
Online Algorithms with Stochastic Input

NIKHIL R. DEVANUR

Microsoft Research

Categories and Subject Descriptors: F.2.m [ANALYSIS OF ALGORITHMS AND PROB-
LEM COMPLEXITY]: Miscellaneous

General Terms: Algorithms

Additional Key Words and Phrases: Online, Matching, Adwords, Learning, Random Permutation

1. INTRODUCTION

The design and analysis of online algorithms, where the input to the algorithm is
revealed over time and the algorithm has to make decisions immediately without
knowing the future input, has received a revived interest in the last few years
primarily due to their application to online advertising. The canonical problem is
the Adwords problem, which is motivated by the problem of optimally allocating ad
slots on search queries to budget constrained advertisers. It involves simplifications
that ignore certain aspects of the actual way this allocation is done. For instance,
it assumes a “first-price” pay-per-impression scheme, ignoring the game theoretic
aspects, and considers only one slot per query. To be precise, the Adwords problem
is as follows.
The Adwords problem:
Input:

—n = number of advertisers

—m = number of queries

—∀i = 1..n,Bi = Budget of advertiser i

For j = 1..m

—Input: ∀i = 1..n, bij = bid of advertiser i for query j

—Algorithm: allocate query j to some advertiser i ∈ {1..n}. The allocation is
denoted by indicator variables xij where xij is 1 if j is allocated to i and is 0
otherwise.

The revenue generated by the algorithm is ALG :=
∑
i min{Bi,

∑
j bijxij}. Let

OPT := maxx{
∑
i min{Bi,

∑
j bijxij}} be the optimal revenue on hindsight. The

maximum is taken over all valid allocations, that is all xij ∈ {0, 1} such that for
each j,

∑
i xij ≤ 1. An algorithm is said to have a (worst-case) competitive ratio of

α if ALG ≥ αOPT for all inputs. In case the algorithm is randomized, then ALG
is replaced by its expectation over the coin tosses of the algorithm.

The worst-case competitive ratio for Adwords was shown to be 1−1/e by Mehta
et. al. [Mehta et al. 2005]. This is in fact tight, that is no randomized algorithm can

Author’s addresses: nikdev@microsoft.com

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

2 · Nikhil Devanur

achieve a better ratio. The worst-case model seems too pessimistic; the instances
occurring in practice may be “well-behaved” and it may be possible to exploit this
behavior to get a better revenue. One way to model this well behavedness is to
assume that the input is generated by some stochastic process, as is done in the
following models.

Definition 1.1. The random permutation model. Let the adversary pick n,m,
Bi ∀i ∈ {1..n} and aij ∀i ∈ {1..n} and ∀j ∈ {1..m}. A permutation π of {1..m}
is chosen uniformly at random (by nature). In step j of the algorithm, the bids
input to the algorithm are bij = aiπ(j). The algorithm has a competitive ratio of α
if E[ALG] ≥ αOPT for all choices of the adversary, where the expectation is taken
over the choice of the permutation and the coin tosses of the algorithm (if any).

Definition 1.2. The i.i.d model with unknown distribution. Let the adversary
pick n,m,Bi ∀i ∈ {1..n} and a probability distribution on bid vectors. For simplicity
assume that the distribution is uniform over the m bid vectors given by aij ∀i ∈
{1..n} and ∀j ∈ {1..m}. The distribution is not part of the input to the algorithm.
In step j of the algorithm, j′ ∈ {1..m} is chosen uniformly at random (by nature)
and the bids input to the algorithm are set to bij = aij′ . The algorithm has a
competitive ratio of α if E[ALG] ≥ αE[OPT] for all choices of the adversary, where
the expectation is taken over the coin tosses of nature and those of the algorithm
(if any).

Definition 1.3. The i.i.d model with known distribution. This is the same as
before, except that the distribution is part of the input to the algorithm.

In all the models, one can ask for a high-probability result instead of a result
in expectation, that is, one can ask that with probability 1 − δ for some given δ,
ALG ≥ αOPT.

An important parameter that affects the performance of the algorithms is the
bid-to-budget ratio, denote by γ.

γ := max
i,j

{
bij
Bi

}
.

