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Abstract—Individuals share increasing amounts of personal
data online. This data often involves–or at least has privacy im-
plications for–data subjects other than the individual who shares
it (e.g., photos, genomic data) and the data is shared without
their consent. A popular example, with dramatic consequences,
is revenge pornography. In this paper, we propose ConsenShare,
a system for sharing, in a consensual (wrt the data subjects) and
privacy-preserving (wrt both service providers and other individ-
uals) way, data involving subjects other than the uploader. We
describe a complete design and implementation of ConsenShare
for photos, which relies on image processing and cryptographic
techniques, as well as on a two-tier architecture (one entity for
detecting the data subjects and contacting them; one entity for
hosting the data and for collecting consent). We benchmark the
performance (CPU and bandwidth) of ConsenShare by using a
dataset of 20k photos from Flickr. We also conduct a survey
targeted at Facebook users (N = 321). Our results are quite
encouraging: The experimental results demonstrate the feasibility
of our approach (i.e., acceptable overheads) and the survey results
demonstrate potential interest from the users.

I. INTRODUCTION

Individuals share increasing amounts of personal data on-
line. Powered by the emergence of specialized platforms, such
as OSNs, the variety of the personal data shared online has also
substantially increased over the last decade, including content
as diverse as contact data (address books), multimedia data
(photo, audio, videos), location data and genomic data.

Recent studies highlighted the fact that such data often
involves (and has privacy implications for) data subjects other
than the individual who shares them online [5]. This concept,
referred to as multiple-subject personal data (MSPD; the term
was coined by Gnesi et al. [25]) or as co-owned/multi-party
data (by Such et al. [68]), applies to numerous types of data,
one of the most widespread examples being group photos and
videos. A sadly popular example [57], [58], with dramatic
consequences, is revenge pornography (i.e., the disclosure of
photos or videos portraying sexually explicit activity, typically
after the end of the relationship between the partners), which
can also occur on regular platforms such as Facebook [59].

Beyond MSPD data, recent studies showed that seemingly
strictly personal data reveals information about other indi-
viduals [18], [36], [45], [53]. This concept is referred to as
interdependent personal data (IPD; the term interdependent
privacy was coined by Biczók and Chia [12]). The root cause
of interdependent privacy is the fact that the personal data of
somehow related people (e.g., friends, colleagues, relatives)
are correlated. A typical example, introduced by Humbert et
al. [36], is genomic data: The genomes of individuals, shared
on specific platforms (e.g., 23andme), reveal information about
the genomes of their relatives.

Most of the time, the sharing and the disclosure of multiple-
subject or interdependent personal data occurs without the
consent of the involved individuals, possibly creating so-called
multi-party privacy conflicts [67], [68], which are known to
be difficult to resolve. Although the notion of consent is
known to be fundamental and at the core of most of data-
protection and privacy laws, as well as terms of use of online
sharing platforms, very few technical solutions exist, to the
best of our knowledge, for detecting and sharing such data,
in a consensual and privacy-preserving way. Several protocols
have been studied [11], [15], [40], [42], [78], [80], but there
are no associated tools to aid users to implement these and,
more importantly, they are all based on the assumption that
users are aware when data regarding them is shared, which is
not always the case. Existing technical solutions are limited in
terms of the considered adversary (i.e., they typically disregard
the case where the data is disclosed to the service provider), of
the detection of the data-subjects and of the privacy guarantees.
For instance, Facebook enables its users to review the tags that
identify them in photos before they are made visible to other
users, and possibly remove them; yet, even though such a tag
could eventually be removed by a user, Facebook does have
access to the corresponding information, i.e., the fact that the
tagged user most probably appears in the photo.

In this paper, we tackle the problem of designing and
building a system for sharing, in a consensual and privacy-
preserving way, multiple-subject or interdependent personal
data (MSPD/IPD). Specifically, in accordance with Nis-
senbaum’s definition of privacy as contextual integrity [50],
we seek to give individuals control on the dissemination of
data that involves them. This problem is difficult for several
reasons. Identifying the data subjects of some data, or more
generally the individuals whose privacy can be affected by
the disclosure of the data, is far from trivial and highly data-
dependent. In addition, the fact that this identification, as well
as the collection of the consent and the preprocessing/sharing
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of the data (in compliance with the obtained consent) must be
done in a privacy-preserving way, with respect to the involved
service providers and individuals, makes the design of such a
system even more difficult. Our survey results (Section VIII)
suggest that users are both concerned about this threat and
potentially interested in our proposed solution.

We propose a generic solution able to handle various types
of such data, and we identify the different building blocks
of a system for sharing data online, as well as the design
choices to adapt to the specifics of the different data types.
We focus on the case of photos, and we design and implement
a working solution named ConsenShare. ConsenShare relies on
two different entities: an identity management service (IMS)
and a content management service (CMS). The first is in charge
of identifying1 and contacting the individuals involved in the
data about to be shared on the platform that is operated by
the second. The second is in charge of collecting the data
and the consent, and of preprocessing and sharing the data.
At the core of ConsenShare lies a distributed protocol based
on standard cryptographic primitives and image processing
operations, which ensures that the information learned by
the IMS, the CMS and the involved individuals is minimal,
especially in the case where some of the involved individuals
do not give their consent. An example of a typical setting
for ConsenShare would be, for the case of photos, Facebook
acting as the IMS and Flickr as the CMS. ConsenShare
is, to the best of our knowledge, the first such system; it
addresses an important and timely problem. In fact, using
such a system before sharing MSPD/IPD data online might
become mandatory by law in a few years. Service providers
and law makers are already making efforts in this direction,
in particular for revenge pornography; these are not perfect–
from a privacy perspective–for the users.2,3,4,5 Such a solution
would aid with law suits avoidance, as a CMS might be held
liable for allowing the sharing of MSPD/IPD data (as was the
case with fake news on OSNs). Furthermore, as our solution
would represent a user-desired feature in an CMS, adoption
might also lead to increasing the user base (and the revenue).

We perform a security and privacy analysis of Consen-
Share. By using an unbiassed random sample of 17k+ pho-
tos from Yahoo’s YFCC100m dataset (Flickr [70]), we also
evaluate its performance in terms of CPU and bandwidth
consumption, in the (worst case) scenario where all the in-
dividuals who appear on a photo are asked for consent. Our
experimental results show that the CPU time is negligible for
the users and for the CMS. As for the bandwidth overhead
(w.r.t. to the baseline case where users directly upload their
photos to the CMS), this is approximately equal to the photo
size for the user who uploads the photo (as the photo must
be sent to the IMS, in addition to the CMS) and 34.78%
for the CMS; for the IMS, the bandwidth usage is roughly
equal to the size of the uploaded photos. We complement
our evaluation with an online survey on multiple-subject and

1While not privacy-mindful, an application for identifying people from a
picture taken in public, FindFace [21], is becoming popular in Russia.

2https://reddit.zendesk.com/hc/en-us/articles/205704725 and https://www.
reddit.com/help/contentpolicy/

3https://www.nytimes.com/2017/04/05/us/facebook-revenge-porn.html
4https://www.theguardian.com/technology/2017/nov/07/

facebook-revenge-porn-nude-photos
5https://support.twitter.com/articles/18311

interdependent personal data, targeted at Facebook users and
conducted via the Amazon Mechanical Turk platform (N=321).
The survey results indicate that a system like ConsenShare
could be desirable. For instance, 69.5% of the participants are
concerned by the sharing of multimedia data that involves
them, 27.4% are potential victims of revenge pornography
(i.e., they have shared intimate photos or videos), and 53.6%
would certainly use a system like ConsenShare. We also study
the potential adoption of such a system by analyzing the incen-
tives (e.g., business opportunities and models) of the different
stakeholders, namely the end-users, the IMS and the CMS. In
summary, our contributions are the following: (1) We identify
and frame the timely and critical problem of consensual and
privacy-preserving sharing of MSPD/IPD data (2) We design,
implement and evaluate the first system to address this problem
for photos; we also propose a generic system for other types of
data and identify the different challenges inherent to its design,
as well as incentives for adoption for all the parties involved.
Our results are quite encouraging: The experimental results
demonstrate the feasibility of our approach and the survey
results demonstrate potential interest from the users.

