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Summary: An exploratory study on C- and O-horizon samples from a low-density regional survey (1 
sample per 36 km2) was carried out in the Møre and Romsdal county. Principal component and cluster 
analyses were implemented to identify samples signaling potential Cu-Zn-Pb, and Fe-Ti-V base metal 
anomalies. Clustering of the samples (Q-mode) and variables (R-mode) permitted to construct several 
maps that were used as indicators to identify geochemical anomalies. To complement the multivariate 
analysis, a percentile-based filtering of the dataset was further used to identify areas with high Fe-V-Ti 
values. Results from both methods were then contrasted against airborne magnetics. Anomalous 
samples contained within 4 areas of interest were then selected based on the convergence of two or 
more anomaly indicators and its coincidence with areas having moderate to high magnetic anomalies. 
However, further assessment of the magnetic map and the known base metal occurrences show that 
often, there is not a consistent spatial correlation between the latter and magnetic anomalies. 

The biggest limitation of this study is the coarse sampling scale of the geochemical survey 
compared to the much smaller size of lithological units that host or can potentially host base metal 
mineralization (e.g., mafic, and ultramafic intrusions are as small as 0.04 km2). Despite the later, this 
work can be used as first order criterium to identify zones suitable for future and more detailed 
geoscientific surveys (e.g., geochemistry, geophysics, bedrock, and structural mapping). 
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1. INTRODUCTION 

The Geological Survey of Norway (NGU) is currently undertaken a 6 x 6 km grid nation-wide 

geochemical mapping program (GMP), which has nearly covered two thirds of the country 

(northern to mid-Norway; Reimann et al. 2011; Finne et al. 2014; Finne and Eggen, 2015; Flem 

et al., 2020; Flem et a., 2021; Flem et al. 2022; Acosta-Góngora et al., 2024a, b). In general, 

the GMP collects soil (C-horizon) samples, but in some counties like Trøndelag and Hedmark, 

organic soil (O-horizon) samples have been simultaneously taken at each sample location. The 

Møre and Romsdal county has been the latest county covered by the GMP, where both, C- and 

O-horizon samples were taken. Despite its low-density design (1 sample per 36 km2), the GMP 

(or portions of it) may contain relevant information that can help to identify potential areas of 

economic interest.  

The Møre and Romsdal county is host to several, but for the most part, small base metal 

occurrences (mineral showings, advanced exploration projects and past-producing mines) with 

different genetic affinities, that span from e.g., Cu-Zn hydrothermal deposits associated with 

volcanogenic massive sulfide (e.g. Vassdal deposit) to Fe-Ti(±V±Mn) magmatic deposits (e.g. 

Maurdal deposit) (Fig. 1). Regardless of their origin, these occurrences are comprised by 

distinct mineralization/alteration assemblages and hosted by different rock types, which results 

in contrasting geochemical signatures commonly preserved soil samples. In many instances, 

such signatures can often be de-coupled by the implementation of several geostatistical 

approaches. Unsupervised machine-learning (USML) is commonly used for identifying and 

understanding patterns in geochemical data (e.g., stream sediments, soil and rock). These 

patterns indicate different geological/geochemical processes that can be undetected by 

evaluation of single-element concentrations. Among the most popular pattern recognition 

methods are principal component analysis (PCA) (e.g., Parsa et al. 2017; Montsion et al. 2019), 

factor analysis (FA) (e.g., Liu et al. 2014) and cluster analysis (CA) (e.g., Templ et al. 2008; 

Geranian and Carranza 2022; Acosta-Góngora et al. 2022).  

In this study, we carry out an exploratory assessment of the Møre and Romsdal county datasets 

(soil and humus) by implementing PCA and CA to identify potential zones of interest suitable 

for future and more detailed mineral exploration studies. In addition, we elaborate on the 

limitations of USML when analyzing low-density geochemical surveys comprising organic and 

mineral soil material. 
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2. DESCRIPTION OF THE SURVEY AREA 

 2.1 Regional geology 

Møre and Romsdal County is mainly characterized by granitic gneisses comprised within an 

area known as the Western Gneiss Region (WGR). These granitic gneisses were formed 

between 1700 and 1600 Ma and derived from igneous sources. Subsequently, they were 

strongly deformed and metamorphosed during the Caledonian Orogeny (ca. 420–390 Ma).  

