search for a satisfying
sequence of gadgets from a given gadget pool.

When testing against a binary, the gadget pool is initialized
to the set of gadgets found by Mona. Finally, for each runtime-

11

N
um

be
r o

f b
ou

nd
s

1

10

100

1000

10000

Size interval

14
86

2
29

72
3

44
58

3
59

44
4

74
30

5
89

16
6

10
40

26
11

88
87

13
37

48
14

86
09

16
34

70
17

83
30

19
31

91
20

80
52

22
29

13
23

77
73

25
26

34
26

74
95

28
23

56
29

72
16

31
20

77
32

69
38

34
17

99
35

66
60

37
15

20
38

63
81

40
12

42
41

61
03

43
09

63
44

58
24

46
06

85
47

55
46

49
04

07
50

52
67

52
01

28
53

49
89

54
98

50
56

47
10

57
95

71
59

44
32

Fig. 6. Bounds range histogram for a nexus capacity of 12. The vast majority of bounds have span under 15K.

randomized layout that the tool is provided, the BLT-permitted
range for each indirect branch is added as a constraint.

We used the tool on each of the SPEC2000 binaries, across
100 randomized code layouts each. Our results mirror the
practical payload tests—although we found partial chains for
the original binaries, we were unable to find any ROP chains
that pass the bounds checks in binaries protected by O-CFI.

VI. DISCUSSION
A. Branch Range Entropy

A bounds-guessing disclosure attack succeeds when every
gadget falls within the range of the indirect branch in the
preceding gadget. If a binary contains b indirect branches split
across c clusters, and every indirect branch represents a potential
gadget, each cluster contains on average b/c gadgets.

Given a randomly chosen initial gadget, the chances of
choosing a second gadget that falls within the range of the first
is b/c

b or 1/c. Thus, the chances of creating a payload with n
gadgets becomes (1/c)n−1. The average value of c across the
SPEC binaries is 23. Thus, we find that the chance of creating
a bounds-adherent payload falls below 0.01% when n > 4.
This supports the experimentally obtained values for disclosure
attacks in Table VI.

Rather than guessing branch ranges, an implementation
disclosure attack could try to guess the location of the BLT
in at attempt to recover all bounds, so that it may craft a
payload in a more guided fashion. As discussed in §III-B, the
probability of doing so falls as low as 1/2,147,483,648 on
x86-64 systems. Attackers who beat the odds and manage to
locate the BLT still face the daunting challenge of leveraging
the leaked information to craft a gadget sequence that (i) is
not bounds-violating, and (ii) expresses a meaningful payload.
Section V-E demonstrates that this is quite difficult given the
sparsity of control-flows allowed by O-CFI.

B. Control-flow Obfuscation
Section V-E evaluates adversaries who use implementation

disclosures, binary reverse-engineering, and control-flow finger-
printing to infer and recover the complete control-flow graphs
of victim programs, and it concludes that such attackers still
cannot reliably craft significant-length gadget chains. To further
frustrate such efforts, O-CFI could be coupled with code obfus-
cation and anti-piracy strategies that hamper effective reverse-
engineering. For example, instruction-level diversification (e.g.,
register allocation and instruction schedule randomization), code
duplication, opaque predicates [28], control-flow flattening [44],
and non-readable code pages [3] are all supportable by O-CFI.

C. External Module Support
O-CFI allows secured binaries to call library functions,

and fully supports rewriting of libraries. We here discuss this
capability in the context of Microsoft Windows libraries, but
the approach generalizes to Linux as well.

1) Calling external modules from secured binaries: The
Import Address Table (IAT) of secured binaries is set non-
writable throughout program execution, preventing attackers
from corrupting it to redirect control-flow to arbitrary locations.
As such, calls made to external modules through the IAT need
not be constrained by O-CFI, and work correctly unchanged.

Most binaries also access external modules using dy-
namic linking system calls, such as LoadLibrary and
GetProcAddress on Windows. We use trampolines [48]
to support such calls. In particular, the intermediary library that
performs load-time randomization also intercepts all calls to
the OS’s dynamic linking API. The interception dynamically
loads the requested library, but returns a chunk-aligned pointer
to a trampoline within the caller’s address space instead of the
address of the requested function. When the trampoline is called,
it safely transfers control to the library, ensuring compatibility
between dynamically linked O-CFI and non-O-CFI binaries.

