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We introduce the Online Stochastic Convex Programming (OSCP) problem as a generalization of online

linear programming, and a very natural model for sequential decision making under uncertainty. In this

problem, stochastic inputs are revealed over time, a decision has to be made each time before observing

the future inputs, and goal is to maximize a concave objective under convex feasibility constraints on the

aggregate reward/cost vectors. This models many revenue management and resource allocation problems,

particularly those under nonlinear resource consumption costs and risk-sensitive utility functions. We provide

fast near-optimal algorithms for this problem under both i.i.d. and random order of arrival assumption

on the inputs. Our algorithms are based on primal-dual paradigm, and we use online learning as a black-

box to incrementally learn the optimal value of dual variables. Additionally, we demonstrate that under

certain smoothness assumptions, online stochastic convex programming problem can be solved with much

lower regret than its linear counterpart, thus providing incentive for considering smooth convex relaxations

in practical settings. Even for online packing (a well studied special case of online linear programming),

our techniques yield significantly faster and conceptually simpler algorithms than the state-of-the-art, with

optimal guarantees.
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1. Introduction

The theory of online matching and its generalizations has been a great success story that has had a

significant impact on practice. The problems considered in this area are largely motivated by online

advertising, and the theory has influenced how real advertising systems are run. As an example, the

algorithms given by Devanur et al. (2011a) were used at Microsoft, by the “delivery engine” that decides

which display ads are shown on its “properties” such as webpages, Skype, Xbox, etc.

In one of the most basic problem formulations in online advertising, an “impression” can be allocated

to one of many given advertisers, assigning an impression i to advertiser a generates a value vai, and

an advertiser a can be allocated at most Ga impressions. The goal is to maximize the value of the

allocation. In another variant, advertisers pay per click and have budget constraints on their total

payment, instead of the capacity constraints as above. More sophisticated formulations consider the

option to show multiple ads on one webpage, which means you can pick among various configurations

of ads. Each configuration still provides some value which is to be maximized, and advertisers have

either capacity or budget constraints.

While the online budgeted matching algorithms, like the one in Devanur et al. (2011a) (DJSW

algorithm), are used in practice, the actual problem has some aspects that are not captured by the

formulations considered there. For instance, the actual objective function is not just a linear function,

such as the sum of the values. There is a penalty for “under-delivering” impressions to an advertiser

that increases with the amount of under-delivery. This translates into an objective that is a concave

function of the total number of impressions assigned to an advertiser. Another consideration is the

diversity of the impressions assigned. An advertiser targeting a certain segment of the population

expects a representative sample of the entire population (Ghosh et al. 2009). In order to avoid deviating

from this ideal too much, there are certain (convex) penalty functions in the objective that punish

such deviations. The ‘essentially linear’ formulations of online matching or online packing/covering

considered in the literature cannot handle these extensions. In this paper, we introduce a very general

online convex programming framework, which allows any (Lipschitz) concave objective function and

convex constraints on average reward/cost vectors, and present provably optimal algorithms for it.
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Following related work on online packing and covering problems, we consider two closely related

stochastic input models, the random permutation and the i.i.d. model. In the random permutation

model, an adversary picks the set of inputs, which are then presented to the algorithm in a random order.

In the i.i.d. model, the adversary picks a distribution over inputs that is unknown to the algorithm, and

the algorithm receives i.i.d. samples from this distribution. The random permutation model is stronger

than the i.i.d. model, any algorithm that works for the random permutation model also works for the

i.i.d model. The difference between these two models is like the difference between sampling with and

without replacement. This intuition says that the two models should be very similar to each other,

but the DJSW algorithm was only known to work for the i.i.d model, not for the random permutation

model. Earlier algorithms by Devanur and Hayes (2009), Agrawal et al. (2014), Feldman et al. (2010a)

worked for the random permutation model but gave worse guarantees. Kesselheim et al. (2014) gave an

algorithm that matched the optimal guarantee of Devanur et al. (2011a) for the random permutation

model, but suffered on efficiency of implementation, as we discuss in the following.

An important practical consideration in the design of online algorithms is that the time taken by the

algorithm in a single step should be very small. For instance, the decision to allocate an impression must

be made in “real-time”, in a matter of milliseconds. The DJSW algorithm of Devanur et al. (2011a)

satisfies this requirement, but requires solving an LP ever so often, to estimate the value of an optimum

solution. On the other hand, the algorithm in Kesselheim et al. (2014) requires solving an LP in every

step, making it not practical. In this paper, we give an algorithm that only requires solving a single

LP (for online packing and covering problems), making it even faster than the DJSW algorithm. This

improvement comes from the fact that in our algorithm the error in the estimate of the optimal solution

only occurs in the second order error bounds and hence we can tolerate much bigger errors in such an

estimate.

To summarize the comparison to work on online packing and covering, the DJSW algorithm is fast

and works for the i.i.d. model but not for the random permutation model. The algorithm by Kesselheim

et al. (2014) works for the random permutation model but is slow. We get the best of both worlds, our

algorithm is fast, and works for the random permutation model. Moreover, our proof formalizes the
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intuition mentioned earlier that the difference between i.i.d and the random permutation models is like

the difference between sampling with and without replacement.

Furthermore, for the first time, we provide a general, provably optimal approach for handling global

convex constraints and objective in online decision making. Our primal-dual algorithmic techniques

employ fundamental concepts of Fenchel duality in convex programming, and use online learning meth-

ods as a blackbox to learn the dual variables. Starting from Mehta et al. (2007), it was conjectured

that there is some relation between these problems and online learning or the “experts” problem, but

no formal connection was known. We show such a formal connection, and demonstrate that getting

better guarantees for these problems boils down to getting better “low-regret” guarantees for certain

online learning problems. Even for the special case of online packing and covering, this gives much

simpler proofs and improved algorithms than the earlier work.

To summarize, our contributions are as follows.

1. We present algorithms with near-optimal guarantees for a very general online convex programming

problem, in a stochastic setting.

2. Our algorithms are primal-dual algorithms that are fast and simple, and work for the random

permutation model. Our proof techniques formalize the intuition that the random permutation and the

i.i.d models are not very different.

3. We establish a formal connection between these problems and online learning.

1.1. Other Related Work

The seminal paper of Mehta et al. (2007) introduced the so called “Adwords” problem, motivated by the

allocation of ad slots on search engines, and started a slew of research into generalizations of the online

bipartite matching problem (Karp et al. 1990). For the worst-case model, the optimal competitive ratio

is 1− 1/e, which can be achieved for a fairly general setting (Buchbinder et al. 2007, Aggarwal et al.

2011, Feldman et al. 2009a, Devanur et al. 2013). A special case of an objective with a concave function

was considered in Devanur and Jain (2012).

In order to circumvent the impossibility results in the traditional worst-case models, stochastic models

such as the random permutation model and the i.i.d model were introduced (Goel and Mehta 2008,
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Devanur and Hayes 2009, Vee et al. 2010, Devanur et al. 2011a). The dominant theme for these stochastic

models has been asymptotic guarantees, that show that the competitive ratio tends to 1 as the “bid-

to-budget” ratio tends to 0 (as was first shown by Devanur and Hayes (2009)). The focus then is the

convergence rate, the rate at which the competitive ratio tends to 1 as a function of the bid-to-budget

ratio. Feldman et al. (2010a), Agrawal et al. (2014) gave improved convergence rates for the random

permutation model and generalized the result to an online packing problem. Recently, Chen and Wang

(2013) extended these ideas to the concave returns problem of Devanur and Jain (2012). Devanur et al.

(2011a) gave the optimal convergence rate for the online packing problem in the closely related i.i.d.

model. Kesselheim et al. (2014) matched these bounds for the random permutation model, and further

improved the bounds either when the bid-to-budget ratio is large, or when the instances are sparse.

This line of research has also had significant impact on the practice of ad allocation with most of the

big ad allocation platforms using algorithms influenced by these papers (Feldman et al. 2010b, Karande

et al. 2013, Chen et al. 2011, 2012, Chakrabarti and Vee 2012).

Some versions of these problems also appear in literature under the name of ‘secretary problems’.

However the dominant theme in research on secretary problems is to aim for a constant competitive

ratio while not making any assumption about “bid-to-budget” ratio (a notable exception is (Kleinberg

2005)).

Another interesting line of research has been for the case of bipartite matching. Feldman et al.

(2009b), Bahmani and Kapralov (2010), Manshadi et al. (2011) gave algorithms with competitive ratios

better than 1 − 1/e for the known distribution case, and Karande et al. (2011), Mahdian and Yan

(2011) did the same for the random permutation model. Other variations such as models for combining

algorithms from worst-case and average case, and achieving simultaneous guarantees have also been

studied (Mahdian et al. 2012, Mirrokni et al. 2012).

A closely related problem is called the “Bandits with Knapsacks” problem (Badanidiyuru et al. 2013),

which is similar to the online stochastic packing problem. The bandit aspect is different: the algorithm

picks an “arm” of the bandit at each time, and makes observations (cost, reward, etc.), which are i.i.d

samples that depend on the arm. There is persistence in the available set of choices across time as the
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arms are persistent. In the online packing problem, the set of options in one time step are unrelated

to the other time steps. Due to this, the main aspect of the bandit problem, the explore-exploit trade

off in estimating the expectations of the observations for all arms, is absent from the online packing

problem.

In an earlier paper (Agrawal and Devanur 2014), we generalized Bandits with Knapsacks to include

general convex constraints and concave rewards, which is analogous to our generalization of the online

packing to online convex programming here. Our high level ideas of using Fenchel duality for ‘lineariza-

tion’ and online learning algorithms for estimating the dual variables is inspired by the use of similar

ideas in (Agrawal and Devanur 2014). Consequently, we obtain algorithms that are very similar looking

to those in (Agrawal and Devanur 2014). There are some significant differences in the proof techniques,

however, due to the differences in the two problems mentioned in the previous paragraph. Also, the

analysis for the random permutation model, and our adaptations (for the online packing problem) to

get competitive ratios instead of regret bounds, were entirely absent from (Agrawal and Devanur 2014).

The online packing problem is also closely related to the Blackwell approachability problem (Blackwell

1956). The use of online learning algorithms to solve the Blackwell approachability problem (Abernethy

et al. 2011) is similar to our use of online learning algorithms.

Concurrently and independently, Gupta and Molinaro (2014) found results for online linear program-

ming that are similar to some of ours: they also show how to get competitive ratio bounds for the online

packing problem in the random permutation model via a connection to the experts problem. For the

guarantees that hold “in expectation”, their bounds are the same as ours. For the guarantees that hold

“with high probability”, they show bounds without an extra
√

logT factor that we get. They do not

consider the more general convex programming framework.

1.2. Organization:

Section 2 contains the problem and the input model definitions, and statement of the main results.

Section 3 provides some background material on online learning and Fenchel duality. Section 4 illustrates

the basic ideas using a special case with only convex feasibility constraints. Section 5 gives the algorithm,

results and proof techniques for the general online stochastc convex programming. Section 6 gives
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tighter bounds for the special case of the online packing problem. Section 7 provides a new algorithm

with stronger regret bounds for smooth functions.

2. Problem definition and main results

The following problem captures a very general setting of online optimization problems with global

constraints and utility functions.

Definition 1. [Online Stochastic Convex Programming (OSCP)] We receive as initial input,

the description of a concave function f over a bounded domain ⊆ Rd, which we may assume is [0,1]d

w.l.o.g, and a convex set S ⊆ [0,1]d. Subsequently we proceed in steps, at every time step t= 1, . . . , T , we

receive a set At ⊆ [0,1]d of d-dimensional vectors. We have to pick one vector v†t ∈At before proceeding

to time step t+ 1, using only information until time t. Let v†avg := 1
T

∑T

t=1 v
†
t . The goal is to

maximize f(v†avg) subject to v†avg ∈ S.