For simplicity, we will assume that bij ∈ [0, 1] ∀ i, j. Thus γ = 1/mini{Bi}.
Table 1 summarizes the best known competitive ratios for the various models and
assumptions about γ. The first column corresponds to the results that assume that
γ → 0. These are valid for “sufficiently small” γ. The second column corresponds to
results that do not make any assumption1 about γ. The third column corresponds
to the special case of bipartite matching, where the bids are either 0 or 1 and the
budgets are all 1.

For the stochastic models one can get a competitive ratio that tends to 1 as γ
tends to 0. This means that as each individual query becomes relatively insignificant
compared to the overall budget, the online algorithm can almost match the offline
optimum. This presents a significant improvement over the worst-case. In this
article I will present the main ideas behind these algorithms. In particular, in
Sections 2 and 3 I will present the algorithm of Devanur and Hayes [Devanur and

1We can always assume that γ ≤ 1.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

Online Algorithms with Stochastic Input · 3

Table I. Table summarizing the known results for the Adwords problem

Model Small γ Large γ Bipartite matching

Worst Case 1 − 1/e [Mehta et al. 2005;

Buchbinder et al. 2007]

1/2 1 − 1/e [Karp et al. 1990]

Random Per-

mutation

1 − O(
√
γn log(mn/ε))

[Devanur and Hayes 2009;
Agrawal et al. 2009]

1/2 .696 [Mahdian and Yan

2011; Karande et al. 2011]

i.i.d unknown 1−O(
√
γ log(n/ε)) [Deva-

nur et al. 2011]

1 − 1/e [Deva-

nur et al. 2011]

.696

i.i.d known 1 −O(
√
γ logn) 1 − 1/e .702 [Manshadi et al. 2011;

Feldman et al. 2009; Bah-

mani and Kapralov 2010]

Hayes 2009] for the random permutaion model and in Secion 4 the algorithm of
Devanur et. al. [Devanur et al. 2011] for the i.i.d model with unknown distributions.

An important point to note is that these algorithms need to know the (approx-
imate) number of queries in advance.2 In particular, the following example shows
that if m is not known in advance, then the competitive ratio is bounded away from
1. The example has only 2 bidders and 2 keywords, a and b, each of which occurs
m/2 times. The bids are (1, 0) for a and (2, 1) for b. Each bidder has a budget
of 150. Now if m = 100, then OPT gives all 50 b’s to bidder 1 (in addition to all
the a’s). However, if m = 200 then OPT only gives 25 b’s to bidder 1 and 75 b’s
to bidder 2. After seeing 100 keywords, any allocation has to significantly deviate
from OPT (and have a significantly lower revenue) in at least one of the two values
of m. Thus, an online algorithm that does not know m has to have a competitive
ratio bounded away from 1.

2. AN ALGORITHM FOR THE RANDOM PERMUTATION MODEL

The algorithm is similar to the Occam’s razor [Kearns and Vazirani 1994] algorithm
for PAC learning applied to an online setting. We use the first few queries as
the sample, find the “best fit” for the sample from among a class of allocation
algorithms, and simply use it for the rest of the queries. Before we give more
details of the algorithm, we present some preliminaries. Consider the following LP
relaxation of the problem.

max
∑
i,j

bijxij

s.t. for all i,
∑
j

bijxij ≤ Bi

and for all j,
∑
i

xij ≤ 1.

xij ≥ 0.

2In the worst case, knowing the number of queries does not give any advantage. The adversary

can always say that this number is infinite and start giving queries where the bids are all zero
after some point.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

4 · Nikhil Devanur

The dual of the above LP is

min
∑
i

αiBi +
∑
j

pj

s.t. ∀ i, j, pj ≥ bij(1− αi).

Note that, at the optimum, ∀ j, pj = maxi{bij(1 − αi)}. Thus, one can think of
the dual objective as just a function of the αi’s. Thus we define

D(α) =
∑
i

αiBi +
∑
j

max
i
{bij(1− αi)}.

By complementary slackness, if (α, p) minimizes the dual LP, and x is the optimal
allocation to the primal LP, then

xij > 0 implies pj = max
i
{bij(1− αi)},

and hence, given the optimal α, we should allocate item j to bidder arg maxi{bij(1−
αi)}. In fact, every vector α ∈ [0, 1]n gives an allocation, assign j to arg maxi{bij(1−
αi)}. This is the class of allocations we will consider. From the above observation,
we know that this class is rich enough to contain at least one allocation that is
optimal.