2) Securing Libraries: Libraries can be secured almost
identically to program main modules. The only difference is
that the returns of exported functions need special bounds that
permit cross-module control-flows. O-CFI therefore creates a
return-portal for each exported function and exports its address.
This way, library returns become intra-module, and their bounds
can be set to the range of all locally identified targets plus the
address of the exported portal.

D. Approach Limitations and Future Work
Our prototype implementation of O-CFI relies on the static-

rewriting phase to identify and protect all branch ranges. As
such, it is unable to secure code that is generated dynamically.
Consequently, although our prototype is compatible with
binaries that generate JIT-code, it does not protect the JIT-
compiled code. However, prior work has shown that both
diversity and CFI can be successfully and efficiently applied
at runtime to JIT-compiled code [21, 32]. We believe the same
or similar strategies suffice to realize O-CFI for JIT code.

Our O-CFI prototype implementation is presently incompat-
ible with Windows Component Object Model (COM). COM
uses binary reflection to dynamically inform loading modules
of the methods a COM library supports. Once the COM library
is loaded, calls to its methods are implemented as indirect calls.

12

Because indirect calls in O-CFI binaries are masked to chunk-
aligned targets for safety, and because any dynamically loaded
COM module has function entry points that are not located at
these boundaries, any attempt to jump to one of these functions
crashes the binary. Supporting COM requires extending our
implementation with a mechanism that dynamically creates
(chunk-aligned) trampolines for the functions of loaded COM
modules. This is reserved for future work.

A compiler-based implementation of O-CFI has access to
a more precise control-flow graph of the target binary than
is available to our COTS-compatible, binary-level prototype.
Because completely accurate disassembly of x86 code is,
in general, impossible [8, 23], our binary-level prototype is
prone to false-negatives when identifying branch targets. (False-
positive are harmless, at worst contributing to an increased
bounds range for that branch.) Such false-negatives lead to
runtime #BR violations for legitimate control-flows. This is
a standard limitation of source-free CFI, and is addressable
through improved disassembly heuristics (e.g., [47]).

VII. RELATED WORK
Our work combines aspects of two previously separate areas:

control-flow integrity and software diversity. We discuss each
of these separately.

A. Software Diversity
Cohen was first to describe software diversity as a defense

mechanism [8]. Forrest subsequently demonstrated stack-layout
randomization as a defense against stack smashing [15].
Subsequent work on artificial diversity is extensive; Larsen
et al. [27] provide an overview.

The work most closely related to ours is the concurrently
developed Oxymoron system [2]. Oxymoron uses a pure
code-randomization approach to resist JIT-ROP attacks. By
generating code that does not contain any direct references
to other code pages, it impedes the JIT-ROP attack step that
recursively infers new code page addresses by disassembling
leaked code pages. Instead of direct code references, inter-page
references use an indirection table similar to our BLT, whose
base address is stored in an x86 segment register to protect it
from accidental disclosure.

However, Oxymoron allows raw code addresses to flow
into registers, into the heap, and onto the stack. As a result,
it is vulnerable to buffer over-read attacks that disclose the
stack and heap contents [42], which can hold a wealth of
raw return addresses and function pointers, each of which
potentially reveals a 4K page of gadgets for attackers to
abuse. Concurrent work has exploited this weakness to bypass
Oxymoron by harvesting code pointers from vtables in victim
C++ programs [10]. The XnR approach, which prevents reads
to code pages, shares this weakness [3]. In contrast, we
pessimistically assume that code addresses will eventually
leak to attackers (because they are stored in too many places).
Instead, O-CFI conceals the control-flow policy graph, whose
details can be more easily protected from disclosure.

Giuffrida et al. [17] present a comprehensive compiler-
based software diversification approach that allows live re-
randomization. The resulting overheads depend on the re-
randomization frequency. Snow et al. [40] report that JIT-ROP
attacks can run in as little as 2.3 seconds. Re-randomizing
every two seconds, however, adds an overhead of about 20%.

The foundations for the basic block randomization portion
of our implementation are based upon the STIR system [45].