Roadmap: The remainder of the paper is organized as
follows. We survey the related work, with an emphasis on
legal, social and technical aspects of the problem, in Section II.
We describe the system model and list our design goals in
Section III. We give a high-level description of a generic
solution, namely ConsenShare, in Section IV; we propose and
give a detailed description of a solution specific to photos
in Section V. We provide a security and privacy analysis
of ConsenShare in Section VI. We report on our data-driven
experimental evaluation of ConsenShare in Section VII. We
discuss the adoption of ConsenShare, based on (among other
things) the results of our user survey, as well as its limitations
and its extension to data other than photos in Sections VIII
and IX respectively. We conclude the paper in Section X.

II. RELATED WORK

Consensual and privacy-preserving sharing of multi-subject
and interdependent data online is a multi-faceted problem,
as advocated by Good [27]: it includes legal, social and
technological dimensions. In this section, we survey the related
work in these dimensions, beginning with the legal aspects.

The notion of individual control over information about
oneself and more specifically that of consent for informa-
tion disclosure is currently the basis of most definitions of
privacy, including Nissembaum’s contextual integrity [50],
terms of use, and data protection and privacy laws in most
countries [16]. This is the case for the Consumer Privacy
Bill of Rights [3], adopted by the US White House, and the
General Data Protection Regulation (GDPR) (Regulation EU
2016/679), recently adopted by the EU Parliament.

Although the general case of MSPD/IPD is not explicitly
addressed by current laws, because of its complexity, it is
mentioned in multiple places. For instance, in case law [2],
the court found that “an individual’s personal autonomy makes
him master of all those facts about his own identity, such as his
name, health, sexuality, ethnicity, his own image [. . . ] and also
of the ’zone of interaction’ [...] between himself and others”. In
addition, Opinion 5/2009 on OSN produced by the Working
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Party on Data Protection mentions the case of online social
networks (OSN) users uploading data about other individuals,
possibly not members of the OSN.

In the context of MSPD/IPD, specific data types received
particular attention: photos, in light of the right to one’s
own image, genomic data [1], and more recently, photos and
videos containing sexually-explicit content, namely revenge
pornography, against which laws have been passed in Canada,
France, Israel, Japan, the United Kingdom and in several states
in the US (to name a few). In addition, online service providers,
including Reddit2, Facebook3, and Twitter5 have also reacted
to this new trend and updated their terms of use accordingly.
Yet, neither the laws nor terms of use are self-enforcing, and
technical solutions are therefore needed.

Online services recently began including features to cope
with content uploaded without the consent of some of the
individuals whose privacy is affected by it, typically for photos.
Facebook, for instance, enables its users to report such content
and to remove references to their identities attached to shared
content. However, such features still suffer from the following
problems: (1) Individuals cannot automatically detect that
content having privacy implications for them has been shared,
unless an explicit reference to their identities is attached to
it. (2) Even though the content is eventually removed, the
damage, in terms of privacy, is done as the service provider
and possibly some users have seen the content.

The need for and the design of collaborative privacy
schemes for MSPD/IPD is an active topic in the literature.
Gnesi et al. [26] introduce the notion of MSPD as data that
contains identifiers that refer to more than one person, as is
the case of pictures, phone records, co-locations or medical
reports. They also discuss a technical solution for protecting
MSPD based on user-defined privacy policies, however, it does
not guarantee any protection against the service provider.

In the context of OSNs, Such et al. [67], [68] study the
so-called multi-party privacy conflicts (MPC) in the case of
pictures. They identify the sources of such conflicts and the
different non-technical strategies used by users to cope with
them, including avoidance or individual/collaborative resolu-
tion. Collaborative privacy policy enforcement solutions were
also proposed by Beato et al. [10] (based on secret sharing),
by Squicciarini et al. [65], [66] (based on the Clarke-Tax
mechanism from game theory), by Ratikan et al. [56] (based
on majority voting), as well as by Hu et al. [31]–[34] (based on
access control). Again, in contrast to our work, these solutions
assume a trusted model for the service provider (OSN). Ilia
et al. [37] proposes a collaborative multi-party access control
model for OSNs where the service provider is considered
honest-but-curious. However, it assumes that the data uploader
is honest, yet privacy careless. Our work, on the contrary,
assumes that the data uploader and other users could be
malicious. Finally, collaborative privacy policies mechanisms
have been proposed in other contexts such as sharing photos
through instant messaging platforms [43] and personal data
stored on others’ devices (e.g., phone numbers) [28].

Researchers also proposed mechanisms to defend against
untrusted providers in OSNs. De Cristofaro et al. [17] propose
a privacy-enhanced alternative to microblogging OSNs such
as Twitter. Their solution protects posts’ contents, hashtags

and follower interests from the service provider. Ion et al. [9]
describe a privacy-enhancing mechanism that enables users
to share data over any web-based OSN and provides confi-
dentiality against unauthorized parties, including the service
provider. Feldman et al. [22] propose a framework for OSNs
that provides not only confidentiality guarantees, but also
integrity protection (e.g., against equivocation attacks) against
an untrusted service provider. Secure JPEG techniques [81]
can also be used to hide part of the photo content from the
service provider. Although these works offer different levels
of protection against an untrusted service provider, they do
not offer mechanisms for detecting/identifying the individuals
involved in the content and for implementing collaborative
privacy policies for MSPD/IPD.

Identifying individuals involved in content shared online
is a difficult problem. In several cases, including the case of
pictures, such identification comes down to a classification
problem. For instance, machine learning techniques can be
used for detecting faces on encrypted images [14], [79].
Moreover, Ziad et al. [84] describe the use of homomorphic
encryption for performing general image-processing operations
(e.g., spatial filtering, anti-aliasing) on remote (untrusted)
servers in a privacy-preserving way; to use such an approach
in our framework, certification of results would also be needed
(e.g., through blind signatures). Closer to our work, He et
al. [29] describe a system for partial image sharing in OSNs
that enables data owners to define private regions in an image,
support for popular image transformations and set different
privacy policies for each user associated with an image. In the
same area, Ilia et al. [38] propose a fine-grained access control
mechanism that enables users associated with an image to
restrict the exposure of their own faces; this approach handles
multi-party privacy policies conflicts and is compatible with
existing access control mechanisms. These works, however,
focus only on the problem of sharing images in OSNs. Our
work, in contrast, focuses on different MSPD/IPD types, not
only images, and deals with the problem of detecting involved
individuals in a privacy-preserving way.

III. SYSTEM MODEL & DESIGN GOALS

We describe next our system model, the adversaries and the
threat model we consider, our assumptions and design goals.

a) System Model: In our model, we consider the follow-
ing major entities: Users and a Content Management Service
(CMS) – e.g., Flickr for photos, YouTube for videos, or
OpenSNP for genomic data. Users6 can upload content to the
CMS (with a certain target audience for visibility consisting
of a set of users and/or the general public); any part of the
content that concerns another user is sent to her for approval,
along with any relevant contextual data (e.g., the identity of
the uploader, description, upload time, target audience, etc.);
this content is only visible to these parties (and to the CMS)
only if the concerned user grants their consent.

b) Threat model: In our model, we assume that the
adversaries are the users (individuals), the online services
(e.g., the CMS–other services can be included in the protocol

6Note that we refer to ”regular” users; we do not consider professionals
such as journalists, who follow specific accountability rules regarding the
publication of content, are liable for it and have a reputation to uphold.