The algorithm uses the first k = εm queries as a sample to learn the vector α,
in a way reminiscent of PAC-learning algorithms: it selects the α that minimizes
the restriction of D to the observed bids. More precisely, for all subsets S, of size
k = εm, define

D(α, S) :=
∑
i

αiεBi +
∑
j∈S

max
i
{bij(1− αi)}.

We now present our core algorithm, Learn-Weights.

Algorithm 2.1: Learn-Weights(ε)

for j ← 1 to k = εm

do

{
Observe the bids bij .
Allocate item j arbitrarily (e.g. all xij = 0).

Let α∗ := arg minα{D(α, S)}.
for j ← εm+ 1 to m

do

{
Observe the bids bij .
Give item j to the bidder maximizing bij(1− α∗i).

It can happen that there are ties; that is, arg maxi{bij(1 − α∗i)} may not be
uniquely defined. For now, we will ignore this issue, and pretend that such ties
never occur (this would be the case if, for instance, the bid vectors were in general
position). We will discuss ways to remove this assumption later.

Theorem 2.1. The algorithm Learn-Weights(ε) has a competitive ratio of 1 −
O(ε) given that for all i, Bi ≥ n log(mn)/ε3

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

Online Algorithms with Stochastic Input · 5

3. ANALYSIS OF THE ALGORITHM

Here, instead of providing a complete proof of correctness, we draw parallels with
PAC learning, and highlight the similarities and differences. A brief overview of (a
simple version of) PAC learning is first presented.

Let a concept class C on a domain X be a set of boolean functions f : X → {0, 1}.
Let D be a probability distribution on X. Given an unkown concept c ∈ C, you
observe k pairs (x, c(x)) where x’s are i.i.d samples from D. C is PAC learnable with
sample complexity k if we can find a hypothesis h ∈ C such that with probability
≥ 1 − δ (over the choice of the k samples and the internal randomness of the
algorithm if used),

error(h) := Pr
x∼D

[h(x) 6= c(x)] ≤ ε.

The Occam’s razor algorithm for PAC learning is as follows. Call the sample set
S. Output an h ∈ C such that h(x) = c(x) for all x ∈ S.

Theorem 3.1. C is PAC learnable by Occam’s razor algorithm with sample com-
plexity

a
log(|C|) + log(1/δ)

ε

for some universal constant a.

Proof. If for some fixed h, error(h) > ε, then for a given sample x, Pr[h(x) =
c(x)] ≤ 1 − ε. Therefore Pr[h(x) = c(x) ∀x ∈ S] ≤ (1 − ε)k. Further by union
bound on all h ∈ C such that error(h) > ε,

Pr[∃h ∈ C : error(h) > ε, h(x) = c(x) ∀x ∈ S] ≤ |C|(1− ε)k.

This is less than δ if k ≥ a log(|C|)+log(1/δ)
ε for some constant a.

To draw a parallel, the notion of a concept class is equivalent to the class of all
allocations that we consider, or equivalently to the set of all dual vectors. Here
each element in the concept class defines an allocation, which is a function with the
range {1, 2, . . . , n} rather than a boolean function. There is no distribution on the
domain, instead we simply have the set of all queries. The concept c we are targeting
is the optimal dual, which gives an optimal allocation. Also, although there are
uncountably many α’s, it can be shown that the number of distinct allocations are
only (mn)O(n) and this will be the size of our concept class, |C|.

The first k queries serve as the sample S which is picked uniformly at random
from the set of all queries. The goal is to find a dual vector α (a hypothesis) such
that with probability ≥ 1− δ,

error(α) := 1−ALG(α)/OPT ≤ ε.

For the purpose of exposition, we now consider a setting that is more like PAC
learning. Suppose that the algorithm is given k = εm samples chosen uniformly
at random from the set of all queries. The algorithm is required to output a dual
vector which will then be used to allocate all the queries. Now, the equivalent of
Occam’s razor is to output an optimal dual on the sample S.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

6 · Nikhil Devanur

Analogous to the proof of Theorem 3.1, we need to show that if for some fixed
α,

error(α) > ε⇒ Pr[α is optimal on S] ≤ δ/|C| =: δ′. (1)

This is the heart of the proof. Once we have this, we know that

Pr[∃α : error(α) > ε, α is optimal on S] ≤ δ.