STIR analyzes and rewrites binaries ahead of time to make
them self-randomizing (or self-stirring). At load-time, a small
randomization stub permutes the basic block and function
layout inside the binary. To account for disassembly errors, the
original code is loaded as non-executable data, allowing the
stirred binaries to compensate for disassembly errors.

B. Control-Flow Integrity
In its most precise form, Control-Flow Integrity CFI [1]

confines indirect branches to flow only to a precise set of
statically identified targets for each branch. CFI has yet to
see widespread adoption in the industry. We believe the two
main reasons for this to be (i) difficulty reconstructing an
accurate CFG for a binary without access to source code or
debug symbols, neither of which are readily available for the
large majority of COTS binaries, and (ii) higher overheads than
solutions based on code randomization.

A number of low-overhead solutions have been proposed
which impose less strict integrity checks on program exe-
cutions. These include ROPecker [7], ROPGuard [16] and
kBouncer [33]. ROPecker and kBouncer use the x86 last
branch record (LBR) register set to accomplish their checks.
kBouncer, for instance, performs CFI validation on the LBR
during any Windows API invocation, and ensures that all returns
all are call-preceded (i.e., that each return address points to an
instruction that follows a call instruction). ROPecker creates an
offline gadget database, which is then compared at runtime with
LBR entries to detect attacks. ROPGuard also performs CFI
validation on Windows API calls. Like kBouncer, it requires
that return addresses are call-preceded. It also verifies that the
memory word before each return address is the start address
of the API function.

CFI for COTS binaries [50] is another proposed coarse-
grained CFI solution. This technique can be applied to binaries
without access to source code or debug information. It relies on
a static disassembly step where all potential branch (and return)
targets are identified, and all indirect branches are instrumented
with code that jumps to a CFI validation routine. The validation
routine ensures that target and return addresses are either call-
preceded, or belong to the set of statically identified targets.

Similarly, Compact Control Flow Integrity and Random-
ization (CCFIR) [49] applies coarse-grained CFI to binaries
without source code or debug information (but with relocation
information). In this technique, permissible targets for indirect
branches are collected into a separate Springboard section,
and indirect branches are only allowed to flow into the
Springboard. CCFIR also incorporates some elements of code-
randomization—target entries are placed at random locations
within the Springboard. Although this confers an additional
degree of security against traditional ROP attacks, disclosure
attacks are able to read the full contents of the Springboard,
nullifying its advantages against that class of attacks.

Davi et al. [11] test these coarse-grained CFI solutions and
show that they fail to adequately secure binaries against ROP
attacks.

Forward CFI [43] and SafeDispatch [25] are two recent
compiler-based CFI solutions. Forward CFI protects binaries
by inserting validation checks for all forward-edge control
flows. This solution is only intended to secure forward control-
flows, and does not protect against attacks that rely purely on
return-terminated gadgets.

13

SafeDispatch protects C++ binaries from virtual table
hijacking by recompiling binaries with a modified C++ compiler
that instruments all virtual method call sites with runtime checks
that ensure that all method calls jump to valid implementations
during execution. Additionally, SafeDispatch only protects
virtual method calls, leaving binaries vulnerable to ROP attacks
that rely on modified return addresses on the stack.

VIII. CONCLUSIONS
CFI and artificial software diversity are well-established,

complementary strategies for protecting software against code-
reuse attacks, including ROP attacks. Recent advances in
offensive security have alarmingly demonstrated how to bypass
both: The security relaxations introduced by coarse-grained
CFI to achieve acceptable performance are exploitable by
skillful control-flow hijacking, and implementation disclosure
vulnerabilities can be leveraged to derandomize even fine-
grained artificial diversity defenses.

O-CFI combines and extends both CFI and fine-grained
diversity to address this dual threat of code-reuse and imple-
mentation disclosure attacks. To do so, we reformulate CFI as
a bounds-checking problem, and repurpose fine-grained binary
code randomization to diversify and conceal the exploitable
edges of the protected program’s control-flow graph. As a result,
O-CFI can protect software even against attackers who have
complete read-access to the randomized program code.