Figure 1. Bedrock geology of the survey area. The Møre and Romsdal county is marked with a black line and the 
location of the C- and O-horizon samples are represented by the open black circles. Bedrock units are from NGUs 1:1 
350 000 scale bedrock map of Norway (Geological Survey of Norway, 2021). 
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During Caledonian continent-continent collision with Laurentia (Greenland), the WGR was 

subducted to mantle depths, locally in excess of 100 km, and this is marked by the widespread 

occurrence of high-pressure eclogite lenses, particularly along the western parts that were 

subjected to the highest pressures (Cuthbert et al., 2000; Hacker and Gans, 2005). The 

subduction also resulted in fragments of this mantle getting stuck to the downgoing continental 

slab –found as lenses of olivine-rich mantle peridotite. 

During the Caledonian Orogeny, the WGR was overthrust by nappes, which comprise of 

schists, amphibolites and marbles and continued deformation led to in-folding of the nappes 

into the gneissic substrate (Terry et al., 2000; Tucker et al., 2004).  

The various rocks therefore represent diverse mineral resources, including marble 

(allochthonous nappes) and olivine (mantle peridotite fragments). Historically, mining for Fe 

and Ti was undertaken from mafic rocks associated with the gneisses. Figure 1 shows the 

bedrock map of Møre and Romsdal, with adjacent areas, based on the NGU bedrock map of 

Norway with scale 1:1 350 000 (Geological Survey of Norway, 2021). 

2.2 Mineral deposits 

Well-known mineral resources in Møre and Romsdal county registered in the NGU mineral 

resource databases (https://geo.ngu.no/kart/mineralressurser_mobil/ ) include metallic ores 

such as iron-titanium (e.g., the Raudsand deposit), minor copper and chromium deposits and 

several occurrences of iron, molybdenum, lead and iron sulphides.  

 

Other resource types include industrial minerals such as olivine, calcium carbonate marble, 

garnets and minor occurrences of mica, feldspar and quartz. Olivine has been exploited since 

1948 for construction, metallurgy, filtration and abrasives. Marble was important as 

construction materials in the 19th and 20th centuries and calcium carbonate marble is still 

exploited for several industrial purposes and agricultural use.  

 

Some of these deposits and occurrences may contain critical minerals and metals. Iron-titanium 

deposits are known to have vanadium-bearing magnetite, while some of the old copper mines 

and occurrences at Averøy are known to be rich in cobalt and scandium. Olivine may also 

become important for magnesium metal production if the technology for this if commercialized. 

(Gautneb et al. 2024).  

https://geo.ngu.no/kart/mineralressurser_mobil/
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3.METHODS 

3.1 Geochemical sampling and analysis 

Mineral and organic soil survey sampling locations were selected in the field, preferably close 

to the centre of a 6 x 6 km grid, yielding a sampling density of 1 sample/ per 36 km2 (Fig. 1). 

Mineral soil samples were collected from a single pit in the C-horizon, primarily comprised by 

till but also weathered rock. Organic soil samples (upper 3 cm of organic material; O-horizon) 

were pooled from a minimum of 5 subsamples within an area of 100-200 m2 centred at the 

corresponding soil sample location. After drying at temperatures below 30 °C, samples were 

sieved through nylon mesh to less than 2 mm. Detailed procedures on the C- and O-horizon 

sampling can be found in Eggen et al. (2017), Flem et al. (2020), Flem et al. (2021). Before 

sending the samples for analytical quantification, these were randomized following procedures 

described in Eggen et al. (2019). In this study, the C- and O-horizons are also referred as “soil”, 

“humus”, respectively. 

Figure 2. Magnetic anomaly map (compiled by Nasuti et al. 2015). The Møre and Romsdal county outlined with a 
black line. Location of zones of interest A-D, which are later discussed in figures 9 and 10. Symbology for mineral 
occurrence types is the same as in Figure 1. 
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The samples used for the regional study were analyzed in Bureau Veritas Mineras Laboratories 

(former ACME labs, Canada). The C- and O-horizon samples were digested in Aqua Regia and 

analysed by ICP-MS for 53 elements (Al, As, Au ,B ,Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, 

Fe, Ga ,Ge, Hf, Hg, In, K, La, Li, Mg, Mn, Mo, Na, Nd, Ni, P, Pb, Pd, Pt, Rb, Re, S, Sb, Sc, Se, 

Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn, Zr). The two datasets can be found in 

https://geo.ngu.no/kart/geokjemi_mobil/ along with their QC reports (Acosta-Góngora et al., 

2024a, b).  

3.2 Airborne magnetic data 

Airborne magnetic data available in the study areas was acquired and compiled by the 

Geological Survey of Norway (NGU) and can be downloaded www.ngu.no (Fig. 2). Detailed 

information regarding the acquisition and processing of the regional survey data can be found 

in Nasuti et al. (2015). Surveys were flown with a helicopter/plane at 250-1000m m line spacing 

and sensor height of 60-200m above ground for the EM bird/magnetometer. The data was 

grided at 250 m x 250 m resolution Magnetic data was used to compliment the geostatistical 

analysis. In the Møre and Romsdal county, base metal occurrences are commonly hosted by 

mafic and ultramafic rocks. This rocks often contain magnetic minerals such as magnetite and 

pyrrhotite, which create a magnetic contrast with the surrounding lithologies. Thus, areas with 

higher magnetic anomaly values are then regarded as more prospective. 