We assume that the instance is always feasible, i.e., there is a choice of vt ∈At ∀ t such that 1
T

∑T

t=1 vt ∈

S.

To appreciate the generality of above formulation, observe that objectives of form f(
∑

t gt(v
†
t)) can

also be formulated in above by simply replacing every vector vt ∈ At by gt(vt), as long as gt(·) is

bounded. Similarly, constraints of form h(
∑

t gt(v
†
t)) ≤ 0 can be encoded in above formation, for any

convex function h. Furthermore, even though vectors in At are required to be in [0,1]d in the above

definition, one can handle vectors in [−1,1]d by replacing every vt ∈At by vt+1
2
∈ [0,1]d, and replacing

the objective f(v†avg) and the onstraint v†avg ∈ S by f(2v†avg − 1) and 2v†avg − 1 ∈ S, respectively. The

latter is equivalent to v†avg ∈ S′ for a suitably modified convex set S′.

2.1. Stochastic Input Models:

In the random permutation (RP) model, there are T sets X1, ...,XT fixed in advance but unknown to

the algorithm, and these come in a uniformly random order (given by a random permutation π) as the

sequence A1 =Xπ(1), ...,AT =Xπ(T ). The number of time steps T is given to the algorithm in advance.

In the i.i.d, unknown distribution (IID) model, there is a distribution D over subsets of [0,1]d, and for

each t, At is an independent sample from D. The distribution D is unknown to the algorithm.
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It is known that the RP model is stronger than the IID model. The IID model can be thought of as

a distribution over RP instances and therefore any guarantee for the RP model also carries over to the

IID model. Henceforth, we will consider the RP model by default, unless otherwise mentioned.

2.2. Benchmarks.

We measure the performance of an algorithm with respect to a benchmark. The bechmark for the RP

model is the optimal offline solution, i.e. the choice v∗t ∈At that maximizes the function f of the average

of these vectors while making sure that the average lies in S. We denote the value of this solution as

the benchmark, OPT. This is a deterministic value since it does not depend on the randomness in the

input, which is in the order of arrival. For the IID model, the offline optimal actually depends on the

randomness in the input, and OPT denotes the expected value of the offline optimal solution.

2.3. Performance Measures.

While the standard measure in competitive analysis of online algorithms is a multiplicative error w.r.t

the benchmark, we mostly adopt a concept of additive error that is common in online learning, called

the regret. Since we make no assumptions about f , it could even be negative, so an additive error is more

appropriate. For certain special cases where multiplicative errors or competitive ratios are more natural

or desirable, we discuss how our algorithms and analysis can be adapted to get such guarantees. We

define the following two (average) regret measures, one for the objective and another for the constraint.1

Let d(v, S) denote the distance of the vector v from the set S, w.r.t. a given norm ‖ · ‖.

avg-regret1(T ) = OPT− f(v†avg), and

avg-regret2(T ) = d(v†avg, S).

2.4. Main Results.

We now state the most general result we prove in this paper.

Theorem 1. There is an algorithm (Algorithm 2) that achieves the following regret guarantees for the

Online Stochastic Convex Programming problem, in the RP model.

E[avg-regret1(T )] = (Z +L) ·O
(√

C
T

)
E[avg-regret2(T )] = O

(√
C
T

)
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Here, the Big-Oh notation is hiding only universal constants. C depends on the norm ‖ · ‖ used for

defining distance. For Euclidean norm, C = d log(d). For L∞ norm, C = log(d). The parameter Z

captures the tradeoff between objective and constraints for the problem, its value is problem-dependent

and is discussed in detail later in the text. L is the Lipschitz constant for f w.r.t. the same norm ‖ · ‖

as used to measure the distance.

In the main text we provide more detailed result statements, which will also make clear the dependence

of our regret bounds on the regret bounds available for online learning, and implications of using different

norms. These regret bounds can also be converted to high probability results, with an additional
√

logT

factor in the regret. This extra factor comes from simply taking a union bound over all time steps. A

more careful analysis could possibly get rid of this extra factor, as was shown in Gupta and Molinaro

(2014) in case of online linear programming. These bounds are optimal, and this follows easily from an

easy modification of a lower bound given by Agrawal et al. (2014) for the online packing problem.

We also consider the following interesting special cases.

Feasibility problem: In this case, there is no objective function f , and there is only the constraint

given by the set S. The goal is to make sure that the average of the chosen vectors lies as close to S as

possible, i.e., minimize d(v†avg, S).

Linear objective: In this case, we assume that each vector v ∈At has an associated reward r ∈ [0,1].

The objective is to maximize the total reward while making sure that the average of the vectors lies

in S. This can be thought of as the special case where the vector you get is (v, r), and the constraint

is only on the subspace defined by all coordinates of this vector except the last, while the objective is

just the sum (or linear function) of its last coordinates.

Online Packing/Covering LPs: This is a well studied special case of linear objective. The packing

constraints
∑

t v
†
t ≤B1 are equivalent to using constraint set S of the form {v : 0≤ v ≤ B

T
1}, where 1

is the vector of all 1s and B > 0 is some scalar. In this case, we also assume that the sets At always

contain the origin, which corresponds to the option of “doing nothing”. The covering constraints are

obtained when S is {v : v≥ B
T

1}.

For online packing, we provide the following tighter guarantee in terms of competitive ratio.
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Theorem 2. For online stochastic packing problem, Algorithm 4 achieves a competitive ratio of 1−O(ε)

in the RP model, given any ε > 0 such that min{B,TOPT} ≥ log(d)/ε2. Further, the algorithm has fast

per-step updates, and needs to solve a sample LP at most once.

3. Preliminaries

In this section, we provide background on some fundamental technical concepts and facts used in this

paper.

3.1. Fenchel duality.

As mentioned earlier, our algorithms are primal-dual algorithms. For the online packing problem, the

LP duality framework (which is very well understood) is sufficient but for general convex programs

we need the stronger framework of Fenchel duality. Below we provide some background on this useful

mathematical concept.

Let h be a convex function defined on [0,1]d. We define h∗ as the Fenchel conjugate of h,

h∗(θ) := max{y ·θ−h(y) : y ∈ [0,1]d}.

Similarly for a concave function f on [0,1]d, define f∗(θ) := maxy∈[0,1]d{y · θ + f(y)}. Note that the

Fenchel conjugates h∗ and f∗ are both convex functions of θ.

Suppose that at every point y, every supergradient gy of h (and f) have bounded dual norm ||gy||∗ ≤

L. Then, the following dual relationship is known between h and h∗ (f and f∗).

Lemma 1. h(z) = max||θ||∗≤L{θ ·z−h∗(θ)}, f(z) = min||θ||∗≤L{f∗(θ)−θ ·z}

A special case is when h(y) = d(y, S) for some convex set S. This function is 1-Lipschitz with respect

to norm || · || used in the definition of distance. In this case, h∗(θ) = hS(θ) := maxy∈S θ ·y, and Lemma

1 specializes to the following relation (which also appears in Abernethy et al. (2011)).

d(y, S) = max{θ ·y−hS(θ) : ||θ||∗ ≤ 1}. (1)
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3.2. Strong convexity/Smoothness Duality.

We first define strong convexity and smoothness.

Definition 2. A function h :X →R is β-strongly convex w.r.t. a norm || · || if ∀x,y ∈X ,z ∈ ∂h(x),

h(y)−h(x)≥ z · (y−x) +
β

2
||x−y||2.

Equivalently for any x,y in the interior of X , and all α∈ (0,1), we have that

h(αx+ (1−α)y) ≥ αh(x) + (1−α)h(y)

−β
2
α(1−α)||x−y||2.

A function h is β-strongly concave if and only (−h) is β-strongly convex.

Definition 3. A function h :X →R is β-strongly smooth w.r.t. a norm || · || if h is everywhere differ-

entiable, and for all x,y ∈X , we have

∀x,y ∈X , |h(y)−h(x)−∇h(x) · (y−x)| ≤ β

2
||x−y||2.

The following lemma can be derived from the proof of Theorem 6 in Kakade et al. (2009). A proof is

given in Appendix B.1 for completeness.

Lemma 2. If h is convex and β-strongly smooth with respect to norm ‖ · ‖, then h∗(θ) = maxx∈[0,1]d{θ ·

x−h(x)} is 1
β

-strongly convex with respect to norm || · ||∗ on domain ∇h = {∇h(x) :x∈ [0,1]d}.

3.3. Online Learning.

A well studied problem in online learning, called the Online Convex Optimization (OCO) problem,

considers a T round game played between a learner and an adversary (nature), where at round t, the

player chooses a θt ∈W , and then the adversary picks a concave function gt(θt) :W →R. The player’s

choice θt may only depend on the adversary’s choices in the previous rounds. The goal of the player is

to minimize regret defined as the difference between the player’s objective value and the value of the

best single choice in hindsight:

R(T ) := max
θ∈W

T∑
t=1

gt(θ)−
T∑
t=1

gt(θt)
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Some popular algorithms for OCO are online mirror descent (OMD) algorithm and online gradient

descent, which have very fast per step update rules, and provide the following regret guarantees. More

details about these algorithms and their regret guarantees are in Appendix B.2.

Lemma 3. Shalev-Shwartz (2012) There is an algorithm for the OCO problem that achieves regret

R(T ) =O(G
√
DT ),

where D is the diameter of W and G is an upper bound on the norm of gradient of gt(θ) for all t. The

value of these parameters are problem specific.

In particular, following corollary can be derived, which will be useful for our purpose. Details are in

Appendix B.2.

Corollary 1. For gt(θ) of form gt(θ) = θ · z − h∗(θ) and W = {θ : ||θ||∗ ≤ L}, where h is an L-

Lipschitz function, OCO algorithms achieve regret bounds of R(T ) ≤ O(L
√
dT ) for Eucledian norm,

and O(L
√

log(d)T ) for L∞.

For optimization over a simplex (‖θ‖1 = 1,θ ≥ 0), the multiplicative weight update algorithm (gener-

alization by Arora et al. (2012)) is very fast and efficient. It is conventional to state this algorithm

in terms of learning distribution over d experts, with θj denoting the probability of jth expert, and

gt,j = gt(ej) being the outcome of jth expert. To handle domain ‖θ‖1 ≤ 1,θ≥ 0, and outcomes given by

gt(θ), we consider the problem with d+ 1 experts, with gt,j = gt(ej) being the outcome for expert j at

time step t, and the outcome of d+ 1 expert always being gt(0) = 0. Then, the step t update of this

algorithm takes the following form, given that −R≤ gt,j ≤M and a parameter ε > 0,

θt+1,j =
wt,j

1 +
∑

j wt,j
, where wt,j =


wt−1,j(1 + ε)gt,j/M if gt,j > 0,

wt−1,j(1− ε)−gt,j/M if gt,j ≤ 0

(2)

The multiplicative weight update algorithm then provides the following guarantees for θts generated in

the above manner.

Lemma 4. Arora et al. (2012) Let −R ≤ gt,j ≤M,j = 1, . . . , d denote the outcomes of d experts at

time t and expert d+ 1 always generates outcome 0. Then, for all 0< ε≤ 1
2
, for θts generated by the

multiplicative weight update algorithm,

∑T

t=1 θt ·gt ≥ (1− ε)
(∑

≥0 gt,j
)

+ (1 + ε)
(∑

<0 gt,j
)
− M ln(d+1)

ε
, and,
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t=1 θt ·gt ≥−
M ln(d+1)

ε
,

where ≥ 0 and < 0 refer to the rounds t where gt,j ≥ 0 and gt,j < 0 respectively.

By concavity of gt(θ), we obtain the following corollary.

