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A Concentration Inequalities

Lemma 6 (Azuma-Hoeffding inequality). If a super-martingale (Yt; t ≥ 0), corresponding to
filtration Ft, satisfies |Yt − Yt−1| ≤ ct for some constant ct, for all t = 1, . . . , T , then for any a ≥ 0,

Pr(YT − Y0 ≥ a) ≤ e
− a

2

2
∑

T
t=1

c
2
t .

B Benchmark

Proof of Lemma 1. For an instantiation ω = (Xt, Vt)
T
t=1 of the sequence of inputs, let vector

p∗t (ω) ∈ ∆K+1 denote the distribution over actions (plus no-op) taken by the optimal adaptive
policy at time t. Then,

OPT = Eω∼DT [
∑T

t=1 r
⊤
t p

∗
t (ω)] (13)

Also, since this is a feasible policy,

Eω∼DT [

T
∑

t=1

V ⊤t p∗t (ω)] ≤ B1 (14)

Construct a static context dependent policy π∗ as follows: for any X ∈ [0, 1]m×K , define

π∗(X) :=
1

T

T
∑

t=1

Eω[p
∗
t (ω)|Xt = X].

Intuitively, π∗(X)a denotes (in hindsight) the probability that the optimal adaptive policy takes
an action a when presented with a context X , averaged over all time steps. Now, by definition of
r(π),v(π), from above definition of π∗, and (13), (14),

Tr(π∗) = TEX∼D[µ
⊤
∗ Xπ∗(X)] = Eω[

∑T
t=1 Vtp

∗
t (ω)] = OPT,

Tv(π∗) = TEX∼D[W
⊤
∗ Xπ∗(X)] = Eω[

∑T
t=1 Vtp

∗
t (ω)] ≤ B1,

C Hardness of linear AMO

In this section we show that finding the best linear policy is NP-Hard. The input to the problem is, for
each t ∈ [T ], and each arm a ∈ [K], a context xt(a) ∈ [0, 1]m, and a reward rt(a) ∈ [−1, 1]. The
output is a vector θ ∈ ℜm that maximizes

∑

t rt(at) where

at = arg max
a∈[K]

{xt(a)
⊤θ}.

We give a reduction from the problem of learning halfspaces with noise [16]. The input to this
problem is for some integer n, for each i ∈ [n], a vector zi ∈ [0, 1]m, and yi ∈ {−1,+1}. The output
is a vector θ ∈ ℜm that maximizes

n
∑

i=1

sign(z⊤i θ)yi.

Given an instance of the problem of learning halfspaces with noise, construct an instance of the
linear AMO as follows. The time horizon T = n, and the number of arms K = 2. For each t ∈ [T ],
the context of the first arm, xt(1) = zt, and its reward rt(1) = yt. The context of the second arm,
xt(2) = 0, the all zeroes vector, and the reward rt(2) is also 0.

The total reward of a linear policy w.r.t a vector θ for this instance is

|{i : sign(z⊤i θ) = 1, yi = 1}| − |{i : sign(z⊤i θ) = 1, yi = −1}|.
It is easy to see that this is an affine transformation of the objective for the problem of learning
halfspaces with noise.
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D Confidence ellipsoids

Proof of Corollary 1. The following holds with probability 1− δ.

T
∑

t=1

|µ̃⊤t xt − µ⊤∗ xt| ≤
T
∑

t=1

‖µ̃t − µ∗‖Mt
‖xt‖M−1

t

≤
(
√

m ln

(

1 + tm

δ

)

+
√
m

)

√

mT ln(T ).

The inequality in the first line is a matrix-norm version of Cauchy-Schwartz (Lemma 7). The
inequality in the second line is due to Lemmas 2 and 3. The lemma follows from multiplying out the
two factors in the second line.

Lemma 7. For any positive definite matrix M ∈ R
n×n and any two vectors a,b ∈ R

n, |a⊤b| ≤
‖a‖M‖b‖M−1 .

Proof. Since M is positive definite, there exists a matrix M1/2 such that M = M1/2M
⊤
1/2. Further,

M−1 = M⊤
−1/2M−1/2 where M−1/2 = M−1

1/2.

‖a⊤M1/2‖2 = a⊤M1/2M
⊤
1/2a = a⊤Ma = ‖a‖2M .

Similarly, ‖M−1/2b‖2 = ‖b‖2M−1 . Now applying Cauchy-Schwartz, we get that

|a⊤b| = |a⊤M1/2M−1/2b| ≤ ‖a⊤M1/2‖‖M−1/2b‖ = ‖a‖M‖b‖M−1 .

Proof of Corollary 2. Here, the first claim follows simply from definition of W̃t(a) and the ob-
servation that with probability 1 − δ, W ∗ ∈ Gt. To obtain the second claim, apply Corol-

lary 1 with µ∗ = w∗j ,yt = xt(at), µ̃t = [W̃t(at)]j (the jth column of W̃t(at)), to bound

|
∑

t([W̃t(at)]j − w∗j)
⊤xt(at)| ≤

∑

t |([W̃t(at)]j − w∗j)
⊤xt(at)| for every j, and then take

the norm.