Our prototype implementation demonstrates that O-CFI
can be effectively applied to protect legacy binaries without
source code, and experimental evaluation exhibits performance
overheads of just 4.7% on legacy processors. Performance is
expected to be even higher (c. 4.17% overhead) on future-
generation processors, since our bounds-checking implementa-
tion centers around Intel MPX instructions that will be hardware-
accelerated on forthcoming Intel-based processors.

ACKNOWLEDGMENTS
We thank Julian Lettner for benchmarking assistance, and

Lucas Davi, Andrei Homescu, Christopher Liebchen, Matt
Miller, and the anonymous reviewers for their insightful
comments and suggestions.

This material is based upon work partially supported by
National Science Foundation (NSF) CAREER award #1054629,
Office of Naval Research (ONR) award N00014-14-1-0030, Air
Force Office of Scientific Research (AFOSR) award FA9550-
14-1-0173, an Industry-University Collaborative Research
Center grant from Raytheon Company, Defense Advanced
Research Projects Agency (DARPA) contracts D11PC20024
and N660001-1-2-4014, and by gifts from Mozilla Corporation
and Oracle Corporation. Any opinions, findings, conclusions,
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the above
supporters, their contracting agents, or any other agency of the
U.S. Government.

REFERENCES
[1] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, “Control-

flow integrity principles, implementations, and applications,”
ACM Trans. Information and System Security (TISSEC),
vol. 13, no. 1, 2009.

[2] M. Backes and S. Nürnberger, “Oxymoron: Making
fine-grained memory randomization practical by allowing
code sharing,” in Proc. 23rd Usenix Security Sym., 2014,
pp. 433–447.

[3] M. Backes, T. Holz, B. Kollenda, P. Koppe, S. Nürnberger,
and J. Pewny, “You can run but you can’t read: Preventing
disclosure exploits in executable code,” in Proc. 21st ACM
Conf. Computer and Communications Security (CCS),
2014, pp. 1342–1353.

[4] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and
D. Boneh, “Hacking blind,” in Proc. 35th IEEE Sym.
Security & Privacy (S&P), 2014, pp. 227–242.

[5] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang,
“Jump-oriented programming: A new class of code-reuse
attack,” in Proc. 6th ACM Sym. Information, Computer and
Communications Security (ASIACCS), 2011, pp. 30–40.

[6] N. Carlini and D. Wagner, “ROP is still dangerous: Breaking
modern defenses,” in Proc. 23rd Usenix Security Sym.,
2014, pp. 385–399.

[7] Y. Cheng, Z. Zhou, M. Yu, X. Ding, and R. H. Deng,
“ROPecker: A generic and practical approach for defending
against ROP attacks,” in Proc. 21st Annual Network &
Distributed System Security Sym. (NDSS), 2014.

[8] F. Cohen, “Operating system protection through program
evolution,” Computers and Security, vol. 12, no. 6, pp.
565–584, 1993.

[9] Corelan Team, “Mona,” 2014, https://github.com/corelan/
mona.

[10] L. Davi, C. Liebchen, A.-R. Sadeghi, K. Z. Snow, and
F. Monrose, “Isomeron: Code randomization resilient to
(just-in-time) return-oriented programming,” in Proc. 22nd
Network and Distributed Systems Security Sym. (NDSS),
2015.

[11] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
“Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection,” in Proc. 23rd
Usenix Security Sym., 2014, pp. 401–416.

[12] J. DeMott, “Bypassing EMET 4.1,” Bromium Labs,
2014, http://labs.bromium.com/2014/02/24/bypassing-emet-
4-1.

[13] C. Evans, “Exploiting 64-bit Linux like a boss,”
2013, http://scarybeastsecurity.blogspot.com/2013/02/
exploiting-64-bit-linux-like-boss.html.

[14] A. Fog, “Lists of instruction latencies, throughputs and
micro-operation breakdowns for Intel, AMD and VIA CPUs,”
2014, http://www.agner.org/optimize/instruction tables.pdf.

[15] S. Forrest, A. Somayaji, and D. H. Ackley, “Building
diverse computer systems,” in Proc. Workshop Hot Topics
in Operating Systems, 1997, pp. 67–72.

[16] I. Fratrić, “Runtime prevention of return-oriented pro-
gramming attacks,” University of Zagreb, 2012, http:
//www.ieee.hr/ download/repository/Ivan Fratric.pdf.