3



as we shall see, e.g., the IMS) and third parties (e.g., external
observers). Individuals can be active adversaries. For instance,
a malicious user could try to bypass the system to fully publish
sensitive content (e.g., compromising photos of other users)
without obtaining consent from the affected users (possibly
by colluding with other malicious users or by creating fake
profiles). A malicious user might also try to monitor and
tamper with the communications among the different parties in
our system to infer private information about other users, e.g.,
their real names. The CMS and the IMS are assumed to be
honest-but-curious, i.e., they will follow the protocol, but they
could try to infer sensitive information from the data observed.
For instance, the CMS might try to learn the sensitive content
specific to particular users before they give consent or infer the
social networks or strength of social ties of some users based
on the consent requests that are sent out and their responses
(e.g., if Bob often accepts that Alice share content regarding
him, they are likely good friends).

c) System Assumptions: We assume that secure two-
way communication channels have been established between
all parties in our system, typically over HTTPS; we assume
that the CMS and the IMS are independent parties and that
they do not collude (we discuss the case of collusion in
Section IX). We further assume that data from the network
layers (e.g., IP address) cannot be used to leak users’ identities:
This is a reasonable assumption as many mobile users only
access the Internet through a NAT gateway offered by their
Internet provider, but could be relaxed if, for instance, users
make use of VPN service or anonymous networks (e.g., Tor) to
access the Internet. We do not consider fingerprinting attacks
in our model. Finally, we assume that software that is run
locally is trusted (trusted execution environment can be used).

d) Design Goals: Our main goal is to design a mech-
anism that, in a private way, (1) informs users every time a
piece of content regarding them is submitted and (2) enables
them to grant their consent before such content is available to
any other party (except from the uploader, of course). To this
end, the design goals of our system are as follows.
Effectiveness: the registration process should be secure, reg-
istered users should be detected in uploaded content and the
sensitive content involving them should not be revealed to any
component of our system until after they consent.
Privacy as anonymity for the users: data submission and
consent operations should not leak information about the
identity of the users involved (other than the uploader).
Unlinkability: An adversary should not be able to aggregate
or link consent operations regarding different individuals as-
sociated with a particular content.
Detection of any malicious user behavior (e.g., attempts to
bypass the protocol); the system should not allow the sharing
of sensitive parts of the content, in such cases.
Usability and transparency to the users. This includes the fact
that consent operations should provide the users with enough
contextual information for them to make an informed decision.

IV. HIGHLEVEL SOLUTION

In this section we describe our proposed framework, its
core components and the main technical challenges.

a) Framework Overview: We envision a system to
which a user registers with identity information. The system’s

role is (i) to detect, for any content that is uploaded, what
are the users affected by this content (e.g., for genomic data
these are the close relatives; for photos and videos these
are the people who appear; etc), (ii) to contact them and
ask them for consent, providing them the option to express
a decision either manually, through policies, or automatic
(machine learning based) and (iii) to publish the content with
the proper restrictions and obfuscations (depending on the
users’ consent decisions). Such a system consists of several
components, which we describe next.
Content Management Service (CMS). These are User Gen-
erated Content sites, such as Flickr, YouTube or OpenSNP.
Identity Management Service (IMS). This handles users’
identities and offers services to identify the users associated
with a given content. The IMS is in charge of users’ relation-
ships (social and family). In practice, the role of the IMS could
be played by agencies or by popular OSNs (e.g., Facebook)
or, it could be distributed across several entities.
User applications (CMS and IMS). This is the component
that users interact with to publish content form their devices to
the CMS, to review consent requests either manually, through
the use of policies, or machine learning automation (learning
a user’s decisions from a few initial manual decisions).

b) Challenges: Key and challenging components of our
framework include: claiming identity; determining the users
involved by some particular content; contacting them privately
and providing them with enough context to make informed
consent decisions (while hiding information for which other
involved users should grant consent); the variety of types of
the consent decisions (removing or obfuscating all or some
parts from the content, reducing the visibility audience, etc.);
reducing the number of consent decisions (through policies
or machine learning automation); and enforcing multiple and
possibly conflicting individual consent decisions–all of these
in a private way. Most of these components are very data-
dependent. Therefore, for simplicity’s sake, in what follows we
will focus on photos. In Section IX, we discuss the extension
to other types of MSPD/IPD.

V. SPECIFIC SOLUTION: THE CASE OF PHOTOS

In this section, we present a working solution, for the case
of photos. The main entities in this case remain the photo
uploader (we refer to her as Alice), the CMS, the IMS and
(potentially) the other users that appear in a particular photo
(consenters). We refer to any consenter as Bob.

A. Overview of ConsenShare

ConsenShare enables any user, Alice, to upload photos to
the CMS (see Figure 2. If such a photo, P , contains faces of
other people, Alice can choose to remove these (by blurring
them, similarly to blurring on Google Street View [24]) or–if
she wants these to be visible in the photo–she must first remove
the faces from the photo, upload them (encrypted) separately
such that the corresponding people are asked for consent. In
this latter case, only the background corresponding to photo
P , namely PB , is uploaded to the CMS (after some validation
from the IMS to certify that no (known) faces appear in it).
This version of the photo (PV ) is made visible to the target
audience desired by Alice as soon as the upload completes.
Faces for which consent must be asked are cropped out from
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PB and a protocol to identify the owner of the face, contact
him, provide him the photo for review and collect his consent
decision is executed; this involves the IMS at different stages.
We emphasize that the parts of the photo for which other users
must consent are protected, as one consenter, Bob, will only
be provided with the photo consisting of the background and
his own face. Before Bob grants consent, only Alice (who
already has access to the full photo) and Bob are able to see
the part of the photo containing Bob’s face, as Bob’s face
image is encrypted using a key created by him. In addition to
this, Bob is also provided with some contextual information
about the photo (such as the identity of the uploader, upload
time, description and the target audience for photo visibility).
If Bob denies consent, his face will remain cropped out in
the published photo, PV . If Bob grants consent for his face
to appear in the photo, he provides the CMS with the needed
information to decrypt his face. Before adding Bob’s face to
PV , the CMS performs validation steps to ensure that Alice or
another party has not tampered with the original face appearing
in P and that consent has been granted by the correct user.

B. Technical Challenges and Choices

Our solution comes with several challenges, discussed here.

1) Identity claim: In order to use ConsenShare, users (or
their legal guardians for minors) must register by providing
information for face recognition, which would be used to detect
them in future photos shared by others. A typical way to do
this, which became mainstream, is to provide the system with
an ID and/or photos (which can be verified by humans), as
exemplified, for instance, by Uber [72], [73] and Airbnb [6].
To reinforce the proof of identity, webcams can be used,
similarly to Microsoft’s Windows Hello [77], other solutions
for biometric authentication proposed in the literature [30],
[44], [49] or Apple’s biometric facial recognition (FaceID) for
unlocking iPhones.

2) Privacy-preserving face/body recognition: A major
challenge in the design of ConsenShare is the privacy-
preserving face detection and recognition. Although there
is work in the literature detailing how classification could
be performed on encrypted data (e.g., [14], [79]), it is not
clear how applicable these would be to the rapidly evolving
face recognition algorithms, or how efficient these would
be. Furthermore, this option would raise the problem of the
authenticity of the classification results. Thus, in our design,
we focus on face recognition on regular images; We consider
feature vector based face recognition, as described in Google’s
popular and efficient FaceNet framework [63]. We provide the
desired privacy guarantees by: performing the face detection
operations locally on the uploading client’s device (thus the
photo is not shared with any other parties); performing the face
recognition on the IMS server based on the much less sensitive
information, i.e., the feature vectors; and validating these
operations by the CMS using the original photo once consent
is granted. Note that all local operations can be performed
either in a mobile application, or a web app (Javascript).

To better understand these design decisions, we give here
some background information about face recognition, which
the familiar reader can skip. A face representation (or feature
vector) is a multi-dimensional numerical vector that encodes

Bob

IMS

P:

Detect faces in P

If only one viable face is detected

Compute face representation

!
Store + e-mail + ···

(1) P , e-mail, ···

(2) ok

Fig. 1. ConsenShare: Register user protocol

the features of a face (e.g., the eye distance). Its main properties
are: (i) A face representation is unique to a face image, hence
different face photos (even belonging to the same person) result
in different, yet close in terms of distance, face representations.
(ii) Typically, the Euclidean distance between face represen-
tation extracted from photos depicting the face of the same
person is smaller than the distance between representations
extracted from photos depicting faces of different people.
Thus, distances can be translated into a measure of face
(dis)similarity and the problem of face recognition for some
input feature vector reduces to identifying the closest feature
vector to it – in the distance space – from a set of available
feature vectors of the registered users.