3.3 Treatment of geochemical data 

A total of 430 samples were used for this study. For all elements, analyses below detection limit 

were converted into “NA” expressions (not available). Due to the compositional nature of the 

data, and to avoid “the closure problem”, these are scaled by using additive (alr)-, centered (clr) 

(Aitchison, 1982; Thió-Henestrosa and Martín-Fernández, 2005), and/or isometric- (ilr) 

(Egozcue et al., 2003) log-ratio transformations prior to multivariate analysis. Log-ratio 

transformation requires complete datasets, so only elements with less than 10% missing values 

(“NA” expressions) were used for further analysis. The remaining missing values were input 

using the k-nearest neighbours’ method (impKNNa function; Hron et al., 2010) from the R 

package robCompositions (Templ et al., 2011). In total, only 36 (Mo, Cu, Pb, Zn, Ag, Ni, Co, 

Mn, Fe, Th, U, Sr, V, Ca, P, La, Cr, Mg, Ba, Ti, Al, Na, K, Sc, Se,Tl, Ga, Cs, Nb, Rb, Sn, Zr, 

Y, Ce, Be, Li) and 40 (Mo, Cu, Pb, Zn, Ag, Ni, Co, Mn, Fe, U, Sr, Cd, Sb, Bi, Ca, P, La, Cr, 

Mg, Ba, Ti, B, Al, Na, K, Sc, S, Hg, Se, Ga, Cs, Ge, Hf, Nb, Rb, Sn, Ta, Zr, Y, Ce, Li) elements 

(out of 53) were used for multivariate analysis of soil and humus datasets, respectively.  

https://geo.ngu.no/kart/geokjemi_mobil/
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3.4 Principal component analysis 

Principal components analysis (PCA) is a multivariate statistical technique used to decrease the 

number of dimensions (i.e., elements) within a given dataset, and re-project the data in two-

dimensions (i.e., biplots) such that correlations and anti-correlations of elements can be 

identified. Robust PCA was performed using the R package robCompositions (Filzmoser et al., 

2009; Templ et al., 2011). This variation of PCA first scales the compositional data using an ilr 

transformation, then performs PCA, and finally, back-transforms the resulting loadings and 

scores into the clr space where compositional biplots can be shown (Filzmoser et al., 2009). 

3.5 Cluster analysis  

Clustering is an unsupervised-machine learning approach that groups objects into a number of 

classes or clusters in such a way that objects in one cluster are very similar and objects in 

different clusters are quite distinct (Gan et al., 2007). Clustering is performed by using a 

similarity criterion that can be distance between samples (e.g., Euclidean, Manhattan, 

Minkowski, Mahalanobis) or similarity/dissimilarity coefficients (e.g., cosine, correlation, 

Canberra, Bray Curtis) (Cha, 2007; Gan et al., 2007; Shirkhorshidi et al. 2015). Clustering can 

be performed in two modes, R- and Q-modes. The first mode refers to clustering of the variables 

(i.e., elements) whereas the second one refers to clustering of the respondents (i.e., samples). 

Because the purpose of this study is to determine and outline base metal-related geochemical 

anomalies of interest, the number of clusters used for each clustering iteration was set at three. 

These clusters represent samples belonging to background population (i.e., samples with low 

concentrations), possible anomaly population (i.e., samples with moderate concentrations), and 

probable anomaly population (i.e., samples with high concentration). 

 

3.5.1 Agglomerative Hierarchical Clustering 

This clustering method considers initially each sample as a distinct cluster and then, at 

subsequent steps of an iteration process, clusters with stronger similarity to each other are 

combined iteratively until only one cluster is left, containing all observations (Templ et al. 2008; 

Geranian and Carranza 2021). Different from other clustering methods, hierarchical clustering 

does not need to specify the number of clusters, and as such, it is not sensitive to outlier data 

(Han et al., 2011; Kuchaki Rafsanjani et al., 2012; Popat and Emmanuel, 2014). Therefore, the 

user can choose the number of clusters as a final condition. In this study, AHC clustering was 

done using the “agnes” function of the “cluster” R package (Maechler, 2023). Euclidean 
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distance was used as the distance metric input and the ward method (Ward 1963) as the linking 

criteria, because it merges clusters with a minimum information loss criteria based on sums of 

squares (Templ et al. 2008).  