[17] C. Giuffrida, A. Kuijsten, and A. S. Tanenbaum, “Enhanced
operating system security through efficient and fine-grained
address space randomization,” in Proc. 21st USENIX
Security Sym., 2012, pp. 475–490.

[18] E. Göktaş, E. Athanasopoulos, H. Bos, and G. Portokalidis,
“Out of control: Overcoming control-flow integrity,” in
Proc. 35th IEEE Sym. Security & Privacy (S&P), 2014, pp.
575–589.

[19] E. Göktaş, E. Athanasopoulos, M. Polychronakis, H. Bos,
and G. Portokalidis, “Size does matter: Why using gadget-
chain length to prevent code-reuse attacks is hard,” in Proc.
23rd Usenix Security Sym., 2014, pp. 417–432.

14

[20] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and
M. Franz, “Microgadgets: Size does matter in Turing-
complete return-oriented programming,” in Proc. 6th
USENIX Workshop Offensive Technologies (WOOT), 2012,
pp. 64–76.

[21] A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Librando: Transparent code randomization for just-in-time
compilers,” in Proc. 20th ACM Conf. Computer and
Communications Security (CCS), 2013, pp. 993–1004.

[22] A. Homescu, S. Neisius, P. Larsen, S. Brunthaler, and
M. Franz, “Profile-guided automated software diversity,” in
Proc. 11th IEEE/ACM Int. Sym. Code Generation and
Optimization (CGO), 2013, pp. 1–11.

[23] R. N. Horspool and N. Marovac, “An approach to the
problem of detranslation of computer programs,” The
Computer J., vol. 23, no. 3, pp. 223–229, 1980.

[24] Intel, “Introduction to intel memory protection exten-
sions,” https://software.intel.com/en-us/articles/introduction-
to-intel-memory-protection-extensions, 2013.

[25] D. Jang, Z. Tatlock, and S. Lerner, “SafeDispatch: Securing
C++ virtual calls from memory corruption attacks,” in
Proc. 21st Annual Network & Distributed System Security
Sym. (NDSS), 2014.

[26] N. Joly, “Advanced exploitation of Internet Explorer
10 / Windows 8 overflow (Pwn2Own 2013),”
VUPEN Vulnerability Research Team (VRT), 2013,
http://www.vupen.com/blog/20130522.Advanced
Exploitation of IE10 Windows8 Pwn2Own 2013.php.

[27] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK:
Automated software diversity,” in Proc. 35th IEEE Sym.
Security & Privacy (S&P), 2014, pp. 276–291.

[28] A. Majumdar and C. Thomborson, “Securing mobile
agents control flow using opaque predicates,” in Proc. 9th
Int. Conf. Knowledge-based Intelligent Information and
Engineering Systems, vol. 3, 2005, pp. 1065–1071.

[29] S. McCamant and G. Morrisett, “Evaluating SFI for a CISC
architecture,” in Proc. 15th USENIX Security Sym., 2006.

[30] Microsoft, “Enhanced mitigation experience toolkit,”
https://www.microsoft.com/emet, 2014.

[31] V. Mohan and K. W. Hamlen, “Frankenstein: Stitching
malware from benign binaries,” in Proc. 6th USENIX
Workshop Offensive Technologies (WOOT), 2012, pp.
77–84.

[32] B. Niu and G. Tan, “RockJIT: Securing just-in-time
compilation using modular control-flow integrity,” in Proc.
21st ACM Conf. Computer and Communications Security
(CCS), 2014, pp. 1317–1328.

[33] V. Pappas, M. Polychronakis, and A. D. Keromytis,
“Transparent ROP exploit mitigation using indirect branch
tracing,” in Proc. 22nd USENIX Security Sym., 2013, pp.
447–462.

[34] E. J. Schwartz, T. Avgerinos, and D. Brumley, “Q: Exploit
hardening made easy,” in Proc. 20th USENIX Security
Sym., 2011.

[35] J. Seibert, H. Okhravi, and E. Söderström, “Information
leaks without memory disclosures: Remote side channel
attacks on diversified code,” in Proc. 21st ACM Conf.
Computer and Communications Security (CCS), 2014, pp.
54–65.

[36] F. J. Serna, “The info leak era on software exploitation,”
Black Hat USA, 2012.