However, showing (1) is more complicated in our case. For instance, we cannot
analyze sample by sample as we did earlier. Also, the quantity error(α) is not
very easy to work with directly. So we define a new function, di(α). Instead of
measuring how far is the allocation corresponding to α from the optimum (like
error does), di measures how far is α from satisfying the complementary slackness
condition. Let xij(α) be the allocation given by α. Let Ri(α) :=

∑
j bijxij(α).

For all i such that αi > 0, let di(α) := |Ri(α) − Bi|. For all i such that αi = 0,
let di(α) := max{0, Ri(α) − Bi}. Also let Di(α) = αiBi + (1 − αi)Ri(α) be the
contribution of i towards the dual. We show (1) by showing that

(1) if error(α) > ε, that is α is far from optimal, then ∃i : di(α) > εDi(α), that is
α is far from satisfying one of the complementary slackness conditions on the
entire set.

(2) if ∃i : di(α) > εDi(α), that is if α is far from satisfying one of the complementary
slackness conditions on the entire set, then Pr[α is optimal on S] ≤ δ′, α is
unlikely to satisfy the complementary slackness conditions on a random subset
S of size εm, and hence is unlikely to be optimal on S.

For the first part, the following fact is easy to check: D(α)−ALG(α) ≤
∑
i di(α).

Hence if for all i, di(α) ≤ εDi(α) then D(α)−ALG(α) ≤ εD(α) and error(α) ≤ ε.
In order to prove the second part, we need the following measure concentration in-

equality which is a corollary of Bernstein’s inequality. Suppose that b1, b2, . . . , bm ∈
[0, 1]. S is a random subset of [m] of size k, and X =

∑
j∈S bj . µ = E[X] =

k
m

∑
j bj . Then with probability ≥ 1− δ,

|X − µ| ≤ O

(√
µ ln

(
1

δ

)
+ ln

(
1

δ

))
. (2)

In other words, the probability that X deviates from µ by more than O(
√
µ ln

(
1
δ

)
+

ln
(
1
δ

)
) is less than δ. What we show is that α is optimal on S implies such a

deviation. In order for α to be optimal on S, it has to satisfy the complementary
slackness conditions on S. Thus if we set bj = bijxij(α) (and suppose that αi > 0)
the complementary slackness conditions imply that X = εBi, where as µ = εRi(α).
Therefore we have that |X − µ| = εdi(α). The facts that |C| = (mn)O(n), di(α) >
εDi(α) and the assumption that Bi ≥ Ω(n log(mn)/ε3) imply that

εdi(α) > Ω(
√
εRi(α) ln(1/δ′) + ln(1/δ′)).

Agrawal, Wang and Ye [Agrawal et al. 2009] use the “doubling trick” to achieve
an improvement on the dependence on ε (from ε3 to ε2). This involves re-training
the α’s throughout the algorithm, every time the number of queries seen doubles.
That is, you retrain the α’s whenever j = εm, 2εm, 4εm, . . . ,m/2.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

Online Algorithms with Stochastic Input · 7

Breaking Ties

In the description of our algorithm, we assumed that there are never any ties,
where arg maxi bij(1 − α∗i) is not uniquely defined. In fact, it is important to our
arguments that such ties not be allowed to occur. However, in practice, such ties
might occur frequently, for various possible reasons.

Our approach to resolving this problem is based on the observation that, if the
bid vectors are in general position in Rn, then for any α, there can be at most
n− 1 ties. Assume that we break ties greedily, that is assign to the highest bidder.
Since all bids are in [0, 1] and n ≤ εBi these ties don’t introduce much of an error.
Unfortunately, we cannot assume the bid vectors are in general position.

To get around this, suppose we choose, in advance, a tiny perturbation ξi,j to
be added to each bid bij . These will be chosen independently and uniformly at
random from the interval [0, ζ], where ζ = O(ε/m). Because the perturbations are
chosen independently from continuous distributions, the perturbed bid vectors will
be in general position with probability one. Because the perturbations are small,
the exact amounts of the perturbations will have a negligible effect on the profit
for any α. Indeed, if so desired, this effect can be made exactly zero by instead
defining ζ as an infinitesimal.

Note that, since the perturbations are independently sampled, it makes no dif-
ference whether we think of these perturbations as being chosen before or after the
query order is randomized.