 

3.5.2 Fuzzy C-means clustering 

Different from hard clustering algorithms (i.e. classification of each data point set to a unique 

class or cluster), Fuzzy clustering associates each data point in the data set with every cluster 

using a membership function (Gan et al. 2007). For each observation (i.e., sample) a 

membership coefficient (0 to 1) to all clusters is calculated, suggesting how strong the 

observation is associated with each cluster (0 no association, 1 high association; Gan et al. 

2007). Fuzzy clustering results can be shown as classes or in terms of individual cluster 

membership coefficient. When shown as classes, the sample is classified as part of the cluster 

for which the highest membership coefficient is achieved. Conversely, as membership 

coefficients are often transformed to an interval between 0 and 1, these values can be plotted 

using a continuous color scale.  

Fuzzy c-means (FCM) algorithm was carried in this study, and clusters are formed based on the 

distance between samples and cluster centroids and the membership coefficient was calculated 

within an interval that ranges from 0 to 1 (Bezdek, 1981). The FCM clustering was performed 

using the “fcm” function of the “ppclust” R package (Cebeci, 2018). For this clustering 

approach, the principal component scores were used as the input data, and the distance metric 

input was the correlation coefficient. 

 

3.6 Multivariate analysis workflow  

The workflow implemented for the multivariate analysis is shown in Figure 3. The C- and O-

horizon datasets were assessed equally, but only relevant results obtained for each media are 

presented in this report (Fig. 3). The data was first explored by carrying out robust principal 

component analysis in which biplots displaying the variable loadings and PC scores were used 

to assess correlations and anti-correlations of several elements (Figs. 3). Then, Q-mode 

clustering was carried out using the Fuzzy-C means algorithm by imputing the first seven PCs, 

which represent close to 80% of the data variability (Clustering approach 1). A knowledge-
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driven evaluation was done to identify the cluster signaling base metal mineralization(s) (i.e., 

probable anomaly clusters). 

R-mode clustering (Clustering approach 2; Fig. 3) was then implemented using AHC on the 

variables, where the data was scaled using the clr-transformation prior to clustering. The AHC 

clustering is visually displayed as a dendrogram (Figs. 3). In this “tree-like” structure (Figs.4), 

elements contained in the same “branch” are more correlated than those occurring at e.g., at 

opposite ends of the “tree” (i.e., different branches). Based on the dendrogram, different subsets 

of elements (i.e., matrices) were identified and interpreted in terms of lithological units and/or 

mineralization types (Figs. 4A, B). Matrices relevant to this study (i.e., containing base metals 

of interest) were chosen based on expert knowledge, and then these were individually clustered 

Figure 3. Multivariate analysis workflow. Clustering approaches 1 and 2 are shown 
in separate “branches” of the workflow.  
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in Q-mode using the AHC method. In the same way, probable anomaly clusters were identified 

for each matrix.  

3.7 Percentile-based anomaly identification  

A quantile-based geochemical anomaly identification was implemented to complement the 

multivariate analysis. The focus of this approach was set on Fe-V-Ti anomalies which are 

associated with mafic to ultramafic intrusions. These less conspicuous lithologies are under-

represented within the survey (i.e., few samples are collected on C- and O-horizons lying on 

top of these units), and thus, they can be overlooked by dimension reduction (PCA) and 

clustering (CA) methods. 

The C- and O-horizon datasets were first scaled separately by applying a center-log 

transformation. Then, base metals of interest were selected (Fe, V, Ti) and their log-ratios 

normalized to values between 0 (proxy to lowest concentration) and 1 (proxy to highest 

concentration). Finally, samples with values equal to, or above the 75th percentile (or 4th 

quantile) for the three elements, Fe-Ti-V were filtered and interpreted as indicative of a 

geochemical anomaly.  

 

4. RESULTS AND DISCUSSION 

4.1 Nature of the materials analyzed 

In Norway, most mineral soils (C-horizon) are developed on till material. The term “till” refers 

to surficial sediments deposited by glaciers that have been exposed to weathering since the last 

deglaciation (8000 to 12000 years). Till sediments are produced by glacial erosion, entrainment, 

transportation, and depositional processes (i.e., glacial ice movement) where bedrock is the 

main source (McClenaghan et al. 2022). On the other hand, organic soil, commonly referred to 

as “humus”, is not genetically linked to soil formation, whether the former is developed in-situ 

(e.g., mechanical, and chemical weathering) or has a transported nature like that formed on till.  