[37] ——, “CVE-2012-0769, the case of the perfect info leak,”
Google Security Team, 2012, http://zhodiac.hispahack.com/
my-stuff/security/Flash ASLR bypass.pdf.

[38] H. Shacham, “The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),” in
Proc. 14th ACM Conf. Computer and Communications
Security (CCS), 2007, pp. 552–561.

[39] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu,
and D. Boneh, “On the effectiveness of address-space
randomization,” in Proc. 11th ACM Conf. Computer and
Communications Security (CCS), 2004, pp. 298–307.

[40] K. Z. Snow, F. Monrose, L. V. Davi, A. Dmitrienko,
C. Liebchen, and A.-R. Sadeghi, “Just-in-time code reuse:
On the effectiveness of fine-grained address space layout
randomization,” in Proc. 34th IEEE Sym. Security &
Privacy (S&P), 2013, pp. 574–588.

[41] A. Sotirov, “Heap feng shui in JavaScript,” Black Hat Europe,
2007, https://www.blackhat.com/presentations/bh-europe-
07/Sotirov/Presentation/bh-eu-07-sotirov-apr19.pdf.

[42] R. Strackx, Y. Younan, P. Philippaerts, F. Piessens,
S. Lachmund, and T. Walter, “Breaking the memory secrecy
assumption,” in Proc. 2nd European Workshop System
Security (EUROSEC), 2009, pp. 1–8.

[43] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway,
Ú. Erlingsson, L. Lozano, and G. Pike, “Enforcing forward-
edge control-flow integrity in GCC & LLVM,” in Proc.
23rd USENIX Security Sym., 2014.

[44] C. Wang, J. Hill, J. Knight, and J. Davidson, “Software
tamper resistance: Obstructing static analysis of programs,”
University of Virginia Charlottesville, Tech. Rep., 2000.

[45] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary
stirring: Self-randomizing instruction addresses of legacy
x86 binary code,” in Proc. 19th ACM Conf. Computer and
Communications Security (CCS), 2012, pp. 157–168.

[46] ——, “Securing untrusted code via compiler-agnostic
binary rewriting,” in Proc. 28th Annual Computer Security
Applications Conf. (ACSAC), 2012, pp. 299–308.

[47] R. Wartell, Y. Zhou, K. W. Hamlen, and M. Kantarcioglu,
“Shingled graph disassembly: Finding the undecidable path,”
in Proc. 18th Pacific-Asia Conf. Knowledge Discovery and
Data Mining (PAKDD), 2014, pp. 273–285.

[48] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar,
“Native Client: A sandbox for portable, untrusted x86
native code,” in Proc. 30th IEEE Sym. Security & Privacy
(S&P), 2009, pp. 79–93.

[49] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres,
S. McCamant, D. Song, and W. Zou, “Practical control
flow integrity and randomization for binary executables,” in
Proc. 34th IEEE Sym. Security & Privacy (S&P), 2013, pp.
559–573.

[50] M. Zhang and R. Sekar, “Control flow integrity for COTS
binaries,” in Proc. 22nd USENIX Security Sym., 2013, pp.
337–352.

15

	Motivation
	Threat Model
	Bypassing Coarse-Grained CFI
	Assumptions

	O-CFI Overview
	Bounding the Control Flow
	Opacifying Control-flow Bounds
	Tightening Control-flow Check Bounds
	Example Defense against JIT-ROP

	O-CFI Implementation
	Static Binary Rewriting
	Conservative Disassembly
	SFI and Randomization Framework
	Branch Instrumentation
	Accurate Target Identification
	Bounds Range Minimization

	Accelerated Bounds Checks
	Dynamic Randomization and Protection
	Platform Support and Infrastructure

	Evaluation
	Rewriting and Space Overheads
	Performance Overheads
	Security
	Chaining Gadgets
	Crafting Practical Attacks

	Portal Efficacy
	Security against Theoretical Full-Knowledge Attack

	Discussion
	Branch Range Entropy
	Control-flow Obfuscation
	External Module Support
	Calling external modules from secured binaries
	Securing Libraries

	Approach Limitations and Future Work

	Related Work
	Software Diversity
	Control-Flow Integrity

	Conclusions