Note that detecting faces might not be enough, as recent
work shows that identifying people is possible from features
other than their face, such as their clothes [13]. Our framework
can be extended to include body detection and obfuscation
techniques (e.g., [74], [75]), as for faces; such solutions would
provide more privacy, but would also involve a utility loss due
to the increased obfuscation.

C. ConsenShare Main Operations

We describe the following operations: (i) register (Figure 1)
and (ii) upload photo and grant/deny consent (Figure 2).

1) Register: The operations performed are the following.

1) Bob, a new user, uses the ConsenShare IMS application
on his device to take a set of photos/videos, P , with his
webcam. The application sends P , along with Bob’s login
information to the IMS. The idea behind this is to prevent
people claiming an identity different than theirs.

2) The IMS detects the faces in P . If P contains only one
valid face, it computes the corresponding face representa-
tion, stores this along with the provided login information
and sends an ’ok’ response to Bob. Otherwise, an error
message is returned to Bob and nothing is stored.

2) Upload photo and grant/deny consent: The operations
performed are the following.

1) Alice selects the photo she wants to share: The CMS
ConsenShare application splits it into background image,
PB , (which contains no faces) and the detected faces;
this is done locally by the CMS provided application or
webpage. Alice marks the faces that she does not want to
ask for consent and these are blurred; the other faces are
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Alice - wants to upload P
CMS IMS

Bob - appears in P

P !

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

PB

f1 ! r1

f2 ! r2

f3 ! r3

If PB is a valid background

m=hash(PB)

otherwise

m=’invalid background’

�=sigIMS(m)

m=verIMS(�)
verify hash(PB)=m
store hash(PB), context

publish PV

verify hash(PB) is stored

generate random sid
store sid, EPkIMS

(r2) linked to hash(PB)

status(sid) = Pending

r2=DSkIMS

�
EPkIMS

(r2)
�

lookup best match(r2)

Generate key pair (Pksid ,Sksid)

Encrypt using Pksid

store EPksid

� �
linked to sid

=DSksid

�
EPksid

� ��

review and decide

¯f,=DSksid

�
EPksid

� ��

¯f! r̄

verify EPkIMS
(r2)=EPkIMS

(̄r)

status(sid) = Accepted

update PV

status(sid) = Denied

If accept

If deny

spam filtering

� manual decision

� policy (e.g., ”accept
if not nude”, ”accept if

I am the uploader”)

� automatic decision
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Fig. 2. ConsenShare: Upload photo protocol

cropped out. Alice sends this PB to the IMS. The IMS
should provide a public API for this operation. Note that
Alice does not need to have an IMS account.

2) The IMS performs face recognition on the received PB .
If this is indeed a valid background photo (i.e., contains
no faces, contains no known faces, etc. depending on the
policy implemented by the IMS–it could also depend on

the requirements imposed by the CMS), the IMS signs
and sends a message containing its hash (and information
indicating whether the photo contains no face, no known
faces, etc.). Otherwise, it signs and sends a message
specifying the reasons for which the photo is not valid.
The signed message, σ, is returned to Alice.

3) Alice logs in to the CMS using her credentials and
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forwards the received σ together with PB and some
context information (e.g., the desired visibility and a
description of P ) to the CMS, which verifies that all of
the following holds: (1) σ is a valid signature by the IMS,
(2) the PB it received from Alice has the same hash as
the one in message returned by the IMS–to prevent Alice
from uploading a different photo. If these checks pass, the
CMS creates a visible photo with the specified audience
in context, PV , consisting of the background image PB

and stores hash(PB) and context.

For each detected face that must be asked for consent:

4) A face representation is computed by the ConsenShare
CMS app on Alice’s device and encrypted with the
IMS’s public key, PkIMS, using a deterministic encryption
scheme(we discuss why using a deterministic encryption
scheme is acceptable in this case in Section IX). This is
then sent, along with hash(PB), to the CMS. hash(PB)
is used as an identifier for the sharing of the photo.

5) The CMS generates a random session id, sid, marks it as
pending and stores and forwards the received encrypted
face representation and sid directly to the IMS. As several
photo uploads likely happen at the same time, the CMS
acts as a mixing network for the IMS, preventing the IMS
to link users to the same photo (details in Section VI).

6) The IMS decrypts the message to obtain the face represen-
tation and finds, among all the registered users, the one
with the closest feature vector (i.e., smallest Euclidean
distance) that also satisfies a maximum acceptable simi-
larity threshold. It then sends a message to this user (Bob),
containing sid (e.g., a link embedded in a notification
shown in the app running on Bob’s device, the app would
be provided by the IMS–eg Facebook Messenger). Note
that Bob does not need to have a CMS account. In the
case of a missing identity–e.g., Bob is not yet a registered
user–the protocol stops here and his face remain cropped
out.

7) Upon notification, the app running on Bob’s device gen-
erates a pair of public/private session keys, Pksid ,Sksid
and sends Pksid and sid directly to the CMS.

8) The CMS forwards Pksid to Alice, who uses it to encrypt
the part of the original photo containing Bob’s face, as
well as its position coordinates in the photo. It sends this
encrypted information to the CMS.

9) The CMS stores the received information and forwards to
Bob the encrypted face and the coordinates, as well as the
background image PB and the corresponding context.

10) Bob’s app recreates an image consisting of the PB

and the portion in which his face appears (which he
decrypts using Sksid ), shows it to Bob along with the
context and uploader identity, and Bob decides whether
to give consent for allowing his face to be visible in
this photo. Note that this can also be automated through
machine learning techniques (e.g., [52], [76], [83]), or
enforced through policies (e.g., ”accept all from friends”,
”accept if not nude”, ”accept if I am the uploader”, etc.).
Before presenting the photo to Bob for consent, spam
filtering techniques can be performed (e.g., using senders
white/black lists or performing face detection on the face
image to ensure this is really a face image belonging to
Bob and not an unsolicited ad).

11a) If the decision is to allow Bob’s face to appear in PV ,
Sksid is returned to the CMS as a response to sid. At
this point, the CMS can decrypt the stored face and the
coordinates it has received from Alice and verify the
validity of the coordinates (e.g., by verifying that the
corresponding area of PB is cropped out) and that the
feature representation obtained from this face image is
identical to the one Alice sent to the IMS, through the
CMS, in step (4). This is possible because the encryption
scheme is deterministic. Note that, for the same person,
the feature representation differs when the face image
differs, therefore if two feature representations are iden-
tical, this guarantees that the original face images they
were computed from are identical. If the validation is
successful, the CMS adds Bob’s face to the published
photo PV and marks this sid as accepted.

11b) If the decision is to not allow Bob’s face to appear in PV ,
a ’deny’ message is returned to the CMS as a response
to sid, and the CMS then marks sid as denied and the
area corresponding to Bob’s face remains cropped out.

Note that, in the case of no response from a user, his face
simply remains obfuscated. This action can also be configured
by the CMS (e.g., default option after a timeout).

VI. SECURITY AND PRIVACY ANALYSIS

In this section, we demonstrate how ConsenShare satisfies
the goals described in Section III. Note that the security
of some parts of the system directly depend on that of the
underlying technologies used (e.g., face recognition is not
perfect [48]). We discuss these in detail in Section IX.

A. Effectiveness

The identity claim process using webcams at registration,
prevents the creation of fake accounts. Face spoofing detection
techniques (e.g., [46]) can also be used to prevent malicious
individuals from creating accounts on behalf of other users.
Once registered, if a user’s face appears in uploaded photos,
he would either be asked for consent (with his face being en-
crypted in all communications and his identity hidden from the
CMS) or his face would be blurred to begin with (depending on
the uploader’s choice). We discuss why malicious users cannot
bypass this part of the protocol in detail in Section VI-C.