Humus (O-horizon) corresponds with dark, organic material that forms in soil when plant and 

animal matter decays. The geochemical composition of humus depends on various complex-

biochemical mechanisms, including element transfer from the mineral soil to plants by root 

uptake and the return of these elements to the humus layer by leaching or decaying plant 

material ('vascular pump') (Steinnes and Njåstad, 1995). However, biochemical reactions 

leading to O-horizon formation tend to significantly enrich the O-horizon in some elements, 
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such as e.g., Mn, Cd and Pb relative to C-horizon (Broster et al. 2009). This preferential 

partitioning of selected elements disturbs the original geochemical signature of the source 

material (i.e., C- horizon) by “blurring” correlations and anticorrelation of elements originally 

partitioned in mineral phases. Meaning that, while multivariate analysis of till sediments 

geochemistry (i.e., detritus derived from mechanically eroded bedrock) can be used as a proxy 

Figure 4. R-mode clustering for soil (C-horizon) and humus (O-horizon). Elements comprising the matrices used 
for subsequent Q-mode clustering are highlighted.  
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to geological processes, humus could be less efficient to do so due to its biochemical overprint. 

This is why, univariate analysis of humus data (e.g., individually assessing the spatial 

distribution of elements of interest) can yield more straightforward results when it comes to 

bedrock mapping and mineral exploration (e.g., Reimann et al. 2015).  

In the following description, the results of the multivariate analysis are under the scope of 

geological and/or geochemical processes. In cases where results are noisy or less 

understandable, the description is limited to notice the geographical occurrence of principal 

component scores and clusters. 

 

4.2 Principal component analysis 

4.2.1 Soil (C-horizon) 

The first seven principal components (PC1 to PC7) correspond to the linear combinations of 

selected elements that account for 80% of the variability in the dataset. Here, we will only 

discuss the first three (57%; PC1=28%, PC2=17%, PC3=12%; Figs. 5A, B). The PC1 axis 

yields highly negative loadings for Ba, K, and P and highly positive loadings principally for 

Mo, and to a lesser extent for Se, U, Nb, and Ag. Principal component axis 2 (PC2) yields high 

negative loadings for Zr, Ca, Na and P and positive loadings for Rb, Ba, K and Ag whereas 

PC3 is dominated by large negative Ag loadings and positive loadings for Zr, Cr, Se, and Ni.  

In general, principal component axes 1 (PC1) and 3 (PC3) can roughly differentiate mafic rocks 

(amphibolite, greenstone, and intrusions) and mica-rich schists from felsic gneisses. (Fig. 6A, 

E) However, in the northeastern portion of the county, granitic and mica-rich units, different 

from the gneiss, are also highlighted by these components. High loadings of principal 

components 1 and 3 are mainly found in the northern portion of the county where mica-schists 

and greenstone are more conspicuous (Figs. 1; 6A, E). Conversely, in the southern portion of 

the county, lower scores are mainly constrained in areas where felsic gneisses are dominant 

(Figs. 1; 6A, E). However, some intermediate to high values of PC1 and PC3 scores seen in 

southern Møre and Romsdal could be associated with the occurrence of several small mafic and 

ultramafic intrusions (<1km2 diameter) or slivers of mica-schists present in this area. 

Molybdenum, Ni, and Se are chalcophile elements which are normally contained in sulfide 

phases, moreover, nickel can also be partitioned along with Cr in ferromagnesian minerals 

crystallized in mafic rocks (e.g., olivine). Sulfide-rich Cu-Zn base metal deposits are well 

known to occur to the north in equivalent metasedimentary and mafic volcanic rocks from the 
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neighboring the Trøndelag county (e.g., Løkken-Røros districts). While PC1 and PC3 can be 

roughly linked with lithological units, results from PC2 (high Na loading; Fig 6C) appear to be 

disturbed by environmental processes. In Figure 6C, it is noticeable that larger PC2 scores are 

found further in land relative to lower PC2 scores, suggesting the influence of Na-rich marine 

aerosols. These can affect the distribution of all other elements due to a continuous competition 

for binding sites in the soil (on clays as well as on organic substances in addition to direct 

chemical reactions with anions like Cl, Reimann et al. 2015). 

Figure 5. Principal component analysis. Biplots showing sample scores and element loadings for principal 
component axes 1, 2 and 3.  
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4.2.2 Humus (O-horizon) 

Like soil, the humus data shows that the first seven principal components (PC1 to PC7) explain 

80% of the variability in the dataset, with the first three components comprising 31%, 21% and 

7% of it (Figs. 5C, D). The PC1 axis yields highly negative loadings for Na, Hg, and B and 

Figure 6. Inverse distance interpolation maps of principal component scores 1 to 3 for soil and humus datasets. 
The interpolations are constrained to the area covered by the survey, and not by the extent of the county. 
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highly positive loadings principally for La, Ce, Y, Li and Nb. The PC2 axis achieves negative 

loadings principally for Mn and less for Li and Rb and positive loadings for Ge, Pb and Cd. 