Corollary 2. For domain W = {||θ||1 ≤ 1,θ≥ 0}, given that −R≤ gt(θt)≤M , and for all 0< ε≤ 1
2
,

using the multiplicative weight update algorithm we obtain that for any j,

∑T

t=1 gt(θt)≥max
{

(1− ε)
(∑

≥0 gt(ej)
)

+ (1 + ε)
(∑

<0 gt(ej)
)
− M ln(d+1)

ε
,−M ln(d+1)

ε

}
.

For strongly concave functions, even stronger logarithmic regret bounds can be achieved.

Lemma 5. Hazan et al. (2007) Suppose that gt is H-strongly concave for all t, and G≥ 0 is an upper

bound on the norm of the gradient, i.e. ‖∇gt(θ)‖ ≤ G, for all t. Then the online gradient descent

algorithm achieves the following guarantees for OCO: for all T ≥ 1,

R(T )≤ G2

H
log(T ).

4. Feasibility Problem

It will be useful to first illustrate our algorithm and proof techniques for the special case of the feasibility

problem. In this special case of online stochastic CP, there is no objective function f , and the aim of

the algorithm is to have v†avg be in the set S. The performance of the algorithm is measured by the

distance from the set S, i.e., d(v†avg, S). We assume that the instance is always feasible, i.e., there exist

v∗t ∈At ∀ t such that 1
T

∑T

t=1 v
∗
t ∈ S.

The basic idea behind our algorithm is as follows. Suppose that instead of minimizing a convex

function such as d(v†avg, S) we had to minimize a linear function such as θ ·v†avg. This would be extremely

easy since the problem then separates into small subproblems where at each time step we can simply

solve min
v
†
t∈At

θ ·v†t . In fact, convex programming duality guarantees exactly this – that there is a θ∗,

such that an optimal (i.e., feasible) solution is v∗t = arg minv∈At θ
∗ ·v, however, we don’t know θ∗. This

is where online learning comes into play. Online learning algorithms can provide a θt at every time t

using only the observations before time t, which together provide a good approximation to the best θ

in hindsight.
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Algorithm 1 Feasibility problem

Initialize θ1.

for all t= 1, ..., T do

Set v†t = arg minv∈At θt ·v

Choose θt+1 by doing an OCO update with gt(θ) = θ ·v†t −hS(θ), and domain W = {||θ||∗ ≤ 1}.

end for

Here || · ||∗ is the dual norm of || · ||, the norm used in the distance function. The updates required for

selecting θt+1, given θt and gt(·), are given as Equation 13 and Equation 2 for OMD and multiplicative

weight update algorithm, respectively. As discussed there, these updates are simple and fast, and do

not require solving any complex optimization problems.

Theorem 3. Algorithm 1 achieves the following regret bound for the Feasibility Problem in the

RP model of stochastic inputs:

E[avg-regret2(T )] := E[d(v†avg, S)] ≤ O

(
R(T )

T
+ ||1d||

√
s log(d)

T

)
.

where R(T ) denotes the regret for OCO with functions gt(θ) and domain W , as defined in Section 3.3.

And, s≤ 1 is the coordinate-wise largest value a vector in S can take. The parameter s can be used to

obtain tighter problem-specific bounds.

Proof. From Fenchel duality, and by OCO guarantees,

d(v†avg, S) = max
||θ||∗≤1

θ ·v†avg−hS(θ)

= max
||θ||∗≤1

1

T

∑
t

gt(θ)

≤ 1

T

∑
t

gt(θt) +
1

T
R(T ).

In Lemma 6, we upper bound E[ 1
T

∑
t gt(θt)] to obtain the statement of the theorem. �

Lemma 6. E[
∑

t gt(θt)]≤O(||1d||
√
s log(d)T ), where s= maxv∈S maxj vj ≤ 1, and || · || is the norm used

in the distance function.

Proof. Let Ft−1 denote the observations and decisions until time t− 1. Note that θt is completely

determined by Ft−1. Let vXt denote the option chosen to satisfy request Xt by the offline optimal
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(feasible) solution, and let v∗t = vAt . Then, since At = Xs, for s = 1, . . . , T with equal probability, we

have that E[v∗t ] = 1
T

(vX1
+ . . .+vXT )∈ S. Therefore, due to the manner in which v†t was chosen by the

algorithm, we have that

E[gt(θt)|Ft−1] = E[θt ·v†t −hS(θt)|Ft−1]

≤ E[θt ·v∗t −hS(θt)|Ft−1]

= θt ·E[v∗t ]−hS(θt) +θt · (E[v∗t |Ft−1]−E[v∗t ]).

Now, by the Fenchel dual representation of distance, for any v,θ′ such that ‖θ′‖∗ ≤ 1, d(v, S) =

max||θ||∗≤1 θ · v − hS(θ)≥ θ′ · v − hS(θ′). Using this observation along with E[v∗t ] ∈ S, we obtain from

above,

E[gt(θt)|Ft−1] ≤ d(E[v∗t ], S) +θt · (E[v∗t |Ft−1]−E[v∗t ])

= 0 +θt · (E[v∗t |Ft−1]−E[v∗t ])

≤ ‖E[v∗t |Ft−1]−E[v∗t ]‖, (3)

where the last inequality used the condition ‖θt‖∗ ≤ 1.

Note that under independence assumption (IID model), we would have E[v∗t |Ft−1] = E[v∗t ], so that

the above inequality would suffice to give the required bound. However, in random permutation (RP)

model, the observations till time t−1 restrict the set of possible permutations. Conditional on realization

A1 = Xπ(1), . . . ,At−1 = Xπ(t−1) until time t− 1, for a given ordering π, we have that At is one of the

remaining sets with equal probability. So, E[v∗t |Ft−1] = 1
T−t+1

(vXπ(t) + . . .+vXπ(T )
), for any ordering π

that agrees with Ft−1 on the first t− 1 indices.

Next, we bound the gap ‖E[v∗t |Ft−1]−E[v∗t ]‖ under random permutation assumption. For any given

ordering π, define wt,π =
vXπ(1)

+...+vXπ(t)
t

. Also, for given ordering π, define π′ as the reverse ordering.

Then, E[v∗t |Ft−1] = wT−t+1,π′ , for any ordering π that agrees with Ft−1 on the first t− 1 indices. Now,

the input ordering π observed by the algorithm agrees with all the filtrations F1, . . . ,FT−1, and therefore

taking π′ as the reverse of this ordering, we have that

T∑
t=1

‖E[v∗t |Ft−1]−E[v∗t ]‖ =
T∑
t=1

‖wT−t+1,π′ −E[v∗t ]‖

=
T∑
t=1

‖wt,π′ −E[v∗t ]‖.
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Due to the random permutation assumption, the input ordering π, and hence the reverse ordering

π′ in above, is a uniformly random permutation. Also, taking expectation over uniformly random

permutations σ, E[wt,σ] =
(vX1

+...+vXT
)

T
=E[v∗t ]. And, therefore,

T∑
t=1

‖E [v∗t |Ft−1]−E[v∗t ]‖ =
T∑
t=1

‖wt,π −E[wt,σ]‖ , (4)

where π is a uniformly random permutation. Taking outer expectations, and using (3), this implies,

E[
∑
t

gt(θt)] ≤ E

[∑
t

‖E [v∗t |Ft−1]−E[v∗t ]‖

]

= E

[∑
t

‖wt,π −E[wt,σ]‖

]
.

Observe that for uniformly random permutation π, wt,π can be viewed as the average of t vec-

tors sampled uniformly without replacement from the ground set {vX1
, . . . ,vXT } of T vectors. We use

Chernoff-Hoeffding type concentration bounds for sampling without replacement (refer to Appendix C

for details), to obtain,

E[||wt,π −E[wt,σ]||]≤O(||1d||
√
s log(d)

t
). (5)

The lemma statement then follows by summing up these bounds over all t. �

Remark 1. [RP vs. IID] For the IID model, since E[v∗t |Ft−1] = E[v∗t ], we would get
∑

tE[gt(θt)]≤ 0

directly from Equation (3). Thus, the quantity E[
∑

t ‖E[v∗t |Ft−1]−E[v∗t ]‖]≤O(‖1d‖
√
sT log(d)) char-

acterizes the gap between IID and RP models.

Remark 2. [High probability bounds] The above analysis can be extended to bound the sum of condi-

tional expectations
∑

tE[gt(θt)|Ft−1]≤
∑

t ‖wt,π −E[wt,σ]‖ by O(‖1d‖
√
T log(dT/ρ)) with high proba-

bility 1− ρ. As a result, we obtain a high probability regret bound of O(‖1d‖
√

log(Td)

T
). Details are in

Appendix C. For the IID model, this sum of conditional expectations is bounded by 0, so the resulting

high probability bounds are slightly stronger, with no extra
√

log(T ) factor.

5. Online stochastic convex programming

In this section, we extend the algorithm from previous section to the general Online Stochastic Convex

Programming (OSCP) problem, as defined in Section 2. Recall that the aim here is to maximize f(v†avg)

while ensuring v†avg ∈ S.
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A direct way to extend the algorithm from the previous section would be to reduce the convex program

to the feasibilty problem with constraint set S′ = {v : f(v)≥OPT,v ∈ S}. However, this requires the

knowledge of OPT. If OPT is estimated, the errors in the estimation of OPT at all time steps t would

add up to the regret, thus this approach would tolerate very small Õ( 1√
t
) per step estimation errors.

In this section, we propose an alternate approach of combining objective value and distance from

constraints using a parameter Z, which will capture the tradeoff between the two quantities. We may

still need to estimate this parameter Z, however, Z will appear only in the second order regret terms,

so that a constant factor approximation of Z will suffice to obtain optimal order of regret bounds. This

makes the estimation task relatively easy and enable us to get better problem specific bounds. As a

specific example, for the online packing problem, we can use Z = OPT
(B/T )

so this approach requires only

a constant factor approximation of OPT and the resulting algorithm obtains the optimal competitive

ratio. (See Section 6 for more details.)

To illustrate the main ideas in our algorithm, let us start with the following assumption.

Assumption 1. Let OPTδ denote the optimal value of the offline problem that maximizes f( 1
T

∑
t vt)

with feasibility constraint relaxed to d( 1
T

∑
t vt, S)≤ δ. We are given a Z ≥ 0 such that that for all δ≥ 0,

OPTδ ≤OPT +Zδ. (6)

In fact, such a Z always exists, as shown by the following lemma.

Lemma 7. OPTδ is a non-decreasing concave function of the constraint violation δ, and its gradient at

δ= 0 is the minimum value of Z that satisfies the property (6). This gradient is also equal to the value

of the optimal dual variable corresponding to the distance constraint.

The proof of this lemma is provided in Appendix D. This fact is known for linear programs.

Below, we present an algorithm (Algorithm 2) for OSCP assuming we are given parameter Z as

in Assumption 1. This algorithm is based on the same basic ideas as the algorithm for the feasibility

problem in the previous section. Here, we linearize both objective and constraints using Fenchel duality,

and estimate the corresponding dual variables using online learning as blackbox. And, we use parameter

Z to combine objective with constraints. The resulting algorithm has very efficient per-step updates
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and does not require solving a (sample) convex program in any step, and we prove that it achieves the

regret bound stated in Theorem 1.

The regret of this algorithm (as stated in Theorem 1) scales with the value of Z, and it is desirable

to use as small a value of Z as possible. If such a Z is not known, in Appendix F we demonstrate how

we can approximate the optimal value of Z up to a constant factor by solving a logarithmic number of

sample convex programs overall.

Algorithm 2 Online convex programming

Initialize θ1,φ1.

for all t= 1, ..., T do

Choose option

v†t = arg maxv∈At−φt ·v− 2(Z +L)θt ·v.

Choose θt+1 by doing an OCO update for gt(θ) = θ ·v†t −hS(θ) over domain W = {‖θ‖∗ ≤ 1}.

Choose φt+1 by doing an OCO update for ψt(φ) =φ ·v†t − (−f)∗(φ) over domain U = {‖φ‖∗ ≤L}.

end for

A complete proof of Theorem 1, along with a more detailed theorem statement, is provided in

Appendix E. Here, we provide the proof for the simpler case of linear objective discussed in Section 2.