E Appendix for Section 3.2

Proof of Theorem 2: We will useR′ to denote the main term in the regret bound.

R′(T ) := O
(

m
√

ln(mdT/δ) ln(T )T
)

Let τ be the stopping time of the algorithm. Let Ht−1 be the history of plays and observations before
time t, i.e. Ht−1 := {θτ , Xτ , aτ , rτ (aτ ),vτ (aτ ), τ = 1, . . . , t − 1}. Note that Ht−1 determines

θt, µ̂t, Ŵt,Gt, but it does not determine Xt, at, W̃t (since at and W̃t(a) depend on the context Xt at
time t). The proof is in 3 steps:

Step 1: Since E[vt(at)|Xt, at, Ht−1] = W⊤
∗ xt(at), we apply Azuma-Hoeffding inequality to get

that with probability 1− δ,
∥

∥

∑τ
t=1 vt(at)−W⊤

∗ xt(at)
∥

∥

∞
≤ R′(T ). (15)

Similarly, we obtain

|∑τ
t=1 rt(at)− µ⊤∗ xt(at)| ≤ R′(T ). (16)
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Step 2: From Corollary 2, with probability 1− δ,
∥

∥

∥

∑T
t=1(W∗ − W̃t(at))

⊤xt(at)
∥

∥

∥

∞
≤ R′(T ). (17)

|∑T
t=1(µ̃t(at)− µ∗)

⊤xt(at)| ≤ R′(T ). (18)

It is therefore sufficient to bound the sum of the vectors W̃t(at)
⊤xt(at), and similarly for

µ̃t(at)
⊤xt(at). We use the shorthand notation of r̃t := µ̃t(at)

⊤xt(at), r̃sum :=
∑τ

t=1 r̃t,

ṽt := W̃t(at)
⊤xt(at) and ṽsum :=

∑τ
t=1 ṽt for the rest of this proof.

Step 3: The proof is completed by showing that

E[r̃sum] ≥ OPT− ZR′(T ).
Lemma 8.

τ
∑

t=1

E[r̃t|Ht−1] ≥
τ

T
OPT + Z

τ
∑

t=1

θt · E[ṽt − 1
B

T
|Ht−1]

Proof. Let a∗t be defined as the (randomized) action given by optimal static policy π∗ for context Xt.

Define r∗t := µt(a
∗
t )
⊤xt(a

∗
t ) and v∗t := W̃t(a

∗
t )
⊤xt(a

∗
t ). By Corollary 2, with probability 1 − δ,

we have that TE[r∗t |Ht−1] ≥ OPT, and E[v∗t |Ht−1] ≤ B
T 1, where the expectation is over context

Xt given Ht−1. By the choice made by the algorithm,

r̃t − Z(θt · ṽt) ≥ r∗t − Z(θt · v∗t )
E[r̃t − Z(θt · ṽt)|Ht−1] ≥ E[r∗t |Ht−1]− Z(θt · E[v∗t |Ht−1])

≥ 1
T OPT− Z

(

θt · BT 1
)

.

Summing above inequality for t = 1 to τ gives the lemma statement.

Lemma 9.
τ
∑

t=1

θt · (ṽt −
B

T
1) ≥ B − τB

T
−R′(T ).

Proof. Recall that gt(θt) = θt ·
(

ṽt − B
T 1
)

, therefore the LHS in the required inequality is
∑τ

t=1 gt(θt). Let θ∗ := argmax||θ||1≤1,θ≥0

∑τ
t=1 gt(θ). We use the regret definition for the

OLalgorithm to get that
∑τ

t=1 gt(θt) ≥
∑τ

t=1 gt(θ
∗)−R(T ). Note that from the regret bound given

in Lemma 4,R(T ) ≤ R′(T ).

Case 1: τ < T . This means that
∑τ

t=1(vt(at) · ej) ≥ B for some j. Then from (15) and (17), it

must be that
∑τ

t=1(ṽt · ej) ≥ B−R′(T ) so that
∑τ

t=1 gt(θ
∗) ≥∑τ

t=1 gt(ej) ≥ B− τB
T −R′(T ).

Case 2: τ = T . In this case, B − τ
T B = 0 =

∑τ
t=1 gt(0) ≤

∑τ
t=1 gt(θ

∗), which completes the
proof of the lemma.

Now, we are ready to prove Theorem 2, which states that Algorithm 1 achieves a regret of ZR′(T ).
Proof of Theorem 2. Substituting the inequality from Lemma 9 in Lemma 8, we get

τ
∑

t=1

E[r̃t|Ht−1] ≥ τ

T
OPT + ZB

(

1− τ

T

)

− ZR′(T )

Also, Z ≥ OPT
B . Substituting in above,

E[r̃sum] =

τ
∑

t=1

E[r̃t|Ht−1] ≥ τ

T
OPT + OPT(1− τ

T
)− ZR(T )

≥ OPT− ZR′(T )

From Steps 1 and 2, this implies a lower bound on E[
∑τ

t=1 rt(at)]. The proof is now completed by
using Azuma-Hoeffding to bound the actual total reward with high probability.
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F Appendix for Section 3.3

Proof of Lemma 5. Let us define an “intermediate sample optimal” as:

OPT
γ

:=
maxq

T
T0

∑T0

i=1 µ
⊤
∗ Xiπ(Xi)])

such that T
T0

∑T0

i=1 W
⊤
∗ Xiπ(Xi) ≤ B + γ

(19)

Above sample optimal knows the parameters µ∗,W∗, the error comes only from approximating the
expected value over context distribution by average over the observed contexts. We do not actually

compute OPT
γ

, but will use it for the convenience of proof exposition. The proof involves two steps.

Step 1: Bound |OPT
γ − OPT|.

Step 2: Bound | ˆOPT
2γ − OPT

γ |

Step 1 bound can be borrowed from the work on Online Stochastic Convex Programming in [4]: since
µ∗,W

∗ is known, so there is effectively full information before making the decision, i.e., consider
the vectors [µ⊤∗ xt(a),W

⊤
∗ xt(a)] as outcome vectors which can be observed for all arms a before

choosing the distribution over arms to be played at time t, therefore, the setting in [4] applies. In fact,
ˆOPT

γ
as defined by Equation (F.10) in [4] when At = {[µ⊤∗ xt(a),W

⊤
∗ xt(a)], a ∈ [K]}, f identity,

and S = {v−1 ≤ B
T }, is same as 1

T times OPT
γ

defined here. And using Lemma F.4 and Lemma F.6

in [4] (using L = 1, Z∗ = OPT/B), we obtain that for any γ ≥
(

T
T0

)

2m
√

T0log(T0) log(T0d/δ),

with probability 1−O(δ),

OPT− γ ≤ OPT
γ ≤ OPT + 2γ(

OPT

B
+ 1). (20)

For Step 2, we show that with probability 1− δ, for all π, γ ≥
(

T
T0

)

2m
√

T0log(T0) log(T0d/δ)

|
T0
∑

i=1

(µ̂i − µ∗)
⊤Xiπ(Xi)| ≤ γ (21)

‖ T
T0

T0
∑

i=1

(Ŵi −W∗)
⊤Xiπ(Xi)‖∞ ≤ γ (22)

This is sufficient to prove both lower and upper bound on ˆOPT
2γ

for γ ≥
(

T
T0

)

2m
√

T0log(T0) log(T0d/δ). For lower bound, we can simply use (22) for optimal

policy for OPT
γ

, denoted by π̄. This implies that (because of relaxation of distance constraint by γ)

π̄ is a feasible primal solution for ˆOPT
2γ

, and therefore using (20) and (21),

ˆOPT
2γ

+ γ ≥ OPT
γ ≥ OPT− γ.

For the upper bound, we can use (22) for the optimal policy π̂ for ˆOPT
2γ

. Then, using (20) and (21),

ˆOPT
2γ ≤ OPT

3γ
+ γ ≤ OPT + 6γ(

OPT

B
+ 1) + γ.

Combining, this proves the desired lemma statement:

OPT− 2γ ≤ ˆOPT
2γ ≤ OPT + 7γ(

OPT

B
+ 1) (23)

What remains is to proof the claim in (21) and (22). We show the proof for (22), the proof for (21) is
similar. Observe that for any π,

‖
T0
∑

t=1

(Ŵt −W∗)
⊤Xtπ(Xt)‖∞ ≤

T0
∑

t=1

‖(Ŵt −W∗)
⊤Xtπ(Xt)‖∞

≤
T0
∑

t=1

‖Ŵt −W∗‖Mt
‖Xtπ(Xt)‖M−1

t
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where ‖Ŵt −W∗‖Mt
= maxj ‖ŵtj −w∗j‖Mt

.

Now, applying Lemma 2 to every column ŵtj of Ŵt, we have that with probability 1− δ for all t,

‖Ŵt −W∗‖Mt
≤ 2
√

m log(td/δ) ≤ 2
√

m log(T0d/δ)

And, by choice of pt
‖Xtπ(Xt)‖M−1

t

≤ ‖Xtpt‖M−1

t

.

Also, by Lemma 3,
T0
∑

t=1

‖Xtpt‖M−1

t

≤
√

mT0 ln(T0)

Therefore, substituting,

‖
T0
∑

t=1

(Ŵt −W∗)
⊤Xtπ(Xt)‖∞ ≤ (2

√

m log(T0d/δ))

T0
∑

t=1

‖Xtpt‖M−1

t

≤ (2
√

m log(T0d/δ))
√

mT0 ln(T0)

≤ T0

T
γ
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