4. I.I.D MODEL WITH UNKNOWN DISTRIBUTIONS

In this section, we consider a problem that is slightly different from the Adwords
problem and present only the main ideas behind the technique, sacrificing details
for clarity. The problem is as before, except that we now wish to simplify satisfy
the constraints that ∀i,

∑
j bijxij ≤ Bi and for each j, it is allocated to exactly one

i. Failing that, we wish to minimize the maximum violation, that is we wish to
minimize maxi{

∑
j bijxij/Bi}. In fact, for simplicity, we assume that Bi = B for

all i.
Recall that in the i.i.d model, the adversary picks a distribution, given by the

aij ’s and in every step j, j′ is chosen uniformly at random and bij is set to aij′ .
Suppose that we know the aij ’s. Let x∗ij be a solution to the following system of
inequalities (assuming that there is one solution).

for all i,
∑
j

aijxij ≤ B

for all j,
∑
i

xij = 1.

xij ∈ {0, 1}.

Now consider the following algorithm, which we call Pure Random: for all j in
which j′ was chosen, set xij = x∗ij′ . Let Yij = bijxij and Yi =

∑
j Yij . It is

easy to show that for all i, Yi ≤ B(1 + ε) with probability 1 − δ as long as B ≥
Ω(log(n/δ)/ε2). The proof is by a straight-forward application of Chernoff bounds.
Going into the proof of the Chernoff bounds, one bounds the expectation of the
moment generating function exp(λYi) for a suitable λ(= ln(1 + ε)). That is, show

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

8 · Nikhil Devanur

that E[exp(λYi)] ≤ exp(εB). Then we apply Markov’s inequality on exp(λYi) to
conclude that

Pr[Yi > B(1 + ε)] = Pr[exp(λYi) > exp(λB(1 + ε))]

≤ exp(εB)/ exp(λB(1 + ε)) ≈ exp(−O(Bε2)) ≤ δ/n.

Finally, we take the union bound over all i.
The main result of Devanur et. al. [Devanur et al. 2011] (building upon the ideas

of Charles et. al. [Charles et al. 2010]) is that one can actually achieve the same
result without knowing the distribution! First, in the analysis of Pure Random,
one can bound the sum of the moment generating functions for all i, instead of
bounding them separately and then using the union bound, to get the same result.
In other words, it is sufficient to show that

∑
iE[exp(λYi)] ≤ n exp(εB). What

the algorithm in [Devanur et al. 2011] does is to assign each j to greedily minimize
the sum of these moment generating functions at every step. To be precise, let
Xij = bijxij where xij is the allocation of the algorithm. The algorithm allocates
j to

arg min
i

∑
i′ 6=i

exp(λ
∑
j′<j

Xi′j′) + exp(λ
∑
j′<j

Xij′ + λbij)

 . (3)

We claim that
∑
iE[exp(λXi)] ≤ n exp(εB), where Xi =

∑
j Xij . Let φji =

exp(λ
∑
j′≤j Xij′). In each step the algorithm picks the i that minimizes

∑
i φ

j
i .

We show a bound on E[φji |φ
j−1
i] that holds for an oblivious choice of i in that step,

and hence the same bound should also hold for the choice of the algorithm. The
oblivious choice that we consider is the allocation of Pure Random, that is suppose
we used xij = x∗ij′ where j′ was the result of the random choice in step j. Then

E[φji |φ
j−1
i] = φj−1i E[exp(λbijx

∗
ij)] ≤ φ

j−1
i exp(εB/m).

Thus E[
∑
i φ

j
i |φ

j−1
i] ≤

∑
i φ

j−1
i exp(εB/m). The claim follows easily from this

bound. From the claim, the following theorem follows as in the proof of Chernoff
bounds.

Theorem 4.1.

Pr[∃ i,Xi > B(1 + ε)] ≤ δ

given that B ≥ Ω(log(n/δ)/ε2).

In fact, there is an alternate algorithm that achieves the same bound and is
simpler to state and implement. Note that exp(λbij) = (1 + ε)bij ≤ (1 + εbij). It

turns out that (3) can be replaced with arg mini

{
φj−1i bij

}
.