B. Privacy as anonymity and unlinkability

Regarding the data that is visible or known to the different
parties throughout the protocol, we emphasize that face de-
tection is performed locally on the uploader’s device, that is,
faces are not transmitted to the IMS (only face vectors) and the
CMS only receives encrypted versions of the faces to forward
to the consenters. None of the consenters involved in a photo
have access to each other’s faces. The IMS only has access
to the background image (which does not contain any faces)
and to the face representations of the people appearing in all
the photos (which do not disclose anything about the sensitive
information–the actual face). As the CMS acts as a mixing
network (it forwards a large number of messages to the IMS),
the IMS cannot distinguish the lookup operations belonging to
the same photo, thus it cannot link faces to faces or faces to
a particular content. To make this property even stronger, the
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CMS can randomly mix and slightly delay messages sent to
the IMS (using buffering and shuffling), as well as add dummy
messages in step (5) (Figure 2). As for the CMS, it has access
to the face-free background image. All the other data (face
vectors and the faces) is sent encrypted to the CMS and only
decrypted after the concerned users grant consent. The CMS
is thus not able to identify the users that are involved in the
same photo before they have given consent.

Furthermore, the CMS is also not able to link different
faces (from different photos) of the same user, as face represen-
tations of a person always differ (even slightly) in each photo,
making the encrypted version different. We consider the case
where the CMS wants to identify users in photos submitted in
the future, based on their face representations from previous
granted consents (step 11a, Figure 2); the CMS would have
to build a dictionary of possible face representations for a
target user by adding noise at each position of the face
representation array. This quickly becomes very expensive,
i.e., the time complexity is exponential in the size of the
face representation array (e.g., 128 positions in OpenFace [7]).
Furthermore, we can easily protect against this attack with very
little bandwidth and CPU time overhead by concatenating a
random salt to the feature vector and to the face sent in step
(4) and (9), respectively; In step (11), the CMS can retrieve
the salt along with the face and perform the validation of
the face representation. As for other similar timing, linking
or side-channel attacks potentially performed by the IMS or
by the CMS, these can also be deterred by traffic aggregation
and randomization at the CMS and by adding dummy request
at the client side (e.g., the uploader’s application can send
more messages, to other users (in step (4)), which would be
automatically disregarded by the consenters’ application).

C. Malicious user behavior

A malicious uploader cannot bypass the system by leav-
ing faces visible in the background image, as this would
immediately be detected by the IMS in step (2) (Figure 2).
Malicious uploaders can also not bypass the system by sending
an incorrect feature vector in step (4)–in order for someone else
to provide consent in lieu of a target consenter–as this would be
detected by the CMS in step (11a). Similarly, malicious users
cannot bypass the system by providing a consenter with a face
different than that sent to the CMS, as verifications of the face
position in the photo and a comparison of the feature vector
for that face and that sent to each consenter are performed in
step (11a). Every message sent by an uploader, throughout the
protocol, is validated by the CMS before any consenter’s face
is made visible to the target audience. Thus, malicious user
behavior (even colluding users) results in sensitive parts of the
photo not being shared with the target audience. Privacy of the
sensitive content is also guaranteed, up to the point consent is
granted by the concerned user. This is due to the security of the
encryption schemes and the design of the system: The sensitive
content is encrypted and not visible to the IMS, to the CMS,
traffic snoopers or to any other users of the system.

D. Usability and transparency

All consent requests contain contextual information for
the consenter. However, in our solution, there is a chance
of spamming attacks, e.g., sending unwanted information to

specific users (in the background of the photo, for instance).
Although these can be annoying, we do not consider them
extremely privacy invasive and well-known anti-spamming
techniques (such as those used for e-mail) and the anti-spam
mechanisms of the CMS can be used to handle this problem.

E. Collusion cases

User-CMS and user-IMS collusions do not lead to ad-
ditional information leakage. We discuss the case of CMS-
IMS collusion (e.g., the role of the CMS and that of the
IMS are both played by Facebook). Typically, the CMS has
information about the photos, but does not know anything
about the identities of the faces appearing in them; the IMS can
link every face with a user. In the case of collusion, the CMS
and IMS entities would be able to link the users’ identities
to a particular photo, but the sensitive parts of the photos
belonging to these users (their faces) would still not be visible
unless these users grant their consent (as their decryption is
only possible if consent is granted and both the CMS and
IMS are honest-but-curious). Linkability could be reduced by
adding dummy messages by the uploader application.

VII. IMPLEMENTATION AND EVALUATION

To evaluate the performance of ConsenShare and demon-
strate its practicality, we implemented a proof-of-concept pro-
totype and evaluated its performance, in terms of CPU usage
and bandwidth consumption, by relying on a real large photo
dataset. We describe the implementation of our prototype, the
dataset collection as well as our experimental setup, and we
present the bandwidth and CPU consumption for the photo
upload and grant consent operations.

A. Prototype Implementation

We implemented the prototype and carried out our perfor-
mance evaluation by using Python 3.6. The prototype code
and documentation are available at http://infoscience.epfl.ch/
record/232563. Note that the prototype was not optimized yet;
therefore, the CPU usage measurements should be considered
as a loose upper bound. The prototype consists of the two
server applications (the CMS and the IMS respectively), which
we implemented with Flask, and a client application that
supports the three main operations of the system: register
(to the IMS), upload photo (to the CMS) and approve/deny
consent (to the CMS). The servers use basic SQLite databases
for local storage. All communication between these entities is
achieved through JSON-based HTTPS requests and responses.

For face detection and feature-vector extraction, we use
OpenFace [7], [54] (v.0.2.1), which is an open source Python
implementation of Google’s FaceNet framework [63]. We
implemented the lookup operation (i.e., retrieving the best
matching record for an input feature vector) to return the
database record that minimizes the Euclidean distance with
the input feature vector: We implemented it in a naive way,
that is by comparing it to all the records in the database.
Note that there exist efficient techniques for finding the most
similar face, based on a low-dimensional representation (em-
bedding), in databases of up to hundreds of million faces
(e.g., [39]). Basic image manipulation operations, such as
loading and saving image files as well as extracting faces
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(c) CDF of the number of faces per picture,
for pictures containing less or equal to 20 faces
(99.7% of the photos.)

Fig. 3. Dataset statistics.

and replacing them with black rectangles, were performed
with the Python Imaging Library (Pilow, v.4.1.1). In order to
avoid discrepancies in the image file sizes (and therefore in
the bandwidth measurements), we configured Pilow to retain
all the parameters of the JPEG/JFIF format and encoders (e.g.,
quality, color space, chrominance subsampling factor) from the
original image processed, when saving (parts of) it.

For the basic cryptographic operations (hash, sign/verify,
encrypt/decrypt and generate keys), we used the Python bind-
ing to the Networking and Cryptography library (PyNaCl [55],
v.1.1.2). Specifically for sign/verify operations, we used the
Ed25519 algorithm, with 128-bits security; for (cryptographic)
hashing we used the SHA-256 algorithm with 128-bits secu-
rity; for encryption, decryption and session keys generation we
used the Curve25519 algorithm with 128-bits security (256-
bits keys). We thus achieve a security of more than 112 bits,
in compliance with the current NIST standards [51] for 2016-
2030. For the simplicity of the implementation, we consider
that the IMS generates the keys (Step 7) and that no context
is sent along with the photo (Steps 3 and 10).

B. Dataset

We relied on the Yahoo Flickr Creative Commons 100
Million (YFCC100m) dataset [70] that contains the metadata
of 100 million photos from the Flickr photo hosting website.
More specifically, we extracted an unbiased sample of 20k
photos (we drew photo IDs uniformly at random, without
replacement, by using Python built-in random number gen-
erator with a seed of 0; we skipped the files that were no
longer available). For each selected photo, we downloaded
its full-resolution version from Flickr, and we filtered out the
photos for which the size of the photo after a load and save
operation differed from the original size by more than 5% (see
Figure 3a). Our final dataset contained 17,257 photos and is
available at http://infoscience.epfl.ch/record/232563.