In this setting, each option in At is associated with a reward r in addition to the vector v. And, at

every time step t, the player chooses (r†t ,v
†
t), in order to maximize 1

T

∑
t r
†
t while ensuring v†avg ∈ S. ( We

will use r†avg to denote 1
T

∑
t r
†
t .) The proof for this special case will illustrate the main ideas required

for proving regret bounds for the OSCP problem, i.e., the more general problem with ‘objective plus

constraints’, over and above the techniques used in the previous section for the case of ‘only constraints’.

For this special case, Algorithm 2 reduces to the following:
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Algorithm 3 Linear objectives

Initialize θ1.

for all t= 1, ..., T do

Choose option

(r†t ,v
†
t) = arg max(r,v)∈At r− 2Zθt ·v.

Choose θt+1 by doing OCO update with gt(θ) = θ ·v†t −hS(θ), and domain W = {‖θ‖∗ ≤ 1}.

end for

Theorem 4. Given Z that satisfies Assumption 1, Algorithm 3 achieves the following regret bounds

for OSCP with linear objective, in RP model:

E[avg-regret1(T )] ≤ Z

T
·O(R(T ) +Q(T )) and

E[avg-regret2(T )] ≤ 1

T
·O(R(T ) +Q(T )).

Here, Q(T ) =O(‖1d‖
√
sT log(d)), s= maxv∈S maxj vj, and R(T ) denotes the OCO regret for gt(·) over

domain W .

Proof. Denote by (r∗t ,v
∗
t ) the choice made by the offline optimal solution to satisfy request At. Then,

E[r∗t ] = OPT, and E[v∗t ]∈ S,

where expectation is over At drawn uniformly at random from X1, . . . ,XT .

Lemma 8 upper bounds
∑

tE[2Zgt(θt)− r†t + r∗t ] by 2ZQ(T ) = 2ZO(||1d||
√
s log(d)T ), using exactly

the same line of argument as the proof of Lemma 6. Therefore, using E[r∗t ] = OPT, the expected average

reward obtained by the algorithm can be lower bounded as

E[r†avg]≥OPT + 2Z
T

∑
tE[gt(θt)]− 2Z

T
Q(T ).

As in the proof of Theorem 3, using Fenchel duality and OCO guarantees, it follows that d(v†avg, S)≤

1
T

∑
t gt(θt) + 1

T
R(T ), which gives,

E[r†avg]≥OPT + (2Z)E[d(v†avg, S)]− 2Z
T
R(T )− 2Z

T
Q(T ). (7)
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Now, we use Assumption 1 to upper bound the reward obtained by the algorithm in terms of OPT and

distance from set S. In particular, for δ :=E[d(v†avg, S)], since d(E[v†avg], S)≤E[d(v†avg, S)] = δ,

E[r†avg]≤OPTδ ≤OPT +Zδ= OPT +Z ·E[d(v†avg, S)]. (8)

Combining inequalities (7) and (8), we obtain

E[d(v†avg, S)]≤ 2
T
R(T ) + 2

T
Q(T ),

and from (7), using the fact that E[d(v†avg, S)]≥ 0, we get that

E[r†avg]≥OPT− 2Z
T
· (R(T ) +Q(T )) .

This gives the theorem statement. �

Lemma 8. E[
∑

t 2Zgt(θt)− r
†
t + r∗t ]≤O(Z‖1d‖

√
sT log(d)).

The proof of the above lemma follows exactly the same line of argument as the proof of Lemma 6. We

omit it for brevity.

6. Online stochastic packing

Recall that the online stochastic packing problem is a special case of the online stochastic CP with

linear objectives, with S = {y : y≤ B
T

1}. However, the performance of an algorithm for online stochastic

packing is typically measured by competitive ratio, which is the ratio of total expected reward obtained

by the online algorithm to the optimal solution or benchmark. The benchmarks in online packing are

defined as sum of rewards, where as we defined OPT as the average reward. Therefore, in our notation,

the competitive ratio for the online packing problem is given by
E[
∑
t r
†
t ]

TOPT
=

E[ 1T
∑
t r
†
t ]

OPT
. The competitive

ratio we obtain is 1−O(ε), for any ε > 0 such that min{B,TOPT} ≥ log(d)/ε2.

Another important difference is that for online packing the budget is not allowed to be violated at

all, while online CP allows a small violation of the constraint. A simple fix to make sure that budgets

are not violated is to simply stop whenever a budget constraint is breached.2 Another change we make

to the algorithm is that we use a slightly different function in the OCO algorithm. We will use

gt(θ) = (v†t −
B

T
1) ·θ
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over the domain ||θ||1 ≤ 1,θ ≥ 0. We use the Multiplicative Weight (MW) update algorithm as our

OCO algorithm, which provides strong multiplicative guarantees (refer to Lemma 4 and Corollary 2).

Finally, as with the previous algorithms, we state the algorithm assuming we are given the parameter

Z. We then show how to estimate Z to desired accuracy using only an O(ε2 log(1/ε)) fraction of samples

and solving an LP only once (in Lemma 12), assuming that min{B,TOPT} ≥ log(d)

ε2
.

We now state the algorithm below (Algorithm 4) for the online stochastic packing problem:

Algorithm 4 Online Packing

Initialize θ1 = 1
d+1

1, w1 = 1.

Initialize Z such that TOPT
B
≤Z ≤O(1)TOPT

B
.

for all t= 1, ..., T do

(r†t ,v
†
t) = arg max(r,v)∈At {r−Zθt ·v} .

If, for some j = 1, . . . , d,
∑

t′≤t v
†
t′ · ej ≥B then EXIT.

Update θt+1 using multiplicative weight update:

∀ j = 1..d,wt,j =wt−1,j(1 + ε)v
†
t ·ej−B/T

and

∀ j = 1..d,θt+1,j =
wt,j

1+
∑d
j′=1

wt,j′

end for

Strictly speaking, if we use the first few requests as samples to estimate Z, then we need to ignore

these requests, and bound the error due to this. However, since the number of samples required is only

O(ε2 log(1/ε)) fraction of all requests, this error is quite small relative to the guarantee we obtain, which

is a competitive ratio of 1−O(ε). We therefore ignore this error for the ease of presentation.

Let τ be the stopping time of the algorithm. Denote by (r∗t ,v
∗
t ) the choice made by the offline optimal

solution to satisfy request At. We begin with the following lemma which is similar to Lemma 6.

Lemma 9.

τ∑
t=1

E[r†t |Ft−1] ≥ τOPT +Z
τ∑
t=1

θt ·E[v†t −1
B

T
|Ft−1]−

τ∑
t=1

Q(t),

where Q(t) =Z||E[v∗t ]−E[v∗t |Ft−1]||+ |E[r∗t ]−E[r∗t |Ft−1]|.
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Proof. If At is drawn uniformly at random from X1, . . . ,XT , then E[r∗t ] = OPT, and E[v∗t ] ≤ B
T

1.

The algorithm chooses (r†t ,v
†
t) = arg max(r,v)∈At r−Z(θt ·v). By the choice made by the algorithm

r†t −Z(θt ·v†t) ≥ r∗t −Z(θt ·v∗t ),

E[r†t −Z(θt ·v†t)|Ft−1] ≥ E[r∗t |Ft−1]−Z(θt ·E[v∗t |Ft−1])

≥ E[r∗t ]−Z(θt ·E[v∗t ])−Q(t)

≥ OPT−Zθt ·
B1

T
−Q(t).

Summing above inequality for t= 1 to τ gives the lemma statement. �

Lemma 10.
τ∑
t=1

θt · (v†t −
B

T
1)≥B(1− ε− (1 + ε)

τ

T
)+− log(d+ 1)

ε
,

where (a)+ denotes max{a,0}.

Proof. Recall that gt(θt) = θt ·
(
v†t − B

T
1
)
, therefore the LHS in the required inequality is

∑τ

t=1 gt(θt).

We apply the regret bounds for the multiplicative weight update algorithm given by Corollary 2.

Now either τ < T (1−ε)
(1+ε)

, which means that the algorithm aborted due to constraint violation, i.e.,∑τ

t=1(v†t ·ej)≥B for some j at the stopping time τ . And, we have that
∑τ

t=1 gt(ej)≥B−
τB
T

. Corollary

2 (with M = 1,R=B/T ) guarantees that

τ∑
t=1

gt(θt) ≥ (1− ε)

(∑
≥0

gt(ej)

)
+ (1 + ε)

(∑
<0

gt(ej)

)
− log(d+1)

ε

≥ (1− ε)

(∑
t

gt(ej)

)
+ 2ε

(∑
<0

gt(ej)

)
− log(d+1)

ε

≥ (1− ε)
(
B− τB

T

)
− 2ε

τB

T
− log(d+1)

ε

= (1− ε)B− (1 + ε)
τB

T
− log(d+1)

ε

Or, τ ≥ T (1−ε)
(1+ε)

, in which case (1− ε− τ(1+ε)

T
)+ = 0, and the right hand side in the lemma statement

is equal to − log(d+1)

ε
. The inequality is trivially obtained from Corollary 2, which guarantees,

τ∑
t=1

gt(θt)≥−
log(d+ 1)

ε

�
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Now, we are ready to prove Theorem 2, which states that Algorithm 4 achieves a competitive ratio

of 1−O(ε), given min{B,TOPT} ≥ log(d)

ε2
for the online stochastic packing problem in RP model.

Proof of Theorem 2. Substituting the inequality from Lemma 10 in Lemma 9, we get

τ∑
t=1

E[r†t |Ft−1] ≥ τOPT +ZB
(

(1− ε− (1 + ε)
τ

T
)+
)
−Z log(d+ 1)

ε
−

τ∑
t=1

Q(t)

Now, using Z ≤O(1)TOPT
B

and B ≥ log(d)

ε2
, we get

Z
log(d+ 1)

ε
≤O(1)

TOPT

B

log(d+ 1)

ε
=O(ε)TOPT.

Also, Z ≥ TOPT
B

. Substituting in above,

τ∑
t=1

E[r†t |Ft−1] ≥ τOPT +
(

(1− ε− (1 + ε)
τ

T
)+
)
TOPT−O(ε)TOPT−

τ∑
t=1

Q(t)

Now, either τ ≥ T (1−ε)
(1+ε)

, in which case above gives

τ∑
t=1

E[r†t |Ft−1] ≥ (1− ε)
(1 + ε)

TOPT−O(ε)TOPT−
τ∑
t=1

Q(t)

= (1−O(ε))TOPT−O(ε)TOPT−
τ∑
t=1

Q(t)

Otherwise, (1− ε− (1 + ε) τ
T

)+ = (1− ε− (1 + ε) τ
T

), and from above we get,

τ∑
t=1

E[r†t |Ft−1] ≥ τOPT +
(

1− ε− (1 + ε)
τ

T

)
TOPT−O(ε)TOPT−

τ∑
t=1

Q(t)

= (1− ε)TOPT− ετOPT−O(ε)TOPT−
τ∑
t=1

Q(t)

= (1− ε)TOPT−O(ε)TOPT−
τ∑
t=1

Q(t).

Then, taking expectation on both sides, E[
∑τ

t=1 r
†
t ]≥ (1−O(ε))TOPT−E[

∑τ

t=1Q(t)].

Just like in the proof of Lemma 6, we can bound E[
∑τ

t=1Q(t)]≤ Z||1d+1||∞
√
sT log(d+ 1) which is

O(ε)TOPT, using the fact that for S = {y : y≤ B
T

1}, the parameter s= maxj,y∈S yj = B
T

, ||1d+1||∞ = 1,

and that Z ≤O(1)TOPT
B

, ε≥
√

log(d)

B
. This completes the proof. �

We now show how to compute a Z as required using the first O(ε2 log(1/ε)) requests as samples. For

convenience, let OPTsum := TOPT denote the optimum for the sum. We first state a lemma that relates

the optimum value of an offline packing instance to the optimum value on a sample of the requests.