The PC3 axis achieves negative loadings for Ba, Y, Ce and La, and positive loadings for Nb, 

Ti, Ga and Hf.  

 Roughly, low PC1 scores characterize areas where metasedimentary rocks are more dominant, 

at least in northern Møre and Romsdal (Figs. 1; 6B). Notably, larger PC2 score values are 

somewhat associated with areas containing multiple intermediate to ultramafic intrusions (Figs. 

1; 6D). However, this is less obvious in Figure 1 because the intrusions are often smaller than 

1 km2. We then encouraged the reader to review the online version of the bedrock map. 

Principal component 3 (Fig. 6F) scores are less constrained to specific lithologies but indicate 

some spatial correlation (higher scores) with slivers of greenstone and associated mica-

sedimentary rocks in the northern portion of the county. Despite the “noisy” results, most likely 

derived from a combination of environmental and biochemical processes, some spatial 

correlation between bedrock and O-horizon geochemistry can be inferred from the regional 

data.  

4.3 Cluster analysis 

4.3.1 Soil (C-horizon) 

Results from the Q-mode clustering indicate that the cluster representing probable anomaly 

comprises 22% of the dataset (Figs. 7A, C). This cluster has higher concentrations of Co, Ni, 

Cr and Ti, relative to the other two, but comparable concentrations of Cu and Zn relative to the 

probable anomaly cluster (Figs. 7E). In general, samples comprising the probable anomaly 

cluster have a good spatial association with Cu-Zn-Pb sulfide-rich mineralization, and less often 

with Fe-Mn-Ti (e.g., Smøla island) and Fe(±Cr±Ni±Co±V±Mo±W) occurrences (Figs. 7A, C). 

In terms of its lithological association, the prospective samples are mainly contained within 

slivers of greenstone, amphibolite and mica-schists. In cases where these samples are contained 

in larger felsic gneiss units, it is likely that this is either due to un-mapped strips of the 

greenstone-amphibolite-mica schist assemblage or that the area occupied by these rocks is too 

small to be displayed at the current mapping scale. Given the soft-clustering nature of the Fuzzy 

C-means approach, it is possible to identify samples with higher membership values (i.e., 

probability in % of being classified as probable anomaly), which can further help to refine the 

identification of prospective areas.  
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The clustering of the variables (R-mode clustering) yielded four matrices or clusters (Fig. 4A). 

However, only two of these were considered for further Q-mode clustering because of their 

Figure 7.Q-mode cluster analysis on C- and O-horizon datasets. In A and B are shown the samples classified per cluster type. 
In C and D are shown IDW maps for the cluster types, and E and F the box-whiskers plots showing base metal concentrations 
for each cluster. 
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association with base metals of interest. The first matrix includes Zn, Ag, Ni, Co, Mn, Fe, U, 

Cr, Mg, Sc and Li, whereas the second one is comprised by Mo, Cu, Pb, V, Ti, Se, Ga, Nb, Sn.  

The AHC results for matrix one indicates that the probable anomaly cluster accounts for 18% 

of the dataset and achieves the highest Co, Ni, Cr, Zn and Mn values of all three clusters (Fig. 

8A, B). A closer look to the location of these samples indicates that several are either contained 

Figure 8. R-mode clustering results for the soil (C-horizon) and humus (O-horizon) samples. In A and C are shown 
C-horizon samples classified after clustering and B and D show base metal concentrations as boxplots. In E and F 
are shown the matrix 2 of the O-horizon cluster analysis and respective box-plots displaying the concentration 

distribution.    
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within mafic lithologies (greenstone, amphibolite, gabbro, anorthosite peridotite) or located 

relatively nearby them (< 6 km ). As a result, the anomalous samples can be roughly separated 

in two groups occupying the northern and southern portions of the county. The northern portion 

is dominated by greenstone and amphibolite, whereas the south contains several small mafic to 

ultramafic intrusions. For matrix two, the AHC results show that samples suggesting a probable 

geochemical anomaly account for 23% of the dataset and are enriched in Mo, Se, Pb, V and Ti 

(Figs. 8C, D). Like matrix one, samples from the probable anomaly cluster can be 

geographically located over mica-schist, and less often over amphibolite, but there is less 

obvious association among this cluster, specific rock types and mineral occurrences.  