We computed statistics related to the sizes of the photos
and to the faces that appear on them. In our final dataset,
the average number of faces in a photo is 1.0 (with a standard
deviation of 3.7), and the maximum number of faces in a photo
is 230. 61.2% of the photos do not contain any face, 20% of
the photos contain exactly one face and 18.8% contain more
than one face. Figure 3c illustrates the CDF of the number of
faces per photo. Faces are generally small in size, compared
to the actual photo: a face represents, on average, 1.1± 3.3 %
of the photo size (with a maximum of 77.2 %), whereas the
average size of all faces represents 3.0 ± 5.6 % of the photo

size. As for the sizes of the photos, there is substantial variation
(as can be observed in Figure 3b), the average photo size is
2.1± 2.4 MB and the maximum is 25.2 MB.

C. Experimental Set-Up

We evaluate the scenario where a user, Alice, wants to
upload a photo in which potentially other people appear and
we assume Alice wants all these people to appear in the
photo–thus all faces are asked for consent. We do not consider
the lookup operation in our evaluation (Step (6) (Figure 2)).
Hence, we generically refer to a consenter by the name of
Bob, for photos that contain at least one face. We perform
the photo upload and grant consent (for all appearing faces)
operations for all the photos in our dataset, sequentially. In
Step (10) (Figure 2), we configured the CMS to provide Bob
with a scaled version of the original background image with a
maximum width of 1000 pixels, keeping the same image aspect
ratio, quality and metadata as the original. We made use of one
standard computer (Intel i7 CPU, 2.8 GHz, 8GB RAM) with
Mac OS v.10.12.5. We did not use any optimization for Intel
processors. The implementation of a ConsenShare prototype
on Android is left to future work.

D. Experimental Results

We present here the bandwidth and CPU requirements of
our system for the upload photo and grant consent (from all
parties) operations. All the results that we present are upper
bounds of the real bandwidth and CPU consumption, as face
detection is done much faster, some of the users might be
blurred out (and thus not asked for consent), and more ad-
vanced image transformation techniques can be used (such as
JPEG transmorphing [82] to reduce bandwidth consumption).

1) Bandwidth: We compute the average total bandwidth
consumption in MB (on upload and on download) for one
photo–for all the photos in our dataset, for each of the four
entities: Alice, the CMS, the IMS, and one consenter, Bob. We
refer to a baseline case where Alice directly uploads the photo
to the CMS (providing no privacy for Bob). With respect to this
baseline case, we compute the average bandwidth overhead
(in MB) for one photo, which equals the total bandwidth from
which the size of the original photo is subtracted (for Alice
upload and CMS download) and, for the other cases, simply
the total bandwidth. We also refer to the relative bandwidth
overhead, expressed in percent, relative to the original photo
size (dividing the bandwidth overhead by the original photo
size). The average bandwidth requirements are presented in
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Fig. 4. Average per-photo total bandwidth consumption for the uploader (Alice), the CMS, the IMS and the consenter (for the same photo, we consider the
average bandwidth for one consenter, Bob). We illustrate these (y-axis) for different categories of photos, based on the number of faces they contain (x-axis).
Note that for Bob, total upload and download bandwidth is 0 for photos that contain no face.

Metric
Alice (uploader) CMS IMS Bob (consenter)

Upload Download Upload Download Upload Download Upload Download

Total
bandwidth (MB) 4.2 0.0007 0.4 2.1 0.0006 2.1 0.0001 0.2

Relative bandwidth
overhead (%) 101.0 0.2 33.1 1.7 0.1 99.8 0.02 13.8

TABLE I. AVERAGE PER-PHOTO TOTAL BANDWIDTH REQUIREMENTS AND RELATIVE BANDWIDTH OVERHEAD FOR THE UPLOADER (ALICE), THE
CMS, THE IMS AND THE CONSENTER (FOR THE SAME PHOTO, WE CONSIDER THE AVERAGE BANDWIDTH FOR ONE CONSENTER, BOB). WE COMPUTE THE

BANDWIDTH OVERHEAD RELATIVE TO THE BASELINE SCENARIO WHERE ALICE UPLOADS THE ORIGINAL PHOTO DIRECTLY TO THE CMS.
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Fig. 5. Average per-photo relative bandwidth overhead of the uploader (Alice)
and the CMS (download). These are computed with respect to the baseline
scenario where Alice uploads the original photo directly to the CMS and
expressed as a percent of the original photo size. We illustrate these (y-axis)
for different categories of photos, based on the number of faces they contain
(x-axis).

Operation
CPU time (s)

avg

Alice
(uploader)

Detect faces in P (1) 21.5

Encrypt face representations (4) 4.7 × 10−4

Verify signature (9) 2.6 × 10−4

Encrypt face coordinates (9) 1.8 × 10−4

Encrypt face images (9) 7.5 × 10−4

CMS Validate consent (11) 1.3

IMS

Detect faces in PB (2) 19.6
Compute hash(PB) (2) 0.02

Sign hash(PB) (2) 2.3 × 10−6

Decrypt face representations (5) 2.8 × 10−4

Bob
(consenter)

Decrypt face coordinates (10) 1.9 × 10−5

Decrypt face images (10) 6.6 × 10−5

TABLE II. AVERAGE PER-PHOTO CPU TIMES IN SECONDS FOR THE
UPLOADER, THE CMS, THE IMS AND A CONSENTER (FOR THE SAME

PHOTO, WE CONSIDER THE AVERAGE TIME FOR ONE CONSENTER, BOB).

Table I. Notably, the average total bandwidth consumption for
Alice on upload is 4.2 ± 4.8MB (roughly twice the original

photo size – because she sends the background image twice7),
the average total bandwidth consumption for the CMS and
for the IMS on download is 2.1 ± 2.4MB and 2.1 ± 2.4MB,
respectively (roughly the original photo size); the average total
bandwidth consumption for the CMS on upload is 0.4± 1.4.8
The other cases present negligible bandwidth consumption.
Note that in a real system, the CMS upload cost could be
substantially reduced by returning an even lower version of
the background image to Bob. Figures 4 and 5 illustrate the
total bandwidth consumptions (for all entities) and the relative
bandwidth overheads (for Alice on upload and for the CMS
on download), detailed for categories of photos containing a
certain number of faces. Although there is some slight increase
of bandwidth consumption w.r.t. to the number of faces in a
photo (e.g., for Alice on upload), this is negligible and most
such increases can actually be due to an increase in photo size.

2) CPU time: We compute the average CPU time in
seconds for one photo, for various operations, which we
enumerate in Table II. Clearly the most expensive operation is
the face detection performed by Alice (on the original photo)
and by the IMS (on the slightly smaller sized background
image for verification) with an average CPU time of 21.5 s
and 19.6 s, respectively. We did not notice any pattern with
the number of faces in the photo for these operations, but
there is a noticeable increasing pattern with the photo size.
Thus, a simple optimization of scaling down the photos when
performing face-detection would drastically reduce this time,
as shown in practice (e.g., Amos et al [7] mention a run-

7Sending the background image to the CMS could be delegated to the IMS
by providing the hash as opposed to the full PB in step (3) (Figure 2) and
making the CMS request PB from the IMS directly.

8While this may at first glance seem high, note that recent statistics reported
Flickr handles 1.68 million photo uploads per day, on average (and this is a
lower bound, as it only includes photos uploaded with public visibility) [23].
At an average photo size of 2MB, this mens 6.4TB daily.
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Fig. 6. Average per-photo CPU times in seconds for different operations performed by the uploader, the CMS, the IMS and by a consenter (for the same
photo, we consider the average time for one consenter, Bob). Note that the operations Alice:Encrypt face repres., Alice:Verify signature, Alice:Encrypt face
coord., Alice:Encrypt face images, CMS:Validate consent, IMS:Decrypt face repres., Bob:Decrypt face coord., Bob:Decrypt face images take 0 CPU time when
the photo contains no face.

time less than 0.1s and Taigman et al [69] mention a run-
time of 1s per photo, for images from the Labeled faces in
the wild dataset [35]). The validate consent operation (Step
(11) (Figure 2)) – which includes face detection on all of
the face photos in one photo for validation purposes and is
performed by the CMS – takes, on average, 1.3 s and is, as it
can be seen in Figure 6, highly dependent on the number of
faces appearing in the photo. However, even with 230 faces
in a photo, this operation only takes 303s (remember that
we did not use any CPU optimizations and, in practice, face
recognition operations are already performed much faster by
app/services like Facebook, even on phones). The CPU times
for other operations are negligible.