The proof of this is along the lines of a similar lemma (Lemma 14) in Devanur et al. (2011b), and we

present the proof in Appendix G for the sake of completeness.



Agrawal and Devanur: Fast Algorithms for Online Stochastic Convex Programming
24 Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!)

Lemma 11. For all ρ∈ (0,1], there exists η=O
(√

log(d
ρ
)
)

such that for all δ ∈ (0,1], given a random

sample of δT requests, one can compute a quantity ˆOPT such that with probability 1− ρ,

1. ˆOPT≥OPTsum− η
√

OPTsum/δ.

2.
ˆOPT

1+η/
√
δB
≤OPTsum + η

√
OPTsum/δ.

Lemma 12. Given a random sample of O(ε2 log(1/ε)) fraction of requests, one can compute a quantity

Z such that with probability at least 1− ε2,

OPTsum

B
≤Z ≤ 9

2

OPTsum

B
.

Proof. We use Lemma 11 with ρ = ε2 and δ = 4η2ε2/ log(d). Then, from the assumption that

min{B,OPTsum} ≥ log(d)/ε2, we have that δ ≥ 4η2/OPTsum, and δ ≥ 4η2/B. Therefore, we get that

with probability at least 1− ε2,

ˆOPT ≥ OPTsum− η
√

OPTsum/δ

≥ OPTsum−OPTsum/2 = OPTsum/2.

Also,

ˆOPT ≤ (1 + η/
√
δB)(OPTsum + η

√
OPTsum/δ)

≤ 3

2
(OPTsum +

1

2
OPTsum)

≤ 9

4
OPTsum.

Therefore Z := 2 ˆOPT/B satisfies the conclusion of the lemma. Finally, note that δ = 4η2ε2/ log(d) =

O
(
ε2 log(d

ε
)/ log(d)

)
=O(ε2 log(1/ε)) . �

7. Stronger bounds for smooth functions

We show that when f is a strongly smooth function, and, instead of distance function, a strongly smooth

function is used to measure regret in constraint violation, then stronger regret bounds of O( logT
T

) can

be achieved in IID case.

More precisely, consider the following smooth version of OSCP.
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Definition 4. [Online Stochastic Smooth Convex Programming] Let f be a β-smooth con-

cave function. And, let h be a β-smooth convex function At time t, the algorithm needs to choose

v†t ∈At to minimize regret defined as

avg-regret1(T ) := f(v∗avg)− f(v†avg),

avg-regret2(T ) := h(v†avg).

Here, v∗avg = 1
T

∑T

t=1 v
∗
t ,v
†
avg = 1

T

∑T

t=1 v
†
t . Also, assume that there exist vt ∈ At for all t, such that

h( 1
T

∑
t vt) = 0.

Note that we do not require Lipschitz condition for f or h.

We provide two algorithms for this problem. The first algorithm is a simple extension of Algorithm

2. We show that, under certain technical conditions, this algorithm achieves stronger regret bounds

of Õ( logT
T

) in smooth case. Intuitively, this is because as discussed in Section 3, the dual of strongly

smooth functions is strongly convex, and for strongly convex/concave functions, stronger logarithmic

regret guarantees are provided by online learning algorithms. The second algorithm is a novel primal

algorithm based on Frank-Wolfe algorithm for solving smooth convex programms.

7.1. Primal-dual algorithm based on Algorithm 2

We make an additional assumption.

Assumption 2. Let ∇f and ∇g denote the set of gradients of functions f and g, respectively, on domain

[0,1]d, i.e.,

∇f = {∇f(x) :x∈ [0,1]d}, and ,

∇g = {∇g(x) :x∈ [0,1]d}.

Assume that the sets cl(∇f ) and cl(∇g) are convex and easy to project upon. Here cl(S) denotes the

closure of set S.

This assumption is true for many natural concave utility and convex risk functions, in particular,

for all separable smooth functions. Now, an algorithm similar to Algorithm 2 can be used for this
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problem. One change we make is that we perform online learning for gt and ψt on domain ∇g and

∇f , respectively, which is possible because from Assumption 2, these domains are convex and easy to

project upon.

Algorithm 5 Algorithm for smooth case based on Algorithm 2

Initialize θ1,φ1.

for all t= 1, . . . , T do

Choose vector

v†t = arg maxv∈At−φt ·v− 2Zθt ·v.

Choose θt+1 by doing an OCO update for gt(θ) = θ ·v†t −hS(θ) over domain ∇g.

Choose φt+1 by doing an OCO update for ψt(φ) =φ ·v†t − (−f)∗(φ) over domain ∇f .

end for

Theorem 5. Under Assumption 2, and given Z that satisfies Assumption 1, Algorithm 5 achieves the

following regret for the Online Smooth Convex Programming problem, in the stochastic IID input model.

E[avg-regret1(T )] = Z ·O
(
C log(T )

T

)
,

E[avg-regret2(T )] = O
(
C log(T )

T

)
,

where C = β||1d||2.

Proof. The proof follows from the proof of Theorem 1 on observing that stronger OCO regret bounds

of O(log(T )) are available for strongly convex functions. More precisely, in case of IID inputs, the proof

of Theorem 1 can be followed as it is to achieve the following regret bounds. (These are same as in the

detailed statement of Theorem 1, provided in Appendix E, but with Q(T ) = 0 due to IID assumption.)

E[avg-regret1(T )]≤ Z

T
·O(R(T )) +O(

R′(T )

T
),

E[avg-regret2(T )]≤ 1

T
·O (R(T )) +

1

Z
O(
R′(T )

T
).

Here R(T ) is OCO regret for the problem of maximizing concave function gt(θ) = θ ·vt−h∗(θ), R′(T )

is OCO regret for the problem of maximizing concave function ψt(φ) =φ · vt− (−f)∗(φ). Now, using
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Lemma 2, given that h and f are β-strongly smooth, gt and ψt are 1
β
-strongly concave over domain

∇g and ∇f respectively. Also, the gradient of these functions is some v ∈ [0,1]d, so that the norms of

gradients are bounded by ‖1d‖.

Therefore, using online learning guarantees for smooth functions from Lemma 5, along with G =

‖1d‖,H = 1/β, we get R(T ) =O(‖1d‖2β logT ), and R′(T ) =O(‖1d‖2β logT ). The theorem statement

is obtained by substituting these OCO regret bounds in above. �

In above, observe that Assumption 2 was required because Lemma 2 provided strong convexity of

gt(·) and ψt(·) only on the domains ∇g and ∇f , respectively. We conjecture that it is possible to remove

this assumption to get similar regret guarantees for the smooth case.

7.2. Primal algorithm based on Frank-Wolfe algorithm

For simplicity let us first consider the problem with only objective function and no constraints. The

overall goal of online algorithm is to choose v†t ∈ At at time t in order to maximize f(v†avg), where

v†avg = 1
T

∑T

t=1 v
†
t , and f is β-smooth concave function. We compare to the optimal solution of the

(offline) expected value instance where the optimal solution solves

max
{vA∈A}

EA[f(vA)]

Let v∗t ∈At denotes the vector chosen from set At by the optimal solution, and let v∗avg =E[v∗t ], where

expectation is over randomly (i.i.d.) generated set At. Regret is defined as

avg-regret1(T ) = f(
1

T

∑
t

v∗t )− f(
1

T

T∑
t=1

v†t).

And, expected regret

E[avg-regret1(T )] =E[f(
1

T

∑
t

v∗t )− f(
1

T

T∑
t=1

v†t)]≤ f(v∗avg)−E[f(v†avg)].

For this special case, we obtain the following primal algorithm based on Frank-Wolfe algorithm.
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Algorithm 6 Algorithm for smooth case based on Frank-Wolfe (no constraints)

for all t= 1, . . . , T do

Let xt = 1
t−1

∑t−1

τ=1 v
†
τ . Use arbitrary x1.

Choose vector

v†t = arg maxv∈At∇f(xt) ·v

end for

Theorem 6. Algorithm 6 achieves the following regret bound for Online Smooth Convex Programming

in the IID model of stochastic inputs:

E[avg-regret1(T )] =O

(
β log(T )

T

)
.

Proof. Let ∆t := f(v∗avg)−E[f(xt)], where expectation is over random (i.i.d.) generation of sets At.

We prove that E[∆T ]≤ β log(2T )

2T
. (The base of the log is 2.) This will imply the required expected regret

bound. By concavity,

f(v∗avg) ≤ f(xt) +∇f(xt) · (v∗avg−xt).

Now, E[v∗t |Ft−1] = v∗avg, where expectation is over randomly (i.i.d.) generated set At, given any history

Ft−1. Also, by definition, xt is fixed by the history Ft−1. Therefore, above implies

f(v∗avg) ≤ E[(f(xt) +∇f(xt) · (v∗t −xt)) |Ft−1]

Now, since v†t was chosen from set At to maximize ∇f(xt) ·v†t , we have that

f(v∗avg) ≤ E[f(xt) +∇f(xt) · (v†t −xt)|Ft−1]

= f(xt) +∇f(xt) · (E[v†t |Ft−1]−xt). (9)

Now, xt+1 =xt + 1
(t+1)

(v†t −xt). Using β-smoothness of f(·), we have that

f(xt+1) ≥ f(xt) +
1

(t+ 1)
∇f(xt) · (v†t −xt)−

β

2(t+ 1)2
.
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Taking conditional expectation on both sides, and substituting from Equation (9),

E[f(xt+1)|Ft−1] ≥ f(xt) +
1

(t+ 1)
∇f(xt) · (E[v†t |Ft−1]−xt)−

β

2(t+ 1)2

≥ f(xt) +
1

(t+ 1)
(f(v∗avg)− f(xt))−

β

2(t+ 1)2
.

Subtracting left and right hand side from f(v∗avg), and taking expectations, we get

∆t+1 ≤ ∆t−
1

(t+ 1)
∆t +

β

2(t+ 1)2

=
t

(t+ 1)
∆t +

β

2(t+ 1)2
. (10)

Recall that we wish to show that ∆t ≤ β log(2t)/2t. The rest of the proof is by induction on t. For the

base case, we note that we can still use (10) with t= 0 and an arbitrary x1 which is used to choose v†1.

This gives us that ∆1 ≤ β/2. The inductive step for t+1 follows from (10) and the inductive hypothesis

for t if

t

(t+ 1)
· β log(2t)

2t
+

β

2(t+ 1)2
≤ β log(2(t+ 1))

2(t+ 1)

⇔ log(t) +
1

t+ 1
≤ log(t+ 1)

⇔ 1

t+ 1
≤ log(1 + 1

t
).

The last inequality follows from the fact that for any a > 0, log(1 + a)> a
1+a

, by setting a= 1/t. This

completes the induction. Therefore, ∆T = f(v∗avg)− f(xT ) = f(v∗avg)− f(v†avg)≤ β log(2T )

2T
. �

For the Smooth online stochastic CP problem, the algorithm needs to be modified using the parameter

Z to combine constraints and objective.

Algorithm 7 Frank-Wolfe based algorithm for smooth functions

for all t= 1, . . . , T do

Let xt = 1
t−1

∑t−1

τ=1 v
†
τ . Use arbitrary x1.

Choose vector

v†t = arg maxv∈At∇f(xt) ·v−Z(∇h(xt) ·v)

end for
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Appendix A: Concentration Inequalities

Lemma 13. Hoeffding (1963), Theorem 4

Let X = (x1, . . . , xN) be a finite population of N real points, X1, . . . ,Xn denote a random sample

without replacement from X , and Y1, . . . , Yn denote a random sample with replacement from X . If

` :R→R is continuous and convex, then

E[`(
n∑
t=1

Xt)]≤E[`(
n∑
t=1

Yt)].