5. EXTENSIONS AND GENERALIZATIONS

The technique presented here can be generalized to solve more general problems,
as was shown in Feldman et. al. [Feldman et al. 2010], Agrawal, Wang and Ye
[Agrawal et al. 2009] and Devanur et. al. [Devanur et al. 2011]. The class of
problems is as follows: let there be n resources, with resource i having a capacity

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

Online Algorithms with Stochastic Input · 9

of ci that is given at the beginning of the algorithm. In each step j, the algorithm
is given a(i, j, k), wj,k for each i and for k = 1..K, where each k corresponds to one
option that the algorithm can exercise. If the algorithm exercises option k, then
a(i, j, k) amount of resource i is consumed and a profit of wj,k is realized. The goal
of the algorithm is to maximize the total profit realized, subject to the capacity
constraints on the resources. γ is now defined as maxi,j,k{a(i, j, k)/ci, wj,k/OPT}.
It is easy to see how the Adwords problem can be modeled as a special case of this
framework.

6. CONCLUSION AND FUTURE DIRECTIONS

Analyzing online algorithms under stochastic assumptions about the input gives
an effective way to get around the impossibility results that one encounters in the
worst-case model. This also addresses the concerns about the pessimistic perspec-
tive of the worst-case model. However, the reality is bound to be somewhere in
between; the stochastic assumptions need not hold in practice either. This calls for
exploring the territory between these two models.

7. ACKNOWLEDGMENTS

I would like to thank my co-authors Tom Hayes, Denis Charles, Max Chickering,
Kamal Jain, Manan Sanghi, Balasubramanian Sivan and Chris Wilkens for letting
me write about our results in this article. I would also like to thank Claire Kenyon
for her feedback on an earlier draft of the paper.

REFERENCES

Agrawal, S., Wang, Z., and Ye, Y. 2009. A dynamic near-optimal algorithm for online linear

programming. arXiv:0911.2974v1.

Bahmani, B. and Kapralov, M. 2010. Improved bounds for online stochastic matching. In ESA.

170–181.

Buchbinder, N., Jain, K., and Naor, J. S. 2007. Online primal-dual algorithms for maximiz-

ing ad-auctions revenue. In ESA’07: Proceedings of the 15th annual European conference on
Algorithms. Springer-Verlag, Berlin, Heidelberg, 253–264.

Charles, D., Chickering, M., Devanur, N. R., Jain, K., and Sanghi, M. 2010. Fast algorithms
for finding matchings in lopsided bipartite graphs with applications to display ads. In EC ’10:

Proceedings of the 11th ACM conference on Electronic commerce. ACM, New York, NY, USA,

121–128.

Devanur, N. R. and Hayes, T. P. 2009. The adwords problem: online keyword matching with

budgeted bidders under random permutations. In ACM Conference on Electronic Commerce,
J. Chuang, L. Fortnow, and P. Pu, Eds. ACM, 71–78.

Devanur, N. R., Jain, K., Sivan, B., and Wilkens, C. 2011. Near optimal online algorithms
and fast approximation algorithms for resource allocation problems. In EC.

Feldman, J., Henzinger, M., Korula, N., Mirrokni, V. S., and Stein, C. 2010. Online
stochastic packing applied to display ad allocation. In ESA. 182–194.

Feldman, J., Mehta, A., Mirrokni, V., and Muthukrishnan, S. 2009. Online stochastic match-
ing: Beating 1-1/e. In FOCS ’09: Proceedings of the 2009 50th Annual IEEE Symposium on

Foundations of Computer Science. IEEE Computer Society, Washington, DC, USA, 117–126.

Karande, C., Mehta, A., and Tripathi, P. 2011. Online bipartite matching with unknown

distributions. In STOC.

Karp, R. M., Vazirani, U. V., and Vazirani, V. V. 1990. An optimal algorithm for on-line
bipartite matching. In STOC ’90: Proceedings of the twenty-second annual ACM symposium
on Theory of computing. 352–358.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

10 · Nikhil Devanur

Kearns, M. J. and Vazirani, U. V. 1994. An introduction to computational learning theory.

MIT Press, Cambridge, MA, USA.

Mahdian, M. and Yan, Q. 2011. Online bipartite matching with random arrivals: an approach
based on strongly factor-revealing lps. In STOC.

Manshadi, V., Gharan, S., and Saberi, A. 2011. Online stochastic matching: Online actions

based on offline statistics. In To appear in SODA.

Mehta, A., Saberi, A., Vazirani, U., and Vazirani, V. 2005. Adwords and generalized on-line

matching. In In FOCS 05: Proceedings of the 46th Annual IEEE Symposium on Foundations
of Computer Science. IEEE Computer Society, 264–273.

ACM SIGecom Exchanges, Vol. 9, No. 1, June 2010.