4.3.2 Humus (O-horizon) 

Results from the Q-mode clustering for the humus dataset are more difficult to interpret 

(Figs.7B, D, F), and as such, a clearly prospective cluster (i.e., probable anomaly) cannot be 

easily identified. In the following description, the percentage of the dataset comprised by each 

cluster is given in parenthesis. Cluster 1 (35%) contains the lowest base metal values, except 

for Cd (Figs. 7B, D, F), and thus, this can be interpreted as the closest to background. Cluster 2 

(31%) accounts for the highest Cr, Ni, Mn and Ti concentrations, whereas cluster 3 (34%) 

achieves the highest Co concentrations (not shown) but has comparable amounts of Cu and Fe 

relative to cluster 2 (Figs. 7B, D, F). Although, the clusters hold no obvious spatial correlation 

between specific lithologies and/or base metal occurrences, it is noted that cluster 1 occurs 

predominantly in the mid and northern portions of the county, perhaps indicating some 

influence from with the greenstone belt packages. On the other hand, cluster 2 occurs mostly in 

the middle and southern portions of the county, possibly indicating some input from mafic and 

ultramafic intrusions, given its high base metal content.  

Three matrices were defined by R-mode clustering (Fig. 4B), but only two of these were 

considered for further Q-mode clustering based on their association with base metals. The first 

matrix includes Mo, Cu, Pb, Ni, Co, Mn, Sb, Bi, Se, Cs, Ge, Hf, Sn, Ta, Zr and Li, whereas the 

second one is comprised by Ag, Fe, Cd, Cr, Ti, Sc, Ga, and Nb. 

For matrix 1 (not shown), the cluster selected as probable anomaly accounts for 25% of the 

dataset and it achieves the highest concentrations for most base metals (Co, Ni, Cu, and Mn). 

In matrix 2, the probable anomaly cluster (25% of the dataset) yielded the largest concentrations 

for Cr, Ti and Fe (Figs. 8E, F). Geographically, both clusters are mostly constrained to the 

middle and southern parts of the county (Fig. 8E).  
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4.4 Limitations of the multivariate approach  

Figure 9. Prospective Areas A and B as shown in Figure 2. Zones or samples of interest, where 2 or more base metal 
indicators coincide and fall on top of moderate to large magnetic anomalies are further highlighted by the dashed lines. In A, 
C and E, and B, D and F are shown the geology, and zones/samples of interest for Cu-Zn-Pb and Fe-Ti-Mn-V mineralization 
types in Areas A and B, respectively. In figures A and B, the legend for the dominant lithologies is provided. The rest of the 
rock unit labels are as in Figure 1. Mineral occurrences symbology as given in previous figures. 
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The multivariate approach shows that several under-represented geochemical processes (e.g., 

different types of mineralization) account for the large variability of the O- and C-horizon 

datasets. Meaning that, e.g., less dominant mineralized/altered rocks or lithologies present in 

the area are under-sampled in the survey and thus, cannot be easily de-coupled from the 

dominant geochemical signatures (i.e., lithologies). This is further inferred from the fact that it 

takes up to seven components to achieve 80% of the data variability.  

The other constraining factor is the scale of the survey, which combined with the scattered 

nature and small size of mafic, ultramafic and metasedimentary rocks (especially in the south) 

in this county, limits greatly our ability to recognized well-defined base metal anomalies. For 

example, Fe-V-Ti occurrences are often hosted by < 1km2 mafic and ultramafic intrusions, 

which are almost an order of magnitude smaller than survey’s resolution. Despite the latter, it 

is possible to identify many areas in the Møre and Romsdal county where several geochemical 

anomaly vectors tested in this study converge, and thus, these can be taken as first order criteria 

to allocate resources for future and more detailed surveys.  

5. PROSPECTIVE AREAS 

In this study we have carried out an exploratory analysis of the C- and O-horizons geochemical 

data by testing multiple geochemical proxies or indicators for base metal mineralization (CA, 

PCA and percentile-based filtering). Each of these proxies can be used as individual vectors for 

mineral exploration. Thus, it is up to the reader to assess the information provided here and 

decide whether a particular vector(s) is more relevant than other(s) given the geological 

framework of the Møre and Romsdal county. In the following description we put emphasis on 

4 areas (A to D) where samples having 2 or more geochemical anomaly vectors coincide with 

high magnetic anomalies indicating potential Cu-Zn-Pb and/or Fe-Mn-Ti-V mineralization 

(Figs. 2, 9, 10). In Figure 2 are shown the general locations of these prospective areas. Zones 

of interest within these areas are further highlighted in figures 9 and 10. Often, anomalous 

samples indicating areas with potential for both mineralization types (Cu-Zn-Pb and Fe-Mn-Ti-

V) are equivalent. This suggests that at the scale of the study, it is not possible to fully 

distinguish between different types of mafic lithologies (e.g., anorthosite-gabbro versus 

greenstone-amphibolite).  