Lemma 14. Hoeffding (1963) Let X = (x1, . . . , xN) be a finite population of N real points, X1, . . . ,Xn

denote a random sample without replacement from X . Let a= min1≤i≤N xi, b= max1≤i≤N xi and µ=

1
N

∑N

i=1Xi. Then, for all ε > 0,

Pr

(
1

n

n∑
i=1

Xi−µ≥ ε

)
≤ exp

(
− 2nε2

(b− a)2

)
.

Lemma 15. (Multiplicative version) Let X = (x1, . . . , xN) be a finite population of N real points, and

X1, . . . ,Xn denote a random sample without replacement from X . Let a= min1≤i≤N xi, b= max1≤i≤N xi

and µ= n
N

∑N

i=1Xi. Then, for all ε > 0,

Pr

(
|
n∑
i=1

Xi−µ| ≥ εµ

)
≤ exp

(
− µε2

3(b− a)2

)
.

Corollary 3. (to Lemma 15) Let X = (x1, . . . , xN) be a finite population of N real points, and

X1, . . . ,Xn denote a random sample without replacement from X . Let a= min1≤i≤N xi, b= max1≤i≤N xi

and µ= n
N

∑N

i=1Xi. Then, for all ρ> 0, with probability at least 1− ρ,

|
n∑
i=1

Xi−µ| ≤ (b− a)
√

3µ log(1/ρ)

Proof. Given ρ> 0, use Lemma 15 with

ε= (b− a)

√
3 log(1/ρ)

µ
,

to get that the probability of the event |
∑n

i=1Xi−µ|> εµ= (b− a)
√

3µ log(1/ρ) is at most

exp

(
− µε2

3(b− a)2

)
= exp(− log(1/ρ)) = ρ.

�

Lemma 16. Kleinberg et al. (2008), Babaioff et al. (2012), Badanidiyuru et al. (2013) Consider a

probability distribution with values in [0,1], and expectation ν. Let ν̂ be the average of N independent

samples from this distribution. Then, with probability at least 1− e−Ω(γ), for all γ > 0,

|ν̂− ν| ≤ rad(ν̂,N)≤ 3rad(ν,N), (11)

where rad(ν,N) =
√

γν
N

+ γ
N
. More generally this result holds if X1, . . . ,XN ∈ [0,1] are random variables,

Nν̂ =
∑N

t=1Xt, and Nν =
∑N

t=1 E[Xt|X1, . . . ,Xt−1].
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Appendix B: Preliminaries

B.1. Strong smoothness/Strong convexity duality.

Proof of Lemma 2 Given h is convex and β-strong smooth with respect to norm || · ||. We prove

that h∗, defined as

h∗(θ) = max
y∈[0,1]d

{y ·θ−h(y)},

is 1
β
-strongly convex with respect to norm || · ||∗ on domain ∇h = {∇h(x) :x∈ [0,1]d}.

For any θ,φ∈∇h, θ=∇h(z),φ=∇h(x) for some z,x∈ [0,1]d. And, therefore,

h∗(θ)−h∗(φ)−x · (θ−φ) = h∗(∇h(z))−h∗(∇h(x))−x · (∇h(z)−∇h(x))

= z · ∇h(z)−h(z)− (x · ∇h(x)−h(x))−x · (∇h(z)−∇h(x))

= z · ∇h(z)−h(z) +h(x)−x · ∇h(z)

= (z−x) · (∇h(z)−∇h(x))− (h(z)−h(x)−∇h(x)(z−x))

= (z−x) · (∇h(z)−∇h(x))− g(z−x), (12)

where we define

g(y) := h(x+y)−h(x)− (∇h(x)) ·y.

Now, for any ϕ,

g∗(ϕ) := sup
y
ϕ ·y− g(y)

= ϕ ·y∗− g(y∗)

where y∗ is such that ϕ=∇g(y∗) =∇h(x+y∗)−∇h(x). Therefore, for ϕ=∇h(z)−∇h(x), y∗ = z−x,

so that,

g∗(∇h(z)−∇h(x)) = (∇h(z)−∇h(x)) · (z−x)− g(z−x).

Substituting in (12), we get

h∗(θ)−h∗(φ)−x · (θ−φ)

= g∗(∇h(z)−∇h(x))[Nikhil:] Why is this?

= g∗(θ−φ)

By smoothness assumption, g(y)≤ β
2
||y||2. This implies that g∗(θ)≥ 1

2β
||θ||2∗ because the conjugate of

β times half squared norm is 1/β times half squared of the dual norm. This gives

h∗(θ)−h∗(φ)−x · (θ−φ)≥ 1

2β
‖θ−φ‖2∗.

This completes the proof. �
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B.2. Online learning.

A popular algorithm for OCO is the online mirror descent (OMD) algorithm. The OMD algorithm with

regularizer R(θ) uses the following fast update rule to select player’s decision θt+1 for this problem:

θt+1 = arg max
θ∈W

1

η
R(θ)−θ ·yt+1, where

yt+1 = yt− zt, and zt ∈ ∂gt(θt) (13)

The maximization problem in above is particularly simple when domain W is of form ||θ|| ≤ γ, and

this is the main use case of this algorithm in this paper. Further, for domain W of form ||θ||2 ≤L, and

R(θ) = ||θ||22, this simply becomes online gradient descent. OMD has the following guarantees for this

problem:

Lemma 17. Shalev-Shwartz (2012)

R(T )≤ D

η
+ ηTG2,

where D = (maxθ′′ R(θ′′)−minθ′∈W R(θ′)), 1
T

∑T

t=1 ||zt||2 ≤ G for zt ∈ ∂gt(θt), and R is a 1-strongly-

convex function with respect to norm || · ||∗.

Now, to derive Corollary 1, observe that for W = {||θ||2 ≤L}, Euclidean regularizer R(θ) = ||θ||22 gives

R(T )≤LG
√
T , with G2 = d≥ 1

T

∑T

t=1 ||zt||22, when zt ∈ [0,1]d. And, for W = {||θ||1 ≤L,θ> 0}, entropic

regularizer R(θ) =
∑

i θi logθi gives R(T ) ≤ G
√
LT log(d), where G2 = 1 ≥ 1

T

∑T

t=1 ||zt||2∞, when zt ∈

[0,1]d.

Appendix C: Sampling without replacement bounds for Section 4

Proof of Equation (5). Let ω=E[wt,σ] =E[v∗t ]. To bound the quantity E[||wt,π−ω||], note that wt,π

can be viewed as the average of t vectors sampled uniformly without replacement from the ground set

{vX1
, . . . ,vXT } of T vectors.

Now, let wt,π,j denote the jth component of vector wt,π. Then, by applying concentration bounds

from Corollary 3, we get that

|wt,π,j −ωj| ≤
√

3ωj log(d/ρ)

t
,

with probability 1− ρ
d

for all ρ∈ (0,1). From the condition ω= E[v∗t ]∈ S, we have ωj ≤maxv∈S vj ≤ s.

Taking union bound over d, for every ρ∈ (0,1), we have that with probability 1− ρ,

‖wt,π −ω‖ ≤ ‖1d‖
√

3s log(d/ρ)

t
.

And, integrating over ρ, we obtain,

E[‖wt,π −ω‖]≤O(‖1d‖
√
s log(d)

t
).



Agrawal and Devanur: Fast Algorithms for Online Stochastic Convex Programming
Article submitted to Operations Research; manuscript no. (Please, provide the manuscript number!) 33

High Probability bounds. For high probability bounds, firstly from Equation (3) and (4),

∑
t

E[gt(θt)|Ft−1] ≤
∑
t

‖E[v∗t |Ft−1]−E[v∗t ]‖

=
∑
t

‖wt,π −ω‖,

for uniform at random orderings π.

Then, as in above, using Corollary 3 we obtain that for every t, with probability 1− ρ
T

||wt,π −ω|| ≤ ‖1d‖
√

3s log(dT/ρ)

t
.

Taking union bound over t= 1, . . . , T , and summing over t we obtain that with probability 1− ρ,

∑
t

E[gt(θt)|Ft−1] ≤
∑
t

‖wt,π −ω‖

= O(‖1d‖
√
T log(dT/ρ)).

Now, using Lemma 16 for dependent random variables Xt = gt(θt), with |Xt|= |θt · v†t − hS(θt)| ≤

‖1d‖, we have, ∑
t

gt(θt)−
∑
t

E[gt(θt)|Ft−1]≤O(‖1d‖
√
T log(1/ρ))

with probability at least 1− ρ.

Combining the above observations, we obtain that with probability 1− ρ,

∑
t

gt(θt)≤O(‖1d‖
√
T log(dT/ρ)).

Appendix D: Proof of Lemma 7

The offline optimal solution needs to pick v∗t ∈ Conv(Xt) to serve request type Xt, where Conv(Xt)

denotes the convex hull of set Xt. Therefore, OPTδ is defined as

OPTδ :=
max{vt∈Conv(Xt)} f( 1

T

∑
t vt)

d( 1
T

∑
t vt, S)≤ δ

= min
λ≥0

max
{x= 1

T

∑
t vt,vt∈Conv(Xt)}

{f(x)−λd(x, S) + δλ}

= min
λ≥0

max
{x= 1

T

∑
t vt,vt∈Conv(Xt)}

min
||φ||∗≤L,||θ||∗≤1

{f∗(φ)−φ ·x−λθ ·x+λhS(θ) + δλ}

= min
λ≥0,||φ||∗≤L,||θ||∗≤1

max
{x= 1

T

∑
t vt,vt∈Conv(Xt)}

{f∗(φ)−φ ·x−λθ ·x+λhS(θ) + δλ}

= min
λ≥0,||φ||∗≤L,||θ||∗≤1

{
f∗(φ) +λhS(θ) +

1

T

T∑
t=1

hConv(Xt)(−φ−λθ) + δλ

}
(14)
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where, recall that for any convex set X, hX(θ) was defined as hX(θ) := maxv∈X θ ·v. Because a linear

function is maximized at a vertex of a convex set, hConv(Xt)(−φ− λθ) is same as hXt(−φ− λθ). This

allows us to rewrite the expression for OPTδ as

OPTδ = min
λ≥0,||φ||∗≤L,||θ||∗≤1

{ f∗(φ) +λhS(θ) +
1

T

T∑
t=1

hXt(−φ−λθ) + δλ } (15)

From above, it is clear that OPTδ is a non-decreasing concave function of δ, with gradient as λ∗(δ)≥ 0,

where λ∗(δ) is the optimal dual variable corresponding to the distance constraint. And,

lim
δ→0

OPTδ −OPT

δ
= λ∗

where λ∗ is the optimal dual variable for OPT (i.e., the case of δ= 0). This proves the lemma.

Appendix E: Proof of Theorem 1

We provide proof of a more detailed theorem statement.

Theorem 7. Given Z that satisfies Assumption 1, Algorithm 2 achieves the following regret bounds

for online stochastic CP, in RP model:

E[avg-regret1(T )]≤ (Z+L)

T
·O (R(T ) +Q(T )) +O(R

′(T )

T
),

E[avg-regret2(T )]≤ 1
T
·O (R(T ) +Q(T )) + 1

(Z+L)
O(R

′(T )

T
),

where Q(T ) = O(||1d||
√
sT log(d)), R′(T ) is the regret bound for OCO on ψt(·), R(T ) is the regret

bound for OCO on gt(·). And, s≤ 1 is the coordinate-wise largest value a vector in S can take.

Then, substituting OCO regret bounds from Corollary 1 gives the statement of Theorem 1.

Proof. Denote by (v∗t ) the choice made by the offline optimal solution to satisfy request At. Then,

f(E[v∗t ])≥OPT, and E[v∗t ]∈ S,

where expectation is over At drawn uniformly at random from X1, . . . ,XT .