We conclude that these results are acceptable and demon-
strate the effectiveness of a system like ConsenShare.

VIII. INCENTIVES AND ADOPTION

We present here the results of our survey and discuss the
incentives for adoption by the different stakeholders.

A. Survey

In order to gain insight into the individuals’ perceptions of
Multiple-Subject/Interdependent Personal Data (MSPD/IPD)
(and of the associated privacy risks) and of a ConsenShare-like
system, we conducted a survey targeted at Facebook users.

1) Methodology: We conducted our survey in mid-2017.
We recruited participants through the Amazon Mechanical
Turk (AMT) platform. To be eligible, they were required to
have a minimum Human Intelligence Task (HIT) approval
rate of 95% with at least 100 past approved HITs and an
active Facebook account (AMT offers the possibility to specify
this admission criterion). The survey took approximately 10
minutes to complete (median completion time of 8m48s) and
each participant received a financial compensation of $3 in
exchange for their participation. The survey was approved by
our institution’s ethics committee/institutional review board
(application #006-2017/18.05.2017).

The survey was structured as follows. After the standard
demographic questions (part I), we polled the participants
about their perception of online data privacy for different data
types and about their experience with discrimination causes by
data available online (part II). We polled the participants about
their sharing behaviors and those of their friends regarding
multimedia content on OSNs; some of the questions were spe-
cific to sexually explicit content (part III). We polled the partic-
ipants about their (un)tagging (face tags, ”with tags”, @ tags)
behaviors and those of their friends on Facebook (part IV);
the survey questions included screenshots from the Facebook
website to illustrate the aforementioned tagging features. After
a brief high-level description of ConsenShare, we polled the
participants about their perceptions of a ConsenShare-like
system. In particular, we polled them about their willingness
to use such a system (part V), with a special emphasis on
the consent decision process (manual, policy-based, machine
learning-based). Finally, we asked the participants to confirm
their agreement to save their responses and to use them in
a scientific publication. The survey contained two duplicated
questions in order to check the participants’ attention; we
used these to exclude the responses from inattentive partici-
pants from our dataset. The complete transcript of the survey
and the anonymized and sanitized answers are available at
http://infoscience.epfl.ch/record/232563.

2) Results: We obtained a total of 536 complete responses.
We ruled out duplicates (i.e., when a participant completed
the survey multiple times), the responses from inattentive
participants (i.e., when a participant’s responses to the du-
plicate questions were inconsistent) and the participants that
chose not to allow us to save their answers. This left us
with 321 complete responses. The corresponding participant
sample was balanced and diverse in terms of the participants’
demographics: 53.0% of the participants were female, the
participants had various areas of employments, and their ages
ranged from 20 to 75 years old, with an average of 35.3 ±10.4.

Our survey results indicate a potential user concern regard-
ing the sharing of location data (86.3% of the participants),
multimedia data (69.5% of the participants) and genomic
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data (60.8% of the participants). Furthermore, 10.3% of the
participants claimed that they were victims of discrimination
or prejudice based on online content about them. Of these,
33.3% reported that this happened more than once in the
past. A staggering 66.7% reported that the cause was content
shared by others, which highlights the gravity of MSPD/IPD
privacy risks. As for the most common domains in which
the discrimination or prejudice happened, 60.7% of the users
referred to a job application, 30.3% to familial or social
situations, 27.3% to professional situations, 15.2% to loan or
mortgage and 9.1% to insurance premiums.

Regarding sharing multimedia content online, 60.1% of
the participants reported that they share such content at least
occasionally (a few times/month). 48.6% of the participants
reported that this content contains faces of people other than
themselves at least half of the times, whereas 41.4% declared
that this happens sometimes, but less than half of the times.
Only 10.0% said their multimedia content never features faces
of others. Participants reported that their friends also share
multimedia content about them at least occasionally (a few
times/month) – for 45.5% of the participants.

Regarding revenge pornography, 4.1% of the participants
declared that they were victims of revenge porn in the past.
We also polled participants about whether other people have
or had access to explicit photos of themselves. 27.4% of them
declared that this is the case; of these, 48.9% declared that
the person who has the photos took them with a device of
their own, whereas 8.0% declared that a third party took
and shared the photos. Asked whether they have or had
explicit photos of someone else, 40.2% participants responded
positively; of these, 41.9% reported that they are the ones
that took these photos, whereas 16.3% said that a third party
shared these photos with them. Many participants explained,
in comments, that the photos were taken in the scenario of
a (former) relationship. This illustrates that the number of
potential victims of revenge pornography might be quite high.

We also polled participants about their Facebook behavior.
Asked how they tag or mention their friends when posting
photos or videos in which they appear, a staggering 41.1%
declared that they do not tag or link their friend’s profile in any
way (in other words, the friend can be entirely unaware of the
posted content and would thus not be able to remove/report the
content). 7.2% of the participants said their friends ask them
to remove photos that they have shared, at least occasionally
and 11.2% said they noticed their friends contact Facebook
about removing this content at least occasionally. 30.5% of the
participants declared that they also ask their friends to remove
content that they posted and 16.9% declared that they asked
Facebook to remove such content.

Finally, we presented our framework to the participants.
Asked whether they find ConsenShare useful, 36.5% of the
participants answered that this would be useful and 49.8%
very useful (e.g., Female, 32: ”I think it’s best for all parties
involved”). Interestingly, some participants even reported that
they would be more comfortable with social platforms if such a
solution was in place. Regarding the use of policies, only 3.4%
of the participants declared that they would not use any policy,
whereas 54.2% declared they would use a policy to deny
consent for photos containing location information and 92.5%
declared that they would use a policy to deny consent for

photos containing explicit content. As for the use of automated
decision making (via machine learning, for example), 20.2%
of the participants were not sure that they would use this,
whereas 50.2% declared that they would be in favor of using
such a feature. Asked how comfortable they would be with a
registration process similar to the one of ConsenShare (where
a few photos would be required for registration), 38.9% of the
participants reported being comfortable or very comfortable
and 20.3% reported being undecided about this. In terms of
the (in)convenience of first sharing the background photo and
sanitized versions of the faces of the other people appearing
in the photo, 43.3% of the participants found this convenient,
whereas 19.0% were undecided. Finally, asked whether they
would overall use the ConsenShare system, 53.6% of the
participants answered positively and 35.8% said that they
would perhaps consider using the system.

While there are limitations to our survey and future work
we envision on this–we discuss these in Section IX–the results
indicate that a system like ConsenShare could be needed and
there is a potential desire from the users to adopt it.

B. Adoption

As we saw from our survey, a system such as ConsenShare
would involve some tradeoff between the user experience as
an uploader (waiting for friends to give consent before the full
photo is visible), as well as the data that must be provided
for registration9, and his experience as a consenter (whose
privacy would be much better protected). However, giving
back control to the users represents a substantial incentive for
adoption on their part, which is further enhanced by the fact
that the system is transparent and lightweight. Regarding the
stakeholders, although adoption would come with some costs
(e.g., , increased bandwidth, deploying the infrastructure10), a
major incentive for adoption by the CMS could be following
new trends (e.g., the fact that such consent-based mechanisms
for MSPD/IPD data might become law-enforced) and avoiding
lawsuits. Furthermore, as such features are evidently desired
by their users, including them would be good for reputation,
providing a competitive advantage and likely increase the user
base (and thus also the ads revenue), as well as the shared
data. This also creates new business opportunities for the CMS
providers that implement the ConsenShare in-house solution
and sell it to other CMS providers. As for the IMS, the ad-
vantage would be a business-to-business arrangement with the
various CMS providers (either transactional or subscription-
based), an increased user base (thus revenue) and data (similar
to that by the Facebook Connect feature). Furthermore, the
IMS could monetize such features by providing them to the
users in exchange for a premium fee. Note that existing
services with large user databases including faces and relation-
ships (typically OSNs) are perfect candidates to play this role,
as they already have most of the data and technology needed.