Area A is located in northern Møre and Romsdal and it is dominated by slivers of greenstone 

belts, amphibolite, metgabbro and mica-rich metasedimentary rocks (Fig. 9A, B). Here, 

multivariate analysis and percentile-filtering indicate potential for the two types of base metal 
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mineralization. Especial attention should be given to samples with three indicators for the Fe-

Figure 9.  Prospective Areas C and D as shown in Figure 2. Zones or samples of interest, where 2 or more base 
metal indicators coincide and fall on top of moderate to large magnetic anomalies are further highlighted by the 
dashed lines. In A and B, and C to E are shown zones/samples of interest for Cu-Zn-Pb and Fe-Ti-Mn-V mineralization 
types in Areas C and D, respectively. In figures A and C, the legend for the dominant lithologies is provided. The rest 
of the rock unit labels are as in Figure 1. Mineral occurrences symbology as given in previous figures. 
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Ti-V type mineralization (Fig. 9 E). 

Area B occurs in the western portion of the county, and it is characterized by a several samples 

that lie within a large magnetic high, where several past-producing Cu-Zn mines occur (Figs. 

9B, D, F). The geology of the area is characterized by the presence of mica-rich metasediments 

(host to the past-producing mines), several gabbroic intrusions, amphibolite and a highly 

magnetic granite (Fig. 9B). Other minor Fe-Mn-Ti-V-Mn occurrences are emplaced just to the 

southeast, and they coincide with small and relatively intermediate magnetic values likely 

indicating the presence of small mafic and ultramafic intrusions. However, only 3 Fe-Ti-V 

anomalous humus samples are found around some of these (Fig. 9F). In general, these smaller 

occurrences are not captured by the geochemical survey. 

Area C (southern Møre and Romsdal) is dominated by granitic gneiss crosscut by several small 

(down to 0.04 km2) ultramafic and mafic intrusions (Fig. 10A). The magnetic anomaly map 

shows two areas with relatively large magnetic highs located in the north and south of Area C 

(Fig. 10B). The northern high is associated with the occurrence of roughly E-NE trending 

metagabbro-granite assemblage with less important slivers of mica-rich metasedimentary 

rocks. The southern high is associated with the emplacement of monzonite and granite. Samples 

classified as Fe-Mn-Ti-V anomalous by 2 to 3 indicators were detected close of known Cu-Zn-

Pb and Fe-Mn-Ti-V showings (Fig. 10B). A number of these anomalous samples fall either on 

top of the large magnetic highs or adjacent to moderate magnetic anomalies.  

Area D is located west of Area C, and both are geologically comparable as several mafic to 

ultramafic intrusions and amphibolite occur within the larger granitic gneiss (Fig. 10C). 

Anomalous O- and C-horizon samples signalling Cu-Zn-Pb and Fe-Mn-Ti-V mineralization 

occur in some cases close to known Fe-Mn-Ti-V showings. A high magnetic anomaly is 

recognized in the south and coincides in part with the location of augen gneiss and anorthosite 

intrusions. However, no base metal occurrence neither anomalous C- or O-horizon samples are 

located on top of it. Conversely, smaller, and less prominent areas with moderate magnetic 

highs host some of the anomalous samples. It is also noted that most of the known Fe-Ti-V and 

Cu-Zn-Pb showings are not linked to the emplacement of magnetic highs, but rather associated 

intermediate low magnetic susceptibility values (Fig. 10E). 
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6. SUMMARY 

An exploratory data analysis on C- and O-horizon samples from a low-density regional survey 

(1 sample per 36 km2) was carried out in the Møre and Romsdal county. Principal component 

and cluster analyses were implemented to identify samples signalling potential Cu-Zn-Pb, and 

Fe-Mn-Ti-V base metal anomalies. Clustering was done in Q- and R-modes which allowed to 

construct several indicators or vectors for geochemical anomaly mapping. To complement the 

multivariate analysis, a percentile-based filtering of the datasets was further used to identify 

areas with high Fe-V-Ti values. Both approaches were then contrasted against airborne 

magnetics. Highly anomalous samples contained within 4 areas of interest were then chosen 

based on the convergence of multiple anomaly indicators and its coincidence with areas having 

high magnetic susceptibility values. However, further assessment of the magnetic and bedrock 

maps and the locations of the base metal occurrences show that there is not systematic spatial 

correlation among them. 

As expected, the biggest limitation of this work is the coarse sampling scale of the geochemical 

survey compared to the much smaller size of lithological units (e.g., mafic, and ultramafic 

intrusions could be as small as 0.04 km2) hosting base metal mineralization. Despite the later, 

this work can be used as first order criterium to identify zones suitable for future and more 

detailed geoscientific surveys (e.g., geochemistry, geophysics, bedrock, and structural 

mapping).  
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