Lemma 18 provides

f(E[v∗t ]) +
1

T

∑
t

E[ψt(φt) + 2(Z +L)gt(θt)] ≤ (Z +L)
Q(T )

T

where Q(T ) =O(||1d||
√
s log(d)T ). Using Fenchel duality and OCO guarantees, it follows that

min
||θ||∗≤1

1

T

∑
t

gt(θ) = d(
1

T

∑
t

v†t , S)

≤ 1

T

∑
t

gt(θt) +
1

T
R(T ),

min
||φ||∗≤L

ψt(φ) =−f(
1

T

∑
t

v†t)≤
1

T

∑
t

ψt(θt) +
1

T
R′(T ).
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Then, using above observations, along with f(E[v∗t ])≥OPT, we obtain

OPT−E[f(
1

T

∑
t

v†t)] + 2(Z +L)E[d(
1

T

∑
t

v†t , S)]

≤ 2(Z +L)

T
(Q(T ) +R(T ))− 1

T
R′(T ).

This gives

E[f(
1

T

∑
t

v†t)] ≥ OPT + 2(Z +L)E[d(
1

T

∑
t

v†t , S)]− 2(Z +L)

T
(Q(T ) +R(T ))− 1

T
R′(T ) (16)

Now, we use Assumption 1, to upper bound the reward obtained by the algorithm in terms of OPT and

distance from set S. In particular, we obtain that for δ :=E[d( 1
T

∑
t v
†
t , S)],

E[f(
1

T

∑
t

v†t)] ≤ f(E[
1

T

∑
t

v†t ])

≤ OPTδ

≤ OPT +Zδ

= OPT +Z ·E[d(
1

T

∑
t

v†t , S)]. (17)

Combining the above two inequalities, we obtain

E[d(
1

T

∑
t

v†t , S)]≤ 2

T
(R(T ) +Q(T )) +

1

(Z +L)
R′(T ).

And, from (16) (using E[d( 1
T

∑
t v
†
t , S)]≥ 0),

E[f(
1

T

∑
t

v†t)] ≥ OPT− 2(Z +L)

T
· (R(T ) +Q(T ))− R

′(T )

T
. (18)

This gives the theorem statement.

�

Lemma 18.

f(E[v∗t ]) +
1

T

∑
t

E[ψt(φt) + 2(Z +L)gt(θt)] ≤
1

T
(Z +L)O(||1d||

√
sT log(d)).

Proof. On the same lines as the proof for BwC, we can prove:

ψt(φt) + 2(Z +L)gt(θt) = φ ·v†t − (−f)∗(φ) + 2(Z +L)(θt ·v†t −hS(θt))

≤ φ ·v∗t − (−f)∗(φ) + 2(Z +L)(θt ·v∗t −hS(θt)).

E[ψt(φt) + 2(Z +L)gt(θt)|Ft−1] ≤ φt ·E[v∗t |Ft−1]− (−f)∗(φt) + 2(Z +L)(θt ·E[v∗t |Ft−1]−hS(θt))

≤ −f(E[v∗t ]) +φt · (E[v∗t |Ft−1]−E[v∗t ]) + 2(Z +L)θt · (E[v∗t |Ft−1]−E[v∗t ]),

where the last inequality uses φt ·E[v∗t ]− (−f)∗(φt)≤−f(E[v∗t ]) (using Fenchel duality) and θt ·E[v∗t ]−
hS(θt) ≤ d(E[v∗t ], S) = 0. Then, as in proof of Lemma 6, E[

∑
t ||E[v∗t |Ft−1] − E[v∗t ]||] can be upper

bounded by O(
√
||1d||sT log(d)). Using this along with observation that ||φt||∗ ≤ L, ||θt||∗ ≤ 1, we get

the desired lemma statement. �
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Appendix F: Estimating the parameter Z

Let Z∗ denote the minimum value of Z that satisfies the property in Equation (6). As discussed in the

proof of Lemma 7, Z∗ = λ∗, the value of optimal dual variable corresponding to feasibility constraint.

To obtain low regret bounds, ideally we would like to use Z =Z∗ in Algorithm 2, which would provide

the minimum possible regret bound of O((Z∗+L)
√

C
T

) in objective according to Theorem 1. The regret

in constraints does not depend on Z. However, in the absence of knowledge of Z∗, we need to obtain

a good enough approximation. Following lemma provides a relaxed condition to be satisfied by Z in

order to obtain the same order of regret bounds, as those obtained with Z =Z∗.

Lemma 19. Assume that Z ≥ 0 satisfies the following property, for all δ≥ 3γ where γ = ||1d||
√

log(dT )

T
,

OPTδ −OPT2γ

δ
≤Z =O(Z∗+L).

Then, Algorithm 2 using such a Z will achieve an expected regret bound of O((Z∗+L)γ) in objective,

and O(γ) in constraints.

To compare with Theorem 1, note that γ =O(
√

C log(T )

T
), therefore, using such a Z degrades the regret

bounds by only an O(
√

log(T )) factor.

Proof. Recall that in the proof of Theorem 1, the condition OPTδ ≤ OPT + Zδ was used in the

following way. We had the inequality,

OPTE[d(v
†
avg,S)] ≥ E[f(v†avg)]

≥ OPT + 2(Z +L)E[d(v†avg, S)]− `(T ), (19)

where `(T ) =O((Z+L)
√

C
T

). Then, we applied OPTE[d(v
†
avg,S)] ≤OPT+ZE[d(v†avg, S)], to obtain OPT+

ZE[d(v†avg, S)]≥OPT + 2(Z +L)E[d(v†avg, S)]− `(T ), yielding E[d(v†avg, S)]≤ 1
(Z+L)

O(`(T )) =O(
√

C
T

).

Now, we will show that it suffices to have Z ≥ OPTδ−OPT2γ

δ
, for δ > 3γ to obtain the given regret

bounds.

We first bound E[avg-regret2(T )] = E[d(v†avg, S)]. Starting with Equation 19, observe that if

E[d(v†avg, S)]≤ 3γ, then the distance is bounded by O(γ) as required anyway, therefore, assume that δ :=

E[d(v†avg, S)]≥ 3γ. Then, from the given property of Z we have OPTE[d(v
†
avg,S)] = OPTδ ≤OPT2γ +Zδ=

OPT2γ +ZE[d(v†avg, S)]. Substituting back in Equation (19), we get

OPT2γ +ZE[d(v†avg, S)] ≥ OPT + 2(Z +L)E[d(v†avg, S)]− `(T )

which gives

(Z +L)E[d(v†avg, S)] ≤ `(T ) + OPT2γ −OPT

≤ `(T ) + 2Z∗γ

= O((Z +L)γ) + 2Z∗γ
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Then, using Z =O(Z∗+L), we get

E[avg-regret2(T )] = E[d(v†avg, S)]

= O(γ) =O(

√
C log(T )

T
).

The bound on E[avg-regret1(T )] depends only on the upper bound on Z used, and Z = O(Z∗ + L)

makes this regret bound to be O((Z∗+L)
√

C
T

). �

Next, we provide method for estimating a Z that satisfies the property stated in Lemma 19. Define

ˆOPT
δ
(n) =

max{vt∈Conv(At)} f( 1
n

∑n

t=1 vt)
d( 1

n

∑n

t=1 vt, S)≤ δ
(20)

with ˆOPT(n) denoting ˆOPT
δ
(n) for δ = 0. We will divide the timeline into phases of size

1,1,21,22, ....,2r, . . .. Note that phase r≥ 2 consists of Tr = 2r−2 time steps, and there are Tr time steps

before phase r. The first phase of a single step, we make an arbitrary choice. Then, in every phase r≥ 2,

we will rerun the algorithm, using Z constructed using observations from the previous Tr time steps as

Z :=
( ˆOPT

4γ
(Tr)− ˆOPT

γ
(Tr))

γ
+ 2L (21)

with γ = ||1d||
√

log(dTr)

Tr
.

We prove the following lemma regarding the estimate Z used in above. Here we use the observa-

tion that in RP model, the first n time steps provide a random sample of observations from the T

observations.

Lemma 20. For all ρ> 0 and for all natural numbers n, let γ = ||1d||
√

log(d/ρ)

n
, and

Z :=
( ˆOPT

4γ
(n)− ˆOPT

γ
(n))

γ
+ 2L.

Then, for all δ > 3γ, with probability 1−O(ρ),

(OPTδ −OPT2γ)

δ
≤Z ≤O(L+Z∗).

The proof of above lemma is provided later. We now state the regret bounds for Algorithm 8.

Theorem 8. Algorithm 8 has an expected regret of Õ(
√

C
T

) in the objective and (Z∗ + L)Õ(
√

C
T

) in

the constraints.

Proof. For phase r≥ 2, using n= 2r−2 = Tr, the number of time steps in phase r, and ρ= 1
T2
r

, from

Lemma 20 we obtain that with probability 1−O( 1
T2
r

), Z available to phase r satisfies the property

required by Lemma 19 (with T substituted by Tr), which gives the following regret bounds for phase

r: let v†avg(r) be the average of played vectors in the Tr time steps of phase r. Let Fr−1 denote the
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history till phase r− 1. Then, with probability 1−O( 1
T2
r

) the history Fr−1 is such that in phase r the

regret in distance is bounded by E[d(v†avg(r), S)|Fr−1]≤ Õ(
√

C
Tr

). With remaining probability O( 1
T2
r

),

the distance can be at most Tr||1d||. Let v†avg denote the average of played vectors from the entire period

of T time steps. Then, we get that total regret,

E[d(v†avg, S)] ≤ ‖1d‖
T

+

log(T )+1∑
r=2

Tr
T
E[d(v†avg(r), S)]

≤ ‖1d‖
T

+

log(T )+1∑
r=2

Tr
T
Õ(

√
C

Tr
+
Tr||1d||
T 2
r

)

= Õ(

√
C

T
).

Similarly, we obtain bounds on regret in the objective,

OPT−E[f(v†avg)] ≤ 1

T
+

log(T )+1∑
r=2

Tr
T

(OPT−E[f(v†avg(r))])

≤ 1

T
+

log(T )+1∑
r=2

Tr
T

(Z∗+L)Õ(

√
C

Tr
+
Tr||1d||
T 2
r

)

= (Z∗+L)Õ(

√
C

T
).

�

Proof of Lemma 20. From Lemma 7, OPTδ is concave in δ, therefore, for all δ > 3γ

(OPTδ −OPT2γ)

δ
≤ (OPTδ −OPT2γ)

δ− 2γ

≤ (OPT3γ −OPT2γ)

γ
.

So, it suffices to prove that
(OPT3γ −OPT2γ)

γ
≤Z ≤O(L+Z∗).

In Lemma 22 and Lemma 23, we prove that for every δ≥ γ, with probability 1−O(ρ)

ˆOPT
δ

+Lγ ≥ OPTδ−γ ,

OPTδ +Lγ ≥ ˆOPT
δ−γ

(22)

Using above for δ= 4γ, and δ= 2γ, respectively, we get

Z :=
( ˆOPT

4γ
(n)− ˆOPT

γ
(n))

γ
+ 2L

≥ (OPT3γ −OPT2γ)

γ
.

In Lemma 24, we prove that for any δ≥ γ,

ˆOPT
δ
≤OPT +O(δ(Z∗+L)) (23)
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Using this along with ˆOPT
γ
≥OPT−Lγ from the first inequality in Equation (22), we get

Z =
ˆOPT

4γ
− ˆOPT

γ

γ

≤ (OPT + 4γO(Z∗+L))− (OPT−Lγ)

γ

= O(Z∗+L).

This completes the proof. �

Lemma 21. Given fixed {vt}Tt=1, and a vector µ, for all ρ> 0 and n∈ [T ], let γ = ||1d||
√

log(d/ρ)

n
. Then

for a uniformly random permutation over 1, . . . , T , with probability 1−O(ρ), the following holds for the

first n time steps.