9Note that in the case where an existing system is used to play the role of
the IMS (such as Facebook), the users’ faces are already registered, making
adoption quite straightforward for the users.

10For instance, the cost of adding the consent feature to a CMS such as
Flickr would be minimal compared to the existing infrastructure: a simple
interface with an IMS (e.g., Facebook) and basic cryptography and image
processing operations. In other words, the individual ConsenShare operations
are not much different from what current CMS platforms are already doing.
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For instance, Facebook already performs face recognition in
the background and could offer this service to different CMSs.

IX. DISCUSSION: LIMITATIONS AND EXTENSION

We discuss here the limitations and extensions of our work.
It should be noted that this work represents a first step towards
proposing a privacy-preserving generic framework for sharing
MSPD/IPD data. First, it is worth mentioning that there is an
inherent trade-off between the right to privacy and the right to
freedom of speech. A possible middle-ground option, in the
case of photos, would be to instantly publish critical content –
such as photos of a mass civil action – on CMS platforms
with blurred faces (similar to Google Street View and to
many media outlets that already protect the identity of certain
individuals, e.g., minors, by blurring their faces in pictures and
videos). As for the other side of the coin, the right to privacy is
subject to debate for public figures/celebrities; such individuals
could be detected using, for instance, Facebook’s verified
accounts feature, and their faces could be automatically posted,
without the need for consent. Second, in the case of pictures,
detection is not perfect. There is still a small margin of false
positives (i.e., detecting a face when none exists; if recognition
matches such a “face” to a user, he can report this to the IMS,
who can then improve its models upon checking the validity
of this request) and false negatives (i.e., not recognizing a
face, which pose more problems from the privacy point of
view, as these imply that a user appearing in a picture would
not be recognized. Such a detected but unidentified face
could be blurred out by default). These can be alleviated by
asking the uploader for manual input in detecting users in the
picture (similar to tagging on Facebook). Third, our current
solution is centralized. In future work, we plan to design a
decentralized P2P solution for the IMS and potentially the
CMS. Fourth, we intend to extend our solution to incorporate
interaction among users, providing them with the automatic
tools to consider different options of sharing (e.g., different
obfuscation mechanisms, different target audiences, etc) and
iteratively achieve a consensus – thus automating the social
ad-hoc mechanisms users reportedly use today [68]. Fifth,
the solution is CMS-specific, which means an individual user
could upload the content on a different platform and just post a
link to that content, by-passing the need for consent; however,
this would have less impact and could even be blocked by
the CMS, e.g., blocking links to dubious websites. Sixth,
as the issue of balance of control and the “ideal” privacy
settings are culturally-dependent and not entirely law-enforced
in the case of MSPD/IPD data (and regulations can differ
depending on the country), our survey sample of participants
is not necessarily representative of the global population;
the vast majority of Mechanical Turk workers is reported to
be US-based and they might have an IT-experience higher
than the average; previous works have studied the profiles of
Mechanical Turk workers [61]. Furthermore, it is possible that
the participants’ answers do not accurately indicate their true
attitudes for adoption, as users’ privacy attitudes and privacy
decisions are not always rationally connected [4] and reported
behaviors do not necessarily match the natural behavior [64].
For a more rigorous assessment of the usability and adoption
potential of ConsenShare and the users’ perception on the
different design alternatives, in future work, we intend to run
additional surveys using a fully-functional prototype, making

use of the SeBIS intention scale [19], [20] to gain more
insight into the participants’ expertise and following specific
guidelines for designing privacy/security surveys [41]. Finally,
we discuss how the main building blocks in our framework can
be adapted to other data, beyond photos. Note that for any type
of data, there are several options to consider in the design, such
as remove vs. obfuscate the data (and the available granularity);
in what follows, we discuss some of the alternatives.

a) The case of audio and video: Considering audio
and video data in our framework is a rather straightforward
extension from our picture solution. Different solutions for
identifying users in audio/video content have been proposed
[47], [60], and various options can be used for separating
the sensitive content (portions of the video in which a user
appears) from the non-sensitive content: entirely cutting out
the audio/video sections in which a user appears or altering
the content of those sections to obfuscate that user.

b) The case of genomic data: Genomic privacy is a
complex subject whose discussion involves many ethical and
balance of control issues and closely ties to that of the privacy
of others versus personal freedom. The topic of who are the
affected parties and how their consent decisions should be
expressed is still under debate both in the media (e.g., [1])
and in the research community (e.g., [8], [36], [62]). There are
several options that could be considered; we discuss how their
implementation could be done in ConsenShare. Identity claim
(at registration) in the case of genomic data would require
formal identity proof (e.g., an ID) and reporting of familial
relationships. Detection of the involved individuals comes
down to knowing these familial relationships (e.g., through
the IMS; Facebook already offers that option) and selecting
the close relatives of the uploader. The degree of closeness
for which individuals are considered as affected parties – and
thus should grant consent – would be a configurable parameter
of the system, which can be set according to the applicable
regulation. In the most possible restrictive form of regulation,
consent would be binary (yes/no) and a user would be allowed
to share her whole genome only if all affected parties say
yes.11 In less restrictive regulatory options, consent can be
refined to allow publication with a level of noise added to
the full genome (e.g., through differential privacy [71]) or
after applying obfuscation techniques – typically at the SNP
level – that would guarantee a certain level of privacy to the
affected relatives, while allowing the user who wants to share
his genome some freedom. In this case, the individual desired
level of privacy would be configurable for each user and the
consent decision of an affected user would be the level of
noise/obfuscation that the uploader must apply to his genome;
the most restrictive of these – among all the relatives – would
be applied to the uploader’s genome before sharing.

A unique limitation for genomic data is the fact that
affected users (i.e., unborn future relatives, such as children)
can appear after the user has already shared his genome with
proper consent from his relatives at that time. In this case,
we can offer the possibility of revoking consent, which would
force the uploader to remove the data (a less than perfect
solution, as the data might have already been duplicated).

11Note that in this case, the CMS/IMS do not even need to see the data to
determine the involved individuals.
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c) The case of co-location data: Co-location data can
be shared online by different means, for instance, by posting
(and tagging) pictures or videos in which multiple people
appear or directly tagging them in a post message. In the case
of co-locations shared by using multimedia data, detection can
be done as described above. In the case where co-located users
are directly tagged by the uploader, detection is, obviously,
no longer needed. The context provided to a consenter in the
case of co-location data could also include an estimation of the
location privacy loss stemming from that reported co-location,
as proposed by Olteanu et al. [53]. However, as co-locations
introduce dependencies among the data of different users, once
a co-location between Alice and Bob is shared, Alice’s future
location posts would also affect Bob’s location privacy and vice
versa. Hence the system should consider a window of influence
of the correlation, by including an adjustable parameter for
each user, specifying how much time after a shared co-location
in which he is involved are other users required to ask for his
consent to share location data.

X. CONCLUSION

In this paper we propose ConsenShare, a generic frame-
work for sharing MSPD/IPD data (e.g., photos, videos, ge-
nomic data, etc.) with consent from all the involved individu-
als. ConsenShare is privacy-preserving by design not only with
respect to other users of the system, but also with respect to the
service providers. We implemented and evaluated ConsenShare
for photos and show that it is technically possible to provide
users control in the sharing of photos in which they appear
while ensuring their privacy and preserving the main features
of existing CMS. In doing so, our work lays the foundation for
the design of privacy-preserving sharing of MSPD/IPD data.
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