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Abstract

An automated market maker is a natural and
common mechanism to subsidize information ac-
quisition, revelation, and aggregation in a predic-
tion market. The sought-after prediction aggre-
gate is the equilibrium price. However, traders
with budget constraints are restricted in their
ability to impact the market price on their own.
We give a detailed characterization of optimal
trades in the presence of budget constraints in a
prediction market with a cost-function-based au-
tomated market maker. As a concrete application
of our characterization, we give sufficient con-
ditions for a property we call budget additivity:
two traders with budgets B and B′ and the same
beliefs would have a combined impact equal to a
single trader with budgetB+B′. That way, even
if a single trader cannot move the market much, a
crowd of like-minded traders can have the same
desired effect. We show that a generalization of
the heavily-used logarithmic market scoring rule
is budget additive for affinely independent pay-
offs, but the quadratic market scoring rule is not.
Our results may be used both descriptively, to un-
derstand if a particular market maker is affected
by budget constraints or not, and prescriptively,
as a recipe to construct markets.

1 Introduction

A prediction market is a central clearinghouse for people
with differing opinions about the likelihood of an event—
say Barack Obama to win the U.S. Presidential election—
to trade monetary stakes in the outcome with one another.
At equilibrium, the price to buy a contract paying $1 if
Obama wins reflects a consensus of sorts on the probability
of the event. At that price, and given the wagers already
placed, no agent is willing to push the price further up or

down. Prediction markets have a good track record of fore-
cast accuracy in many domains [12, 20].

The design of combinatorial markets spanning multiple
logically-related events raises many interesting questions.
What information can be elicited—the full probability dis-
tribution, or specific properties of the distribution? What
securities can the market allow traders to buy and sell?
How can the market support and ensure a variety of trades?
For example, in addition to the likelihood of Hillary Clin-
ton winning the 2016 U.S. Presidential election, we may
want to elicit information about the distribution of her elec-
toral votes.1 If we create one security for each possible out-
come between 0 and 538, each paying $1 iff Clinton gets
exactly that many electoral votes, the market is called com-
plete and allows us to elicit any probability distribution.
Alternatively, if we create just two securities, one paying
out $x if Clinton wins x electoral votes, and the other pay-
ing out $x2, we cannot elicit all possible distributions, but
we can still elicit the mean and variance of the number of
electoral votes.

When agents are constrained in how much they can trade
only by risk aversion, prediction market prices can be in-
terpreted as a weighted average of traders’ beliefs [2, 21],
a natural reflection of the “wisdom of the crowd” with a
good empirical track record [15] and theoretical support
[2]. However, when agents are budget constrained, discon-
tinuities and idiosyncratic results can arise [8, 17] that call
into question whether the equilibrium price can be trusted
to reflect any kind of useful aggregation.

We consider prediction markets with an automated mar-
ket maker [1, 5, 14] that maintains standing offers to trade
every security at some price. Unlike a peer-to-peer ex-
change, all transactions route through the market maker.
The common market makers have bounded loss and are
(myopically) incentive compatible: the best (immediate)
strategy is for a trader to move the market price to equal

1 A U.S. Presidential candidate receives an integer number of
electoral votes between 0 and 538. The candidate getting the ma-
jority of electoral votes wins the election.



his own belief. The design of such an automated market
maker boils down to choosing a convex cost function [1].
This amount of design freedom presents an opportunity to
seek cost functions that satisfy additional desiderata such
as computational tractability [1, 7].

Most of the literature assumes either risk-neutral or risk-
averse traders with unbounded budgets. In this paper, we
consider how agents with budget constraints trade in such
markets, a practical reality in almost all prediction markets
denominated in both real and virtual currencies. Our results
also help with a systematic study of the market’s liquidity
parameter, or the parameter controlling the sensitivity of
price to trading volume. Setting the liquidity is a nearly
universal practical concern and, at present, is more (black)
art than science. We adopt the notion of the “natural budget
constraint” introduced by Fortnow and Sami [9]: the agent
is allowed only those trades for which the maximum loss
for any possible outcome does not exceed the budget.

The main contribution of this paper is a rich, geometric
characterization of the impact of budget constraints. In par-
ticular we consider, for a fixed belief, the locus of the re-
sulting price of an optimal trade as a function of the budget.
We show that the price moves in the convex hull of the be-
lief and the set of tight outcomes, in a direction that is “per-
pendicular” to the set of tight outcomes. We also introduce
the concept of budget additivity: two agents with budgetsB
and B′ and the same beliefs have the same power to move
the price as a single agent with the same belief and budget
B +B′. An absence of budget additivity points to an inef-
ficiency in incorporating information from the traders. We
show that budget additivity is a non-trivial property by giv-
ing examples of market makers that do not satisfy budget
additivity. We give a set of sufficient conditions on the mar-
ket maker and the set of securities offered which guarantee
budget additivity. Further, for two of the most commonly
used market scoring rules (quadratic score and log score),
we show sufficient conditions on the set of securities that
guarantee budget additivity.

Previously, Fortnow and Sami [9] considered a different
question: do budget-constrained bidders always move the
market price in the direction of their beliefs? They showed
that the answer to this is no, that there always exist mar-
ket prices, beliefs and budgets such that the direction of
price movement is not towards the belief. We give a richer
characterization of how the market price moves in the pres-
ence of budget constraints, by charting the path the price
takes with increasing budgets. Fortnow and Sami’s [2012]
impossibility result can be easily derived from our charac-
terization (see Appendix D).

A designer of a prediction market has a lot of freedom but
little guidance, and our results can be used both descrip-
tively and prescriptively. As a descriptive tool, our results
enable us to analyze commonly used market makers and

understand if budget constraints hamper information aggre-
gation in these markets. As a prescriptive tool, our results
can be used to construct markets that are budget additive. In
particular, we speculate that budget additivity simplifies the
choice of the liquidity parameter in the markets, because it
allows considering trader budgets in aggregate.

Proof overview and techniques. Our analysis borrows
heavily from techniques in convex analysis and builds on
the notion of Bregman divergence. We use the special case
of Euclidean distance (corresponding to a quadratic-cost
market maker) to form our geometric intuition which we
then extend to arbitrary Bregman divergences. For the sake
of an example, consider a complete market over a finite set
of outcomes where the space of market prices is a simplex,
exactly coinciding with the space of probability distribu-
tions over outcomes. Every possible outcome imposes a
constraint on the set of prices that a trader can move the
market to, because the trader is not allowed to exceed the
budget if that outcome occurs. The prices satisfying this
constraint form a ball with the outcome at its center. The
set of feasible prices that can be moved to is therefore the
intersection of these balls.

The key structural result we obtain is the chart of the price
movement. Suppose that there is an infinite sequence of
agents with infinitesimally small budgets all with the same
belief, then what is the path along which the price moves?
This is determined by the agents’ belief and the set of bud-
get constraints that are tight at any point, corresponding to
the highest risk outcomes (outcomes with the highest po-
tential loss). We show that the price can always be written
as a convex combination of these highest risk outcomes and
the agents’ belief. Further, the market price moves in a di-
rection that is “perpendicular” to the affine space of these
outcomes.

The agents’ belief partitions the simplex interior into re-
gions, where each region is the interior of the convex hull
of the agent belief and a particular subset of outcomes. For
a region that is full-dimensional, every interior point can be
uniquely written as a convex combination of the agent be-
lief and all except one outcome. In the anticipation of the
further development, we call this outcome “profitable” and
others “risky”. Motivated by the characterization above, we
move perpendicular to the risky outcomes in the direction
towards the agents’ belief. As a result, we increase the risk
of risky outcomes (equally for all outcomes), while getting
closer to the one profitable outcome (and hence increas-
ing its profit). The characterization then guarantees that the
prices along this path are indeed those chosen by traders at
increasing budgets, because the risky outcomes yield tight
constraints.

We would like the same to be true for the lower dimen-
sional regions as well; that is, for the set of tight constraints
to be exactly the corresponding set of outcomes defining



the convex hull. In fact, this is the property that distin-
guishes whether budget additivity is satisfied. The mar-
kets for which the tight constraints are exactly the minimal
set of outcomes that define the region the price lies in are
budget additive. (We conjecture that the converse holds as
well.) The entire path is then as follows: w.l.o.g. you start
at a full-dimensional region, move along the perpendicu-
lar until you hit the boundary of the region and you are in
a lower-dimensional region, move along the perpendicular
in this lower-dimensional region, and so on until you reach
the belief. The set of tight constraints is monotonically de-
creasing. We show that such markets are characterized by a
certain acute angles assumption on the set of possible out-
comes. Loosely speaking, this assumption guarantees that
outcomes outside the minimal set behave as the profitable
outcome in the above example.

Other related work. There is a rich literature on scor-
ing rules and prediction markets. Two of the most stud-
ied scoring rules are the quadratic scoring rule [4] and the
logarithmic market scoring rule [14]. We consider cost-
function-based prediction markets, a fully general class un-
der reasonable assumptions [1, 6]. Hanson [13] and Chen
and Pennock [5] also studied cost-function-based market
makers. Gneiting and Raftery [11] implicitly noted the
equivalence between proper scoring rules and convex-cost
prediction markets. Beygelzimer et al. [2] and Frongillo
et al. [10] study the relationship between utility functions
and price dynamics in prediction markets, drawing a par-
allel to online learning. (6, draw a different parallel be-
tween prediction markets and online learning.) Finally,
our analysis touches on the problem of setting the mar-
ket maker’s liquidity parameter [16, 18], which determines
how (in)sensitive prices are to trading volume. With budget
additivity, the market designer can optimize liquidity ac-
cording to aggregate budgets, without worrying about how
budgets are partitioned among traders.

2 Preliminaries

Securities and payoffs. Consider a probability space with
a finite set of outcomes Ω ⊆ Rn. A security is a financial
instrument whose payoff depends on the realization of an
outcome in Ω. In other words, the payoff of a security is
a random variable of the probability space. We consider
trading with n securities corresponding to n coordinates of
the outcomes ω ∈ Ω. A security can be traded before the
realization is observed with the intention that the price of a
security serves as a prediction for the expected payoff, i.e.,
the expected value of the corresponding coordinate.

Cost function, prices and utilities. An automated mar-
ket maker always offers to trade securities, for the right
price. In fact the price is the current prediction of the
market maker for the expectation of ω. A cost function
based market maker is based on a differentiable convex

cost function, C : Rn → R. It is a scalar function of an
n-dimensional vector q ∈ Rn representing the number of
outstanding shares2 for our n securities. We also refer to q
as the state of the market.

The vector of instantaneous prices of the securities is sim-
ply the gradient of C at q, denoted by p(q) := ∇C(q).
The prices of securities change continuously as the secu-
rities are traded, so it is useful to consider the cost of
trading a given quantity of securities. The cost of buy-
ing δ ∈ Rn units of securities (where a negative value
corresponds to selling) is determined by the path integral∫
π
p(q̄) · dq̄ = C(q + δ) − C(q), where π is any smooth

curve from q to q + δ.

When the outcome ω is realized, the vector of δ units of
securities pays off an amount of δ · ω. Thus, the realized
utility of a trader whose trade δ moved the market state
from q to q′ = q + δ is

U(q′, ω; q) := (q′ − q) · ω − C(q′) + C(q) .

We make a standard assumption that the maximum achiev-
able utility, which is also the maximum loss of the market
maker, is bounded by a finite constant (in Section 4, we
show a standard approach how to easily check this). LetM
be the convex hull of the payoff vectors,M := conv(Ω). It
is easy to see thatM contains exactly the vectors µ ∈ Rn
which can be realized as expected payoffs E[ω] for some
probability distribution over Ω. For a trader who believes
that E[ω] = µ, the expected utility takes form

U(q′, µ; q) := E [U(q′, ω; q)] = (q′−q)·µ−C(q′)+C(q) .

We consider throughout, a single myopic trader who trades
as if he were the last to trade. A key property sat-
isfied by expected utility is path independence: for any
q, q̄, q′ ∈ Rn, U(q′, µ; q̄) + U(q̄, µ; q) = U(q′, µ; q), that
is, risk-neutral traders have no incentive to split their trades.
For a risk-neutral trader, q′ ∈ Rn is an optimal action if and
only if µ = ∇C(q′) = p(q′) (this follows from the first-
order optimality conditions). In other words, the trader is
incentivized to move the market to the prices correspond-
ing to his belief as long as such prices exist. In general,
there may be multiple states yielding the same prices, so
the inverse map p−1(µ) returns a set, which can be empty
if no state yields the price vector µ.

Commonly-used cost functions include the quadratic cost,
logarithmic market-scoring rule (LMSR) and the log-
partition function. They are described in detail in Ap-
pendix A. The quadratic cost is defined by C(q) = 1

2‖q‖
2
2

and p(q) = q. Log-partition function is defined as C(q) =
ln(
∑
ω∈Ω e

q·ω). It subsumes LMSR as a special case for
the complete market with the outcomes corresponding to

2We allow trading fractions of a security. Negative values cor-
respond to short-selling.



vertices of the simplex. The prices under log-partition cost
correspond to the expected value of ω under the distribution
Pq(ω) = eq·ω−C(q) over Ω, i.e., p(q) = EPq [ω].

Budget constraints. Trading in prediction markets needs
an investment of capital. It is possible that an agent loses
money on the trade, in particular U(q′, ω; q) could be neg-
ative for some ω. One restriction on how an agent trades
could be that he is unable to sustain a big loss, due to a bud-
get constraint. We consider the notion of natural budget
constraint defined by Fortnow and Sami [9] which states
that the loss of the agent is at most his budget, for all ω ∈ Ω.
Given a starting market state q0 and a budget of B ≥ 0, a
trader with the belief µ ∈M then solves the problem:

max
q∈Rn

U(q, µ; q0) s.t. U(q, ω; q0) ≥ −B ∀ω ∈ Ω .

(2.1)
For quadratic costs, each constraint corresponds to a sphere
with one of the outcomes at its center, so the feasible region
is an intersection of these spheres. We will later see that
this generalizes to an intersection of balls w.r.t a Bregman
divergence for general costs.

In general, there may be multiple q optimizing this objec-
tive. In the following definition we introduce notation for
various solution sets we will be analyzing. The belief µ is
fixed throughout most of the discussion, so we suppress the
dependence on µ.

Definition 2.1 (Solution sets). Let Q̂(B; q0) denote the set
of solutions of Convex Program (2.1) for a fixed initial state
and budget. Let Q̂(q0) =

⋃
B≥0 Q̂(B; q0) denote the set of

solutions of (2.1) for a fixed initial state across all budgets.
Let Q̂(ν; q0) = p−1(ν) ∩ Q̂(q0) denote the set of states q
that optimize (2.1) for some budget B and yield the market
price vector ν.

The next theorem shows that solutions for a fixed initial
state and budget always yield the same price vector. It is
proved in Appendix B.

Theorem 2.2. If q, q′ ∈ Q̂(B; q0), then p(q) = p(q′).

Geometry of linear spaces. We finish this section by re-
viewing a few standard geometric definitions we use in next
sections. Let X ⊆ Rn. Then aff(X) denotes the affine hull
of the set X (i.e., the smallest affine space including X).
We write X⊥ to denote the orthogonal complement of X:
X⊥ := {u ∈ Rn : u · (x′ − x) = 0 for all x, x′ ∈ X}.
We use the convention ∅⊥ = Rn. A set K ∈ Rn is called a
cone if it is closed under multiplication by positive scalars.
If a cone is convex, it is also closed under addition. Since Ω
is finite, the realizable setM = conv(Ω) is a polytope. Its
boundary can be decomposed into faces. More precisely,
X ⊆ Ω, X 6= ∅, forms a face of M if X is the set of
maximizers over Ω of some linear function.3 We also view

3Strictly speaking, this is the definition of an exposed face,
but all faces of a polytope are exposed, so the distinction does not

X = ∅ as a face of M. With this definition, for any two
faces X , X ′, also their intersection X ∩X ′ is a face.

3 Characterization of Solution Sets

We start with the optimality (KKT) conditions for the Con-
vex Program (2.1), as characterized by the next lemma.
One of the key conditions is that the solution prices must be
in the convex hull of the belief µ and all the ω’s for which
the budget constraints are tight. The set of tight constraints
is always a face of the polytopeM. We allow an empty set
as a face, which corresponds to the case when none of the
constraints are tight and the solution prices coincide with
µ. The proof follows by analyzing KKT conditions (see
Appendix C).

Lemma 3.1 (KKT lemma). Let q0 ∈ Rn. Then q ∈
Q̂(B; q0) if and only if there exists a face X ⊆ Ω such
that the following conditions hold:

(a) U(q, x; q0) = U(q, x′; q0), or equivalently (q − q0) ·
(x′ − x) = 0, for all x, x′ ∈ X

(b) U(q, ω; q0) ≥ U(q, x; q0), or equivalently (q − q0) ·
(ω − x) ≥ 0, for all x ∈ X and ω ∈ Ω\X

(c) p(q) ∈ conv(X ∪ {µ})
(d) B = −U(q, x; q0) for some x ∈ X if X 6= ∅, or

B ≥ maxω∈Ω[−U(q, ω; q0)] if X = ∅

where conditions (a) and (b) hold vacuously for X = ∅.

The condition (a) requires that q − q0 be orthogonal to the
active setX . The set of points satisfying conditions (a) and
(c) will be called the Bregman perpendicular and will be
defined in the next section. The condition (b) is a statement
about acuteness of the angle between q − q0 (the perpen-
dicular) and the outcomes. It will be the basis of our acute
angles assumption. The condition (d) just states how the
budget is related to the active set X .

Witness cones and minimal faces. We now introduce a
few notations which allow us to state reinterpretations of
the conditions in Lemma 3.1. First of all, given a face X ,
what are the set of q’s that satisfy conditions (a) and (b)?
This is captured by what we call the witness cone.

Definition 3.2. Given a face X ⊆ Ω, the witness cone for
X is defined as K(X) := {u ∈ Rn : u · (ω − x) ≥
0 for all x ∈ X,ω ∈ Ω} if X 6= ∅, and K(X) := Rn if
X = ∅.

The following two properties of witness cones are immedi-
ate from the definition:

• Anti-monotonicity: if X ⊆ X ′ ⊆ Ω, then K(X) ⊇
K(X ′).
• Orthogonality: K(X) ⊆ X⊥.

matter here. The exposed face is typically defined to be conv(X),
but in the present paper, it is more convenient to work with X
directly.
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Figure 1: Left: ◦ —current state, × —belief, � —optimal action for a given belief and budget. Three circles bound the
allowed final states for budget 0.1. We plot optimal actions for two different beliefs. Right: A path from the initial state to
the belief, consisting of optimal actions for increasing budgets.

A state q satisfies conditions (a) and (b) for a given face X
if and only if q−q0 ∈ K(X). Now given a state q, consider
the set of faces that could satisfy condition (c). This set has
a useful structure, namely that there is a unique minimal
face (proved in Appendix C).

Definition 3.3. Given a price vector ν ∈ M, the minimal
face for ν is the minimal face X (under inclusion) s.t. ν ∈
conv(X ∪ {µ}). The minimal face for ν is denoted as Xν .

With the existence of a minimal face and the anti-
monotonicity of the witness sets, it follows that if q and
X satisfy conditions (a), (b) and (c), then so do q and
Xp(q). Thus we obtain the following version of Lemma 3.1
(proved in Appendix C).

Theorem 3.4 (Characterization of Solution Sets). q ∈
Q̂(q0) if and only if q ∈ [q0 +K(Xp(q))].

Using Theorem 3.4, we immediately obtain a characteriza-
tion of when a price vector ν could be the price vector of
an optimal solution to (2.1).

Corollary 3.5. Q̂(ν; q0) = p−1(ν) ∩ [q0 + K(Xν)]. In
particular, ν is the price vector of an optimal solution to
(2.1) if and only if p−1(ν) ∩ [q0 +K(Xν)] 6= ∅.

We now study an example using the above characterization.
More examples can be found in Appendix E.

Example 3.6 (Quadratic cost on an obtuse triangle; see
Example E.2 for details). Consider the following outcome
space, belief, and the sequence of market states (depicted
in Figure 2):

ω1 = (0.0, 0.0) q0 = ν0 = 11
14ω2 + 3

14ω3

ω2 = (1.8, 0.0) q1 = ν1 = 1
3ω2 + 2

3µ

ω3 = (6.0, 4.2) q2 = ν2 = 1
9ω1 + 8

9µ

µ = qµ = (2.7, 1.8) q3 = ν3 ≈ 1
19ω1 + 18

19µ

Using the KKT lemma, we can show for j = 1, 2, 3, that
qj = νj is an optimal action at qj−1 = νj−1 under belief

µ, with the corresponding budgets as:

ω1 ω2 ω3

U(q1, ·; q0) 0.45 −0.09 −0.09 B01 = 0.09
U(q2, ·; q1) −0.56 −0.56 1.12 B12 = 0.56
U(q3, ·; q2) −0.565 −0.28 . . . 0.82 . . . B23 = 0.565
U(qµ, ·; q0) −1.215 −1.215 2.565 B0µ = 1.215

The above table also shows that the budget B0µ = 1.215
suffices to move directly from q0 to qµ. However, note that
the sum B01 + B12 + B23 = 1.215 = B0µ, but ν3 6= µ,
i.e., after the sequence of optimal actions with budgetsB01,
B12, and B23, the market is still not at the belief shared by
all agents, even though with the budget B0µ, it would have
reached it.

Budget additivity. The above example suggests that
multiple traders with the same belief may have less power
in moving the market state towards the their belief compar-
ing to a single trader with the same belief and the combined
budget. Since prediction markets aim to efficiently aggre-
gate information from agents, it is natural to ask under what
conditions multiple traders with the same beliefs do have a
combined impact equal to a single trader with the combined
budget.

Next, we formally define this property as budget additivity.
We then define the Euclidean version of the acute angles
condition that we show is sufficient for budget additivity.

Definition 3.7 (Budget additivity). We say that a prediction
market is budget additive onM′ ⊆M if for all beliefs µ ∈
M′ and all initial states q0 ∈ p−1(M′) the following holds:
For any budgets B,B′ ≥ 0 and any sequence of solutions
q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q), we have p(q), p(q′) ∈
M′ and q′ ∈ Q̂(B +B′; q0).

In other words, the market is budget additive if the se-
quence of optimal actions of two agents with the same
belief and budgets B and B′ is also an optimal action of
a single agent with the same belief and a larger budget



B + B′. Thanks to Theorem 2.2 we also obtain that the
market prices following the sequence of optimal actions by
the two agents are the same as the market prices after the
optimal action by an agent with the combined budget (all
with the same beliefs).

We now state the acute angles assumption for the Euclidean
case, to give an intuition. Our acute angles assumption
(Definition 5.1) is a generalization of this. We later show
that the acute angles property is sufficient for budget addi-
tivity (Theorem 5.2).

Definition 3.8. We say that the Euclidean acute angles
hold for a face X of M, if the angle between any point
ν̄ ∈ M, its projection on the affine hull of X and any pay-
off ω ∈ Ω is non-obtuse (the angle is measured at the pro-
jection).

Based on the above example, one may hypothesize that the
obtuse angles are to blame for the lack of budget additivity.
In the following sections we will show that this is indeed
the case, but that the notion of obtuse/acute angles depends
on the Bregman divergence. In particular, the above ex-
ample would have been budget-additive if we used the log-
partition cost instead of the quadratic cost.

4 Convex conjugacy, Bregman divergence
and perpendiculars

We will see next that the utility function U can be writ-
ten as the difference of two terms measuring the distance
between the belief and the market state before and after
the trade. This distance measure is the mixed Bregman
divergence.4 To define the Bregman divergence, first let
C∗ : Rn → (−∞,∞] be the convex conjugate of C de-
fined as C∗(ν) := supq′∈Rn [q′ · ν − C(q′)] . Since C∗ is
a supremum of linear functions, it is convex lower semi-
continuous. Up to a constant, it characterizes the maximum
achievable utility on an outcome ω for a fixed initial state q
as supq′∈Rn U(q′, ω; q) = C∗(ω)+

[
C(q)−q·ω

]
. The term

in the brackets is always finite, but C∗ might be positive
infinite. We make a standard assumption that C∗(ω) < ∞
for all ω ∈ Ω, i.e., that the maximum achievable utility,
which is also the maximum loss of the market maker, is
bounded by a finite constant. By convexity, this implies
that C∗(µ) < ∞ for all µ ∈ M. The Bregman divergence
derived from C is a function D : Rn × Rn → (−∞,∞]
measuring the maximum expected utility under belief µ at
a state q

D(q, µ) := C(q) +C∗(µ)− q ·µ = supq′∈Rn U(q′, µ; q) .

From the convexity ofC andC∗ and the definition ofC∗, it
is clear that: (i) D is convex and lower semi-continuous in

4Our notion of Bregman divergence is more general than typ-
ically assumed in the literature.

each argument separately; (ii) D is non-negative; and (iii)
D is zero iff p(q) = ∇C(q) = µ. By the bounded loss
assumption, Bregman divergence is finite on µ ∈ M. For
µ ∈M, we can write

U(q′, µ; q) = D(q, µ)−D(q′, µ) . (4.1)

Thus, maximizing the expected utility is the same as min-
imizing the Bregman divergence between the state q′ and
the belief µ. From Eq. (4.1) it is also clear that each con-
straint in (2.1) is equivalent to D(q, ω) ≤ D(q0, ω) + B,
and the geometric interpretation is that the agent seeks to
find the state closest to his belief, within the intersection of
Bregman balls

For the quadratic cost, we have C∗(ν) = 1
2‖ν‖

2 and
D(q, ν) = 1

2‖q − ν‖2, i.e., the Bregman divergence co-
incides with the Euclidean distance squared. For log-
partition cost, we have C∗(ν) =

∑
ω∈Ω Pν(ω) lnPν(ω)

where Pν is the distribution maximizing entropy among P
satisfying EP [ω] = ν. The Bregman divergence is the KL-
divergence between Pq and Pν : D(q, ν) = KL(Pν‖Pq).

Convex analysis. We overview a few standard defini-
tions and results from convex analysis. For X ⊆ Rn,
we write riX for the relative interior of X (i.e., the in-
terior relative to the affine hull). For a convex function
F : Rn → (−∞,∞], we define its effective domain
as domF := {u ∈ Rn : F (u) < ∞} (i.e., the set
of points where it is finite). The subdifferential of F at
a point u is the set ∂F (u) := {v ∈ Rn : F (u′) ≥
F (u) + (u′ − u) · v for all u′ ∈ Rn}. We say that F is
subdifferentiable at u if ∂F (u) 6= ∅. A standard result of
convex analysis states that F is always subdifferentiable on
a superset of ri domF . If F is not only convex, but also
lower semi-continuous, then ∂F and ∂F ∗ are inverses in
the sense that v ∈ ∂F (u) iff u ∈ ∂F ∗(v). If F is differ-
entiable everywhere on Rn, then F ∗ is strictly convex on
ri domF ∗.

Let im p := {p(q) : q ∈ Rn} denote the set of prices
that can be expressed by market states. The implications
for our setting are that: (i) C∗ is subdifferentiable on im p;
(ii) p−1(ν) = ∂C∗(ν) for all ν ∈ Rn; (iii) all beliefs
in ri domC∗ can be expressed by some state q; (iv) C∗

is strictly convex on ri domC∗, and similarly D(q, ν) is
strictly convex on ri domC∗ as a function of the second
argument.

Assumptions on the cost function.

• Convexity and differentiability on Rn. C is convex and
differentiable on Rn.
• Finite loss.M⊆ domC∗, i.e., C∗ is finite onM.
• Inclusion of the relative interior. riM⊆ ri domC∗.

The first two assumptions are standard. The third assump-
tion is a regularity condition that we require in our re-
sults. Here we briefly discuss how it compares with the
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Figure 2: Left: An example of non-additive budgets when payoffs form obtuse angles (see Example E.2). Right: An
examples of a non-linear perpendicular for the log-partition cost.

finite loss assumption. While the two assumptions look
similar, neither of them implies the other. For example,
if domC∗ is an n-dimensional simplex and M is one of
its lower dimensional faces, which are lower dimensional
simplices, then the finite loss assumption holds, but the in-
clusion assumption does not. Similarly, for n = 1 and
M = [0, 1], the inclusion assumption is satisfied by the
conjugate C∗(ν) = 1/ν + 1/(1 − ν) on ν ∈ (0, 1) and
C∗(ν) = ∞ on ν 6∈ (0, 1), but this conjugate does not
satisfy the finite loss assumption.

We do not view the inclusion assumption as very restric-
tive, since it is satisfied by many common cost functions.
For instance, it always holds when C is constructed as in
[1], because their construction guarantees domC∗ = M.
However, the inclusion assumption might not hold for cost
functions that allow arbitrage (e.g., 7).

Our main result relies on strict convexity of C∗ on
ri domC∗, so some of our statements will require that
the market prices and beliefs lie in that set. The inclu-
sion assumption above guarantees that at the minimum
riM ⊆ ri domC∗, but the boundary of M might not be
included. With this motivation in mind, we define the set

M̃ :=

{
M ifM⊆ ri domC∗

riM otherwise.

In either case we obtain that M̃ ⊆ ri domC∗ ⊆ im p,
i.e., beliefs in M̃ can be expressed by some state q. For
the quadratic cost, M̃ = M. For the log-partition cost,
M̃ = riM.

Perpendiculars. We now define the notion of a Bregman
perpendicular to an affine space. This is a constructive def-
inition, and it plays a central role in the definition of the
acute angles assumption, and also in the proof of the main
result. The set of optimal price vectors for different budgets
will be a sequence of Bregman perpendiculars. Naturally,
it is also closely related to the conditions in Lemma 3.1; in
particular to the set of q’s that satisfy conditions (a) and (c)
for a given face X .

For quadratic costs, this notion coincides with the usual
Euclidean perpendicular. Consider an affine space and a
point not in it. A projection of the point onto the space
is the point in the space that is closest in Euclidean dis-
tance to the given point. Now consider moving this affine
space towards the projected point. The locus of the projec-
tion as we move the space is the perpendicular to the space
through the given point. We extend this definition to arbi-
trary Bregman divergences by defining the projection using
the corresponding Bregman divergence.

A Bregman perpendicular is determined by three geomet-
ric objects within the affine hull aff(domC∗). The first of
these is an affine space, say A0 ⊆ aff(domC∗). The sec-
ond is a point a1 ∈ aff(domC∗)\A0. The affine space
A = aff(A0 ∪ {a1}) ⊆ aff(domC∗) will be the ambi-
ent space that will contain the perpendicular. Define par-
allel spaces to A0 in A, for an arbitrary point a0 ∈ A0, as
Aλ := A0 +λ(a1− a0) for λ ∈ R. Note that the definition
of Aλ is independent of the choice of a0. The third geo-
metric object is a market state q ∈ Rn such that p(q) ∈ A.
For technical reasons, we will define a perpendicular at q
rather than a more natural notion, which would be at p(q).
Our reason for switching into q-space is that inner products,
defining optimality of the Bregman projection, are between
elements of q-space and ν-space (the two spaces coincide
for Euclidean distance). For all λ ∈ R define a Bregman
projection of q onto Aλ as

νλ := argmin
ν∈Aλ

D(q, ν) .

Since D(q, ν) is bounded from below and lower semi-
continuous, the minimum is always attained (but it may be
equal to ∞). If it is attained at more than one point, we
choose an arbitrary minimizer. Whenever we can choose
νλ ∈ ri domC∗, this νλ must be the unique minimizer by
strict convexity of D(q, ·) on ri domC∗, and the minimum
is finite. We use these νλ’s to define the perpendicular:

Definition 4.1. Given A0, a1 and q as above, the a1-
perpendicular to A0 at q is a map γ : λ 7→ νλ defined
over λ ∈ Λ := {λ : νλ ∈ ri domC∗} ⊆ R. We call Λ



the domain of the perpendicular. We define a total order on
νλ, νλ′ ∈ im γ as νλ � νλ′ iff λ ≤ λ′.

In Appendix F.2, we show that perpendiculars are continu-
ous maps. The name perpendicular is justified by the fol-
lowing proposition which matches our Euclidean intuition
that the perpendiculars can be obtained by intersecting the
ambient spaceAwith the affine space which passes through
q and is orthogonal to A0. It also shows that the perpendic-
ular corresponds to the set of prices that satisfy conditions
(a) and (c) with the convex hull relaxed to the affine hull
(when A0 is the affine hull of face X , point a1 coincides
with µ and q is the initial state). Recall that for an arbi-
trary set X ⊆ Rn, its orthogonal complement is defined as
X⊥ := {u : u · (x′ − x) = 0 for all x, x′ ∈ X}.
Proposition 4.2. Let γ be the a1-perpendicular to A0 at q,
and let A = aff(A0 ∪ {a1}). The following two statements
are equivalent for any ν′ ∈ Rn:

(i) ν′ ∈ im γ
(ii) ν′ ∈ A ∩ (ri domC∗), p−1(ν′) ∩ (q +A⊥0 ) 6= ∅

Proposition 4.2 is proved in Appendix F. The perpendicu-
lars have the following closure property which is useful for
showing budget additivity (also proved in Appendix F):

Proposition 4.3. Under the assumptions of Proposi-
tion 4.2, γ is also the a1-perpendicular to A0 at any q′ ∈
p−1(im γ) ∩ (q +A⊥0 ).

5 Acute angles and budget additivity

We now state the acute angles property which links the
Bregman perpendicular and Corollary 3.5, and is sufficient
for budget additivity.

Definition 5.1. We say that the acute angles hold for a face
X , if for every µ-perpendicular γ to X at q, such that µ ∈
M̃ and q ∈ p−1(M̃), the following holds: If ν′ ∈ im γ
and ν′ � p(q), then p−1(ν′) ∩ [q +K(X)] 6= ∅.

The motivation for the name “acute angles” comes from the
Euclidean distance case, where this assumption is equiva-
lent to Definition 3.8 (see Proposition G.1). The acute an-
gles property is non-trivial and we have seen that without
this property, budget additivity need not hold; we conjec-
ture that it is also a necessary condition. After stating the
main theorem, we analyze in more detail when the acute
angles are satisfied by the quadratic and log-partition costs.

We now state the main result, that the acute angles are suf-
ficient for budget additivity:

Theorem 5.2 (Sufficient conditions for budget additivity).
If acute angles hold for every face X ⊆ Ω, then the predic-
tion market is budget additive on M̃.

Sufficient conditions for acute angles. We next give the
sufficient conditions when the acute angles hold for the

quadratic and log-partition cost functions. We also show
that the acute angles hold for all one-dimensional outcome
spaces, and that the are preserved by taking direct sums of
markets. Recall that a set K ∈ Rn is called a cone if it is
closed under multiplication by positive scalars. A cone is
called acute, if x · y ≥ 0 for all x, y ∈ K. An affine cone
with the vertex a0 is a set K′ of the form a0 + K where K
is a cone.
Theorem 5.3 (Sufficient condition for quadratic cost). Let
X be a face and A′ be the affine space a0 + X⊥ for an
arbitrary a0 ∈ aff(X). Acute angles hold for the face X
and the quadratic cost if and only if the projection of Ω (or,
equivalently,M) onA′ is contained in an affine acute cone
with the vertex a0.
Corollary 5.4. Acute angles hold for the quadratic cost
and a hypercube Ω = {0, 1}n.
Corollary 5.5. Acute angles hold for the quadratic cost
and simplex Ω = {ei : i ∈ [n]} where [n] = {1, 2, . . . , n}
and ei is the i-th vector of the standard basis in Rn.
Theorem 5.6 (Log-partition over affinely independent out-
comes). If the set Ω is affinely independent then acute an-
gles assumption is satisfied for the log-partition cost.
Theorem 5.7 (One-dimensional outcome spaces). Acute
angles hold for any cost function ifM is a line segment.

Let Ω1 ⊆ Rn1 and Ω2 ⊆ Rn2 be outcome spaces with costs
C1 andC2. We define the direct sum of Ω1 and Ω2 to be the
outcome space Ω = Ω1 × Ω2 with the cost C : Rn1+n2 →
R defined as C(q1, q2) = C1(q1) + C2(q2).
Theorem 5.8 (Acute angles for direct sums). If acute an-
gles hold for Ω1 with cost C1, and Ω2 with cost C2, then
they also hold for their direct sum.

As a direct consequence of this theorem, we obtain that
the log-partition cost function satisfies the acute angles as-
sumption on a hypercube. Also, any direct sum of costs on
line segments satisfies the acute angles.

5.1 Proof of the suffucient conditions for budget
additivity

In this section we sketch the proof of Thm. 5.2 (for a com-
plete proof see Appendix H). We proceed in several steps.
Let ν0 = p(q0). We begin by constructing an oriented
curve L joining ν0 with µ, by sequentially choosing por-
tions of perpendiculars for monotonically decreasing active
sets. We then show that budget additivity holds for any so-
lutions with prices in L, and finally show that the curve L is
the locus of the optimal prices of solutions Q̂(q0), as well
as optimal prices of solutions Q̂(q) for any q ∈ Q̂(q0).

Part 1: Construction of the solution path L. In this part,
we construct:

• a sequence of prices ν0, ν1, . . . , νk with ν0 = p(q0)
and νk = µ



• a sequence of oriented curves `0, . . . , `k−1 where each
`i goes from νi to νi+1

• a monotone sequence of sets Ω ⊇ X0 ⊃ X1 ⊃
· · · ⊃ Xk = ∅, such that the following minimal-
ity property holds: Xi is the minimal face for all
ν ∈ (im `i)\{νi+1} for i ≤ k − 1, and Xk is the
minimal face for νk.

• a sequence of states q1, . . . , qk−1 such that qi ∈
p−1(νi) ∩ [qi−1 +K(Xi−1)]

The curves `i will be referred to as segments. The curve
obtained by concatenating the segments `0 through `k−1

will be called the solution path and denoted L. In the spe-
cial case that ν0 = µ, we have k = 0, X0 = ∅ and L is a
degenerate curve with imL = {µ}.

If ν0 6= µ, we construct the sequence of segments it-
eratively. Let X0 6= ∅ be the minimal face such that
ν0 ∈ conv(X0 ∪ {µ}). By the minimality, µ 6∈ aff(X0).
Let γ be the µ-perpendicular to aff(X0) at q0. The curve γ
passes through ν0 and eventually reaches the boundary of
conv(X0∪{µ}) at some ν1 by continuity of γ. Let segment
`0 be the portion of γ going from ν0 to ν1.

This construction gives us the first segment `0. There are
two possibilities:

1. ν1 = µ; in this case we are done;
2. ν1 lies on a lower-dimensional face of conv(X0 ∪
{µ}); in this case, we pick some q1 ∈ p−1(ν1)∩ [q0 +
K(X0)], which can be done by the acute angles as-
sumption, and use the above construction again, start-
ing with q1, and obtaining a new set X1 ⊂ X0 and a
new segment `1; and iterate.

The above process eventually ends, because with each iter-
ation, the size of the active set decreases. This construction
yields monotonicity of Xi and the minimality property.

The above construction yields a specific sequence of qi ∈
p−1(νi)∩ [qi−1 +K(Xi−1)]. We show in Appendix H that
actually qi ∈ p−1(νi)∩ (q0 +X⊥i−1) and that the construc-
tion of L is independent of the choice of q1, q2, . . . , qk−1.

Part 2: Budget additivity for points on L. Let ν, ν′ ∈
imL such that ν � ν′. Let q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q)
such that q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q). In this part we
show that q′ ∈ Q̂(B +B′; q0).

First, consider the case that ν′ = µ. To see that q′ ∈
Q̂(B + B′; q0), first note that the constraints of Convex
Program (2.1) hold, because U(q′, ω; q0) = U(q′, ω; q) +
U(q, ω; q0) ≥ −B′ − B for all ω by path independence of
the utility function. As noted in the introduction, in the ab-
sence of constraints, the utility U(q̄, µ; q0) is maximized at
any q̄ with p(q̄) = µ. Thus, q′ is a global maximizer of the
utility and satisfies the constraints, so q′ ∈ Q̂(B +B′; q0).
If ν = µ, we must also have ν′ = µ and the statement holds
by previous reasoning.

In the remainder, we only analyze the case ν � ν′ ≺
µ. This means that ν ∈ (im `i)\{νi+1} and ν′ ∈
(im `j)\{νj+1} for i ≤ j. By Theorem 3.4, we therefore
must have q ∈ [q0 + K(Xi)] and q′ ∈ [q + K(Xj)]. By
anti-monotonicity of witness cones, K(Xj) ⊇ K(Xi) and
hence, q′ ∈ [q0 +K(Xj)], yielding q′ ∈ Q̂(ν′; q0).

We now argue that the budgets add up. Let x ∈ Xj ⊆ Xi.
By Lemma 3.1, we obtain that q ∈ Q̂(B; q0) for B =
−U(q, x; q0), and q′ ∈ Q̂(B′; q) for B′ = −U(q′, x; q),
and finally q′ ∈ Q̂(B̄; q0) for B̄ = −U(q′, x; q0). How-
ever, by path independence of the utility function

B̄ = −U(q′, x; q0) = −U(q′, x; q)−U(q, x; q0) = B′+B .

Part 3: L as the locus of all solutions. See Appendix H
for the proof that

Q̂(q0) =
⋃
ν∈imL Q̂(ν; q0) .

Part 3’: L as the locus of solutions starting at a mid-
point. Let ν ∈ imL and q ∈ Q̂(ν; q0). Since Q̂(ν; q0) ⊆
p−1(ν)∩(q0 +X⊥ν ), Part 1’ yields that the solution path L′

for q coincides with the portion of L starting at ν. Applying
the proof of Part 3 to L′, we obtain

Q̂(q) =
⋃
ν′∈imL:ν′�ν Q̂(ν′; q) .

Part 4: Proof of the theorem. Let B,B′ ≥ 0 and q ∈
Q̂(B; q0) and q′ ∈ Q̂(B′; q). From Parts 3 and 3’, we know
that q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q) for some ν, ν′ ∈ imL
such that ν � ν′. By Part 2, we therefore obtain that q′ ∈
Q̂(B +B′; q0), proving the theorem.

5.2 Necessary conditions for budget additivity

We conjecture that the sufficient conditions are also nec-
essary. We now sketch an approach to prove this and the
technical difficulties with it, for the case of the quadratic
scoring rule. We can show that in 2 dimensions, if the acute
angles do not hold, then we can essentially replicate Exam-
ple E.2, which shows lack of budget additivity. We can
also show a key technical lemma that any obtuse, pointed
cone in n dimensions has a projection onto a 2 dimensional
subspace such that the image of the cone is also an obtuse,
pointed cone. (See Appendix I for a proof.)
Lemma 5.9. Let K be an obtuse, pointed closed con-
vex cone. Then there is a projection of K onto a two-
dimensional subspace that is also obtuse and pointed (and
automatically closed convex).

The idea then is to embed the 2 dimensional example in this
subspace and then “lift” it back to the original cone. But
this runs into a difficulty, because while the lift maintains
conditions (a) and (b) of Lemma 3.1, it is not clear how to
simultaneously maintain the condition (c), and some addi-
tional structure may be required.
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A Examples of cost functions

Example A.1 (Quadratic cost). The first example of a cost
function, applicable to arbitrary outcome sets Ω, is the
quadratic cost function defined by C(q) = 1

2‖q‖
2. In this

case, p(q) = q, and U(q′, µ; q) = 1
2‖q−µ‖

2− 1
2‖q
′−µ‖2.

It is clear that the expected utility is maximized when
p(q′) = q′ = µ.

Convex conjugate and Bregman divergence: C∗(ν) =
1
2‖ν‖

2 and D(q, ν) = 1
2‖q − ν‖

2, i.e., the Bregman diver-
gence is a monotone transformation of the Euclidean dis-
tance.

Example A.2 (LMSR). Our second example is Hanson’s
logarithmic market-scoring rule (LMSR), which is applied
to complete markets whose outcomes coincide with basis
vectors, i.e., Ω = {ei : i ∈ [n]} where ei denotes the i-th
basis vector and [n] denotes the set {1, . . . , n}. In this case
M is the simplex in Rn and beliefs µ are in one-to-one
correspondence with probability distributions over Ω. The
LMSR cost function is

C(q) = ln
(∑n

i=1 e
q[i]
)

where q[i] denotes the i-th coordinate of q. The price vector
is

p(q)[i] =
∂C(q)

∂q[i]
=

eq[i]∑n
j=1 e

q[j]
= eq[i]−C(q) .

For µ ∈M, the expected utility function takes form

U(q′, µ; q) =

n∑
i=1

µ[i]
(

ln p(q′)[i]− ln p(q)[i]
)

= KL(µ‖p(q))− KL(µ‖p(q′)) ,

where KL(µ‖ν) =
∑n
i=1 µ[i] ln(µ[i]/ν[i]) is the KL-

divergence. KL-divergence is not symmetric, but it is non-
negative, and zero only if the arguments are equal. Thus,
the expected utility is clearly maximized if and only if
µ = p(q′).

Convex conjugate and Bregman divergence: C∗(ν) = ∞
if ν is not a probability measure on Ω, and C∗(ν) =∑n
i=1 ν[i] ln ν[i] otherwise, with the usual convention

0 ln 0 = 0. The Bregman divergence is D(q, ν) =
KL(ν‖p(q)).

Example A.3 (Log-partition cost). Next example is the
log-partition function, which is applicable to arbitrary out-
come sets Ω and which generalizes LMSR:

C(q) = ln
(∑

ω∈Ω e
q·ω) .

Let Pq be the probability measure over Ω defined by

Pq(ω) = eq·ω−C(q) .

The prices then correspond to expected values of ω under
Pq:

p(q) =
∑
ω∈Ω

Pq(ω)ω .

For µ ∈M, let Pµ denote the distribution of maximum en-
tropy among P with EP [ω] = µ (this distribution is unique
and always exists). Note that we are overloading notation
on Pq and Pν and use the “type” of the subscript to indi-
cate which probability distribution we have in mind. The
expected utility function can be written as

U(q′, µ; q) = (q′ − q) · E
ω∼Pµ

[ω]− C(q′) + C(q)

= E
ω∼Pµ

[lnPq′(ω)− lnPq(ω)]

= E
ω∼Pµ

[
ln

(
Pµ(ω)

Pq(ω)

)
− ln

(
Pµ(ω)

Pq′(ω)

)]
= KL(Pµ‖Pq)− KL(Pµ‖Pq′) .

A standard duality result shows that the infimum of
KL(Pµ‖Pq′) over the set {Pq′ : q′ ∈ Rn} is zero.
If there exists q′ attaining this minimum, we must have
Pµ = Pq′ and thus µ = p(q′). We argue that the con-
verse is true as well. Let q′, q′′ be such that Pq′ = Pµ and
p(q′) = p(q′′) = µ. Then by convexity of C, we have
C(q′′)− C(q′) = (q′′ − q′) · p(q′). Therefore,

KL(Pq′‖Pq′′) = (q′ − q′′) · p(q′)− C(q′) + C(q′′) = 0 ,

i.e., Pq′ = Pq′′ = Pµ. Hence, for any q ∈ Rn, Pq is
exactly the distribution of maximum entropy among those
P that satisfy EP [ω] = p(q). In other words, Pp(q) = Pq .

Convex conjugate and Bregman divergence: C∗(ν) = ∞
if there is no distribution P on Ω such that EP [ω] = ν, and
C∗(ν) =

∑
ω∈Ω Pν(ω) lnPν(ω) otherwise. The Bregman

divergence D(q, ν) = KL(Pν‖Pq) = KL(Pν‖Pp(q)).

B Proof of Theorem 2.2

Proof of Theorem 2.2. Throughout this proof we use con-
cepts of convex conjugacy and Bregman divergence intro-
duced in Section 4. LetB ≥ 0 and B := {q : U(q, ω; q0) ≥
−B for all ω ∈ Ω} be the set of states satisfying the con-
straints of Convex Program (2.1). Using the definition of
utility function, we can rewrite Convex Program (2.1) as

Maximize
q∈Rn

[(q − q0) · µ− C(q) + C(q0)− IB(q)]

(B.1)
where IB(·) is the convex indicator function, equal to 0 on
the set B and ∞ outside it. Since the cost function C is
convex on Rn, and B is closed, convex and non-empty,
Fenchel’s Duality Theorem [19, Theorem 31.1] implies
that the supremum of the above objective equals the fol-
lowing minimum

min
ν∈Rn

[C∗(ν)− q0 · µ+ C(q0) + I∗B(µ− ν)] (B.2)



and this minimum is attained at some ν̂ ∈ Rn. Now, let
q̂ ∈ Q̂(B; q0) be a solution of Eq. (B.1). By Fenchel’s
Duality, the gap between the objectives of Eq. (B.2) and
Eq. (B.1) at ν̂ and q̂ must be zero:

0 = C∗(ν̂)− q0 · µ+ C(q0) + I∗B(µ− ν̂)

− (q̂ − q0) · µ+ C(q̂)− C(q0) + IB(q̂)

= C∗(ν̂)− q̂ · ν̂ + C(q̂) + I∗B(µ− ν̂)− q̂ · (µ− ν̂)

+ IB(q̂)

= D(q̂, ν̂) +
[
I∗B(µ− ν̂)−

(
q̂ · (µ− ν̂)− IB(q̂)

)]
.

The term in the brackets is non-negative from the defini-
tion of the convex conjugate. Since D(q̂, ν̂) is also non-
negative, we obtain that it must be zero, i.e., p(q̂) = ν̂.
Since this reasoning is independent of the choice q̂ ∈
Q̂(B; q0), the theorem follows.

C KKT lemma and the minimal face

This section contains proofs of Lemma 3.1 and Theo-
rem 3.4, and shows that minimal faces are well defined.

Proof of Lemma 3.1. We begin by forming a Lagrangian of
Convex Program (2.1), with non-negative multipliers λ =
(λω)ω∈Ω:

L(q, λ) = U(q, µ; q0) +
∑
ω

λω (U(q, ω; q0) +B) .

By differentiability and concavity of the objective and con-
straints, KKT conditions are both necessary and sufficient
for optimality. KKT conditions state that q and λ solve the
above problem if and only if the following hold:

• primal feasibility: U(q, ω; q0) ≥ −B for all ω ∈ Ω;
• dual feasibility: λ ≥ 0;
• first-order optimality: ∇1L(q, λ) = 0;
• complementary slackness: λω (U(q, ω; q0) +B) = 0;

for all ω ∈ Ω.

We first show that KKT conditions imply (a)–(d). Assume
that KKT conditions hold. Let X be the set of outcomes
with tight constraints, i.e., X = {x ∈ Ω : U(q, x; q0) =
−B}. For this X , the conditions (a) and (b) hold by primal
feasibility and our definition ofX . Note that we have either
X = ∅ or X = argminx∈Ω(q − q0) · x, i.e., X is a face of
M. If X 6= ∅, then (d) follows from our definition of X . If
X = ∅, then (d) follows by primal feasibility. We prove (c)
by analyzing first-order optimality. First note that:

∇1U(q, ν; q0) = ν −∇C(q) = ν − p(q) .

Thus, first-order optimality is equivalent to

∇1U(q, µ; q0) +
∑
ω

λω∇1U(q, ω; q0) = 0

µ− p(q) +
∑
ω

λω(ω − p(q)) = 0

p(q) =
µ+

∑
ω λωω

1 +
∑
ω λω

.

By complementary slackness, λω = 0 for ω ∈ Ω\X , so
this shows (c).

Now assume that (a)–(d) hold. Then KKT conditions hold
for λω representing p(q) as a convex combination of µ and
elements of X .

Proof of Theorem 3.4. If q ∈ [q0 +K(Xp(q)) then we have
q ∈ Q̂(q0) by Lemma 3.1 with X = Xp(q). For the con-
verse, assume that q ∈ Q̂(q0). Lemma 3.1 then implies
that there exists a face X such that q ∈ [q0 + K(X)] and
p(q) ∈ conv(X ∪ {µ}). By minimality of Xp(q), we must
have Xp(q) ⊆ X . By anti-monotonicity of witness cones,
we then have q ∈ [q0 +K(Xp(q))], finishing the proof.

Proposition C.1. Fix µ ∈ M. Then for any ν ∈ M, there
exists the minimal face Xν with the following property: for
any face X such that ν ∈ conv(X ∪ {µ}), we must have
Xν ⊆ X .

Proof. If ν = µ then Xν = ∅ and the statement holds.
Otherwise, consider the ray ρ from µ towards ν, and let ν′

be the last point on the ray that is contained inM. Let Xν

be the unique face such that ν′ lies in the relative interior
of conv(Xν).5 We will argue that this face satisfies the
condition stated in the proposition. Let X be any face such
that ν ∈ conv(X ∪ {µ}). Then ν = λµ + (1 − λ)νX for
νX ∈ conv(X) and λ ∈ [0, 1). Since νX ∈ M, it must lie
on the ray ρ at some point between ν and ν′. We next argue
than ν′ ∈ conv(X). Suppose not, this means that ν′ 6= νX ,
and νX maximizes some linear function, say u · ν̄, over
ν̄ ∈M, and u · ν′ < u · νX , i.e.,

u · (νX − ν′) > 0 .

Since ν 6= µ and ν′ 6= νX , and the points µ, ν, νX , ν′ lie
on the ray ρ (in that order), there exists η > 0 such that
µ− νX = η(νX − ν′) and thus

u · (µ− νX) = ηu · (νX − ν′) > 0

implying that u · µ > u · νX and contradicting the assump-
tion that νX is the maximizer. Thus, ν′ ∈ conv(X). By a
similar reasoning, we can also show that for any x ∈ Xν ,

5The existence of such a unique face follows by the standard
result stating that relative interiors of conv(X) across non-empty
faces X form a disjoint partition of M.



we must have x ∈ X . Again, for the sake of contradic-
tion assume that there is u such that ν′ is a maximizer
of u · ν̄ over ν̄ ∈ M, but x is not. Then x 6= ν′, and
since ν′ ∈ ri conv(Xν), for sufficiently small η, we have
ν′′ := ν′+η(ν′−x) ∈M, and u ·ν′′ > u ·ν′ contradicting
the maximizer property of ν′. Thus, Xν ⊆ X .

D Impossibility result of Fortnow and Sami

We can use the KKT lemma and the continuity of the per-
pendiculars (Theorem F.3) to derive the impossibility re-
sult of [9]. The result states that in the presence of bud-
get constraints, there is no market scoring rule guarantee-
ing that the market prices move towards the agent belief
along the connecting straight line (unless aff(M) is a line
or a point). Assume the dimension of aff(M) is d ≥ 2.
Choose µ ∈ riM and q0 such that p(q0) does not lie in
any aff(X ∪ {µ}) of dimension less than d. Since q in the
KKT lemma must be on a perpendicular, continuity of the
perpendiculars implies that p(q) is arbitrarily close to p(q0)
for a small enough budget. Thus, for a small enough bud-
get, X must give the full-dimensional aff(X ∪ {µ}), and
p(q) ∈ ri conv(X ∪ {µ}). The latter will remain true for
small changes in µ without affecting conditions (a) and (b)
of Lemma 3.1. Thus, the direction of movement of market
prices is independent of small changes in µ.

E Budget additivity: examples

Using the KKT lemma, we illustrate on examples that bud-
get additivity sometimes holds and sometimes does not.
Recall that budget additivity states that if several agents
have the same belief and limited budgets, the sequence of
their actions is equivalent to the action of a single agent
with the same belief and the sum of the budgets. In the
first example, we give an illustration of when this property
holds. In the second example, we show how this property
can be violated, and the single agent with the sum of bud-
gets has more power in the market.

Example E.1 (Quadratic cost on a square). Consider the
following outcome space and belief:

ω00 = (0, 0)

ω01 = (0, 1)

ω10 = (1, 0)

ω11 = (1, 1)

µ = (0.9, 0.3)

Further, consider the following market states:

q0 = ν0 = (0.5, 0.1)

q1 = ν1 = (0.6, 0.2) = 1
3ω00 + 2

3µ

qµ = µ

The divergence of these states (and the belief µ) from indi-
vidual outcomes is:

1
2‖· − ·‖

2 ω00 ω01 ω10 ω11

ν0 0.13 0.53 0.13 0.53
ν1 0.2 0.5 0.1 0.4
µ 0.45 0.65 0.05 0.25

With these in hand, we can now use the KKT lemma and
show that q1 = ν1 is an optimal action at q0 = ν0 under
belief µ for a specific budget. Since q1 is a convex com-
bination of ω00 and µ, we need to show that the only tight
budget constraint is due to ω00. We also calculate budgets
required to move from q0 and q1 to qµ:

ω00 ω01 ω10 ω11

U(q1, ·; q0) −0.07 0.03 0.03 0.13 B01 = 0.07
U(qµ, ·; q0) −0.32 −0.12 0.08 0.28 B0µ = 0.32
U(qµ, ·; q1) −0.25 −0.15 0.05 0.15 B1µ = 0.25

Hence, a sequence of moves with budgets B01 and B1µ

is equivalent to a single move with the budget B0µ =
B01 + B1µ. While we have shown this only for a specific
sequence of budgets, results of Section 5 show that budget
additivity holds for any sequence of budgets and any belief
µ ∈M.

Example E.2 (Quadratic cost on an obtuse triangle.). Now,
we work out an example where the budget additivity does
not hold. Consider the following outcome space and belief:

ω1 = (0.0, 0.0)

ω2 = (1.8, 0.0)

ω3 = (6.0, 4.2)

µ= (2.7, 1.8)

Further, consider the following set of market states:

q0 = ν0 = (2.7, 0.9)

q1 = ν1 = (2.4, 1.2) = 1
3ω2 + 2

3µ

q2 = ν2 = (2.4, 1.6) = 1
9ω1 + 8

9µ

q3 = ν3 =
(

0.9
√

105
13 , 0.6

√
105
13

)
=
(

1− 1
3

√
105
13

)
ω1 +

(
1
3

√
105
13

)
µ ≈ 1

19ω1 + 18
19µ

qµ = µ

The divergence of these states (and the belief µ) from indi-
vidual outcomes is:

1
2‖· − ·‖

2 ω1 ω2 ω3

ν0 4.05 0.81 10.89
ν1 3.6 0.9 10.98
ν2 4.16 1.46 9.86
ν3 4.725 1.74 . . . 9.04 . . .
µ 5.265 2.025 8.325

Again as before, we can use the KKT lemma and show for
j = 1, 2, 3, that qj = νj is an optimal action at qj−1 =



νj−1 under belief µ, with the corresponding budgets as:

ω1 ω2 ω3

U(q1, ·; q0) 0.45 −0.09 −0.09 B01 = 0.09
U(q2, ·; q1) −0.56 −0.56 1.12 B12 = 0.56
U(q3, ·; q2) −0.565 −0.28 . . . 0.82 . . . B23 = 0.565
U(qµ, ·; q0) −1.215 −1.215 2.565 B0µ = 1.215

The above table also shows that the budget B0µ = 1.215
suffices to move directly from q0 to qµ. However, note that
the sum

B01 +B12 +B23 = 1.215 = B0µ ,

but ν3 6= µ, i.e., after the sequence of optimal actions with
budgets B01, B12, and B23, the market is still not at the
belief shared by all agents, even though with the budget
B0µ, it would have reached it. Note that it is possible to
achieve budget additivity by using log-partition cost instead
of quadratic cost (Theorem 5.6).

F Perpendiculars

F.1 Proofs of Propositions 4.2 and 4.3

Proof of Proposition 4.2. We will show that condition (i)
is equivalent to condition (ii) by analyzing the first order
optimality conditions. Consider the problem

Minimize
ν′∈Aλ

D(q, ν′) (F.1)

used to define νλ. Assume that the minimum is attained at
some ν′ ∈ ri domC∗. Thus, ν′ ∈ A ∩ (ri domC∗). Since
D(q, ν′) is subdifferentiable at ν′, the first order optimality
implies that (

∂2D(q, ν′)
)
∩A⊥λ 6= ∅ . (F.2)

Since ∂2D(q, ν′) = ∂C∗(ν′) − q = p−1(ν′) − q, and and
A⊥λ = A⊥0 , we have

p−1(ν′) ∩ (q +A⊥0 ) 6= ∅ ,

proving that (i)⇒(ii). Conversely, assume that ν′ ∈ A ∩
(ri domC∗) and p−1(ν′) ∩ (q + A⊥0 ) 6= ∅. Then we can
pick λ such that ν′ ∈ Aλ and for this λ, we obtain that
condition (F.2) holds and hence ν′ solves problem (F.1).
Since ν′ ∈ ri domC∗, we obtain that ν′ ∈ im γ.

Proof of Proposition 4.3. Let γ′ be the a1-perpendicular to
A0 at q′. Since the ambient space A for both perpendicu-
lars is the same, by Proposition 4.2(ii), it suffices to show
that q + A⊥0 = q′ + A⊥0 . However, this follows by the
assumption of the theorem, since q′ − q ∈ A⊥0 .

F.2 Continuity of perpendiculars

In this section, we prove two important properties of per-
pendiculars: (a) they are continuous maps; (b) intersections
of perpendiculars with compact convex sets correspond to
compact sets of market states up to certain “irrelevant dis-
placements”. To define these irrelevant displacements, let
L be the linear space parallel to aff(domC∗). Then the dis-
placements of market state within L⊥ are irrelevant in the
sense that they have no effect on the Bregman divergence
and hence by Eq. (4.1) also no effect on the utility func-
tion. Specifically, D(q + u, ν) = D(q, ν) for all u ∈ L⊥
(see next proposition). For instance, for LMSR over a sim-
plex, the irrelevant displacements are of the form λ~1 where
λ ∈ R and ~1 is the all-ones vector.

Proposition F.1. Let L be the linear space parallel to
aff(domC∗). Then for all q ∈ Rn and u ∈ L⊥

D(q + u, ν) = D(q, ν) .

Proof. If ν 6∈ domC∗ then the statement obviously holds.
Pick ν ∈ domC∗, q ∈ Rn and u ∈ L⊥. By the Mean
Value Theorem, we can write

C(q + u)− C(q) = u · ∇C(q̄)

for some q̄. Let ν̄