‖ 1

n

n∑
t=1

vt−
1

T

T∑
t=1

vt‖ ≤ γ,∣∣∣∣∣ 1n
n∑
t=1

hAt(µ)− 1

T

T∑
t=1

hAt(µ)

∣∣∣∣∣≤ γ‖µ‖∗.
Proof. The first inequality is obtained by simple application of Chernoff-Hoeffding bounds (Lemma

14) for every coordinate vt,j, which gives∣∣∣∣∣ 1n
n∑
t=1

vt,j −
1

T

T∑
t=1

vt,j

∣∣∣∣∣≤
√

log(d/ρ)

n
,

with probability 1 − O(ρ/d). Then taking union bound over the d coordinates, we get the required

inequality.

The second inequality follows using Chernoff-Hoeffding bounds (Lemma 14) for bounded random

variables Yt = hAt(µ), where |Yt|= |hAt(µ)| ≤ ||µ||∗ · ||1d|| (from the definition of the dual norm). This

gives with probability 1−O(ρ),∣∣∣∣∣ 1n
n∑
t=1

hAt(µ)− 1

T

T∑
t=1

hAt(µ)

∣∣∣∣∣ = | 1
n

n∑
t=1

(Yt−E[Yt])|

≤ (||µ||∗ · ||1d||)
√

log(1/ρ)

n

≤ ||µ||∗γ.

�

Lemma 22. For all ρ> 0 and n∈ [T ], let γ = ||1d||
√

log(d/ρ)

n
. For all δ≥ γ, with probability 1−O(ρ),

ˆOPT
δ
(n)≥OPTδ−γ −Lγ.

Proof. To prove ˆOPT
δ
(n)≥OPTδ−γ −Lγ, we prove that there exists a feasible primal solution of

ˆOPT
δ
(n) that is at most γ distance from the optimal primal solution of OPTδ−γ . Then, the lemma

follows from the L-Lipschitz property of f .
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Let {vt}Tt=1 be the optimal primal solution for OPTδ−γ , so that d( 1
T

∑T

t=1 vt, S)≤ δ− γ. Then,

d(
1

n

n∑
t=1

vt, S) ≤ || 1
n

n∑
t=1

vt−
1

T

T∑
t=1

vt||+ d(
1

T

T∑
t=1

vt, S)

≤ γ+ (δ− γ) = δ,

where we used the concentration bouds from Lemma 21 to bound || 1
n

∑n

t=1 vt−
1
T

∑T

t=1 vt|| by γ. There-

fore, {vt}nt=1 is a primal feasible solution of ˆOPT
δ
(n) with objective value f( 1

n

∑n

t=1 vt)≥ f( 1
T

∑T

t=1 vt)−
L|| 1

n

∑n

t=1 vt −
1
T

∑T

t=1 vt|| ≥ f( 1
T

∑T

t=1 vt) − Lγ = OPTδ−γ − Lγ. Therefore, ˆOPT
δ
≥ f( 1

n

∑n

t=1 vt) ≥
OPTδ−γ −Lγ. �

Algorithm 8 Algorithm for online CP with Z estimation

Choose any option in the first step.

for all phases r= 2, ..., log(T ) + 1 do

COMPUTE Z using observations in steps 1 to Tr = 2r−2 as

Z =
( ˆOPT

4γ
(Tr)− ˆOPT

γ
(Tr))

γ
+ 2L

with γ = ||1d||
√

log(dTr)

Tr
.

Run Algorithm 2 for Tr steps t= {Tr + 1, . . . ,2Tr} of phase r using Z as computed above.

end for

Lemma 23. For all ρ> 0 and n∈ [T ], let γ = ||1d||
√

log(d/ρ)

n
. For all δ≥ γ, with probability 1−O(ρ),

OPTδ +Lγ ≥ ˆOPT
δ−γ

(n).

Proof. Define Sδ as the set {v : d(v, S)≤ δ}. Then, using the derivation in Equation (15), we have

that

OPTδ = min
λ≥0,||φ||∗≤L,||θ||∗≤1

{ f∗(φ) +λhSδ(θ) +
1

T

T∑
t=1

hAt(−φ−λθ) } .

Let λ∗, θ∗, φ∗ be the optimal dual solutions in above. Then,

ˆOPT
δ−γ

(n) = min
λ≥0,||φ||∗≤L,||θ||∗≤1

{ f∗(φ) +λhSδ−γ (θ) +
1

n

n∑
t=1

hAt(−φ−λθ) }

≤ f∗(φ∗) +λ∗hSδ−γ (θ∗) +
1

n

n∑
t=1

hAt(−φ
∗−λ∗θ∗)

Now, using concentration bounds from Lemma 21 for the sum of hAt ’s, we obtain,

ˆOPT
δ−γ

(n) ≤ f∗(φ∗) +λ∗hSδ−γ (θ∗) +
1

T

T∑
t=1

hAt(−φ
∗−λ∗θ∗) + γ(λ∗||θ∗||∗+ ||φ∗||∗).
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Now, observe that for any θ, hSδ(θ) ≥ hSδ−γ (θ) + γ||θ||∗. To see this, let v be the maximizer in the

definition of hSδ−γ , i.e., v= arg maxu∈Sδ−γ u ·θ. Then consider v′ = v+γ θ
||θ|| . We have that ||v′−v||= γ,

so that v ∈ Sδ−γ implies that v ∈ Sδ. Therefore hSδ(θ) ≥ v′ · θ = v · θ + γ||θ||∗ = hSδ−γ (θ) + γ||θ||∗.

Substituting, we get,

ˆOPT
δ−γ

(n) ≤ f∗(φ∗) +λ∗hSδ(θ
∗)− γλ∗||θ∗||∗+

1

T

T∑
t=1

hAt(−φ
∗−λ∗θ∗) + γ(λ∗||θ∗||∗+ ||φ∗||∗)

= OPTδ + γ||φ∗||∗

≤ OPTδ + γL

�

Lemma 24. For all δ≥ γ, with probability 1−O(ρ),

ˆOPT
δ
(n)≤OPT + 2δ(L+Z∗)

Proof. Using the derivations in Equation (15),

ˆOPT
δ
(n) = min

λ≥0,||φ||∗≤L,||θ||∗≤1
{ f∗(φ) +λhS(θ) +

1

n

n∑
t=1

hAt(−φ−λθ) + δλ } ,

Let λ∗,φ∗,θ∗ denote the optimal dual solution for OPT, then,

ˆOPT
δ
(n) ≤ f∗(φ∗) +λhS(θ∗) +

1

n

n∑
t=1

hAt(−φ
∗−λ∗θ∗) + δλ∗

Now, using concentration bounds from Lemma 21 for the sum of hAt ’s, we obtain,

ˆOPT
δ
(n) ≤ f∗(φ∗) +λhS(θ∗) +

1

T

T∑
t=1

hAt(−φ
∗−λ∗θ∗) + γ(λ∗||θ∗||∗+ ||φ∗||∗) + δλ∗

= OPT + γ(λ∗||θ∗||∗+ ||φ∗||∗) + δλ∗

≤ OPT + (L+λ∗)γ+ δλ∗

≤ OPT + 2(L+λ∗)δ

= OPT + 2δ(L+Z∗)

�

Appendix G: Proof of Lemma 11

Given an instance of the online packing problem, recall that (r∗t ,v
∗
t ) denotes the optimal offline solution.

Then OPTsum =
∑T

t=1 r
∗
t , and

∑T

t=1 v
∗
t ≤ B1. Given ρ > 0, let η =

√
3 log(d+2

ρ
). Let the given random

subset of δ fraction of requests be Γ. Define ˆOPT to be 1/δ times the optimum value of the following

scaled optimization problem: pick (r†t ,v
†
t) for each t∈ Γ, to maximize the total reward

∑
t∈Γ r

†
t such that∑

t∈Γ v
†
t ≤ (δB+ η

√
δB)1.
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The bounds we need on ˆOPT follow from considering the optimal primal and dual solutions to the

given packing problem restricted to the sample and using Corollary 3 to bound their values on the

sample. Applying Corollary 3 to the set of r∗t for all t ∈ [T ] we get that with probability at least

1− ρ/(d+ 2), ∑
t∈Γ

r∗t ≥ δOPTsum−
√

3δOPTsum log(d+2
ρ

)

= δOPTsum− η
√
δOPTsum.

Similarly, applying Corollary 3 to each co-ordinate of the set of v∗t s, and taking a union bound, we get

that with probability at least 1− ρd/(d+ 2),∑
t∈Γ

v∗t ≤ (δB+
√

3δB log(d+2
ρ

))1

= (δB+ η
√
δB)1.

Therefore with probability 1− ρ(d+ 1)/(d+ 2) both the inequalities above hold and (r∗t ,v
∗
t )t∈Γ is a

feasible solution to the scaled optimization problem used to define ˆOPT. Hence

δ ˆOPT≥
∑
t∈Γ

r∗t ≥ δOPTsum− η
√
δOPTsum

and the first bound on ˆOPT follows from dividing the above inequality throughout by δ. For the second

bound, we need to consider the dual of the packing problem. The packing problem has the following

natural LP relaxation. (The dual LP follows.)

max
∑T

t=1

∑
v∈At r(v)xt,v

s.t. ∀t,
∑

v∈At xt,v ≤ 1∑T

t=1

∑
v∈At vxt,v ≤B1.

min
∑T

t=1 βt +Bθ ·1

s.t. ∀ t,∀ v ∈At, βt ≥ r(v)−v ·θ,

∀ t, βt ≥ 0,θ≥ 0.

First of all, we ignore the integrality gap and assume that the value of the optimal dual (and primal)

solution is equal to the optimal value OPTsum for the offline packing problem. Let (β∗t )Tt=1, (θ
∗
j )
d
j=1 be

the optimal dual solution for the given instance, and OPTsum =
∑

t β
∗
t +
∑

jBθ
∗
j . It can be shown that

β∗t ∈ [0,1] for all t: all the constraints involving βt are of the form βt ≥ (·) so at least one of these
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constraints is tight for the optimal solution. Also for each of these constraints, the RHS is at most 1,

and one of the constraints is βt ≥ 0. Further note that these constraints are local, i.e., they only depend

on the request indexed by t. This means that (β∗t )t∈Γ, (θ
∗
j )
d
j=1 is a feasible solution to the dual of the

scaled optimization problem. The objective value of this solution to this dual is∑
t∈Γ

β∗t +
∑
j

(δB+ η
√
δB)θ∗j ≥ δ ˆOPT.

Using Corollary 3 on the set of β∗t s, we get that with probability at least 1− ρ/(d+ 2),

∑
t∈Γ

β∗t ≤ δ
T∑
t=1

β∗t +
√

3δOPTsum log(d+2
ρ

)

= δ
T∑
t=1

β∗t + η
√
δOPTsum.

Putting the two inequalities above together,

δ ˆOPT

1 + η/
√
δB
≤
∑
t∈Γ

β∗t + δ
∑
j

Bθ∗j

≤ δ

(
T∑
t=1

β∗t +
∑
j

Bθ∗j

)
+ η
√
δOPTsum

= δOPTsum + η
√
δOPTsum.

The lemma follows by taking the union bound over the probabilities for the two inequalities as

required. Finally, we ignored the integrality gap, but it is easy to show that this gap is at most 1− 1
B

,

which can be absorbed in the 1 + η/
√
δB factor.

Endnotes

1. In online learning, the objective value is the sum of reward in every step, which scales with T ,

and the regret typically scales with
√
T . But in our formulation, the objective f( 1

T

∑
t v
†
t) is defined

over average observations, therefore, to be consistent with the popular terminology, we call our regret

‘average regret’.

2. Note that such a stopping rule does not make sense for a general S. If S is downwards closed, then

one can consider similar stopping rules in those cases as well.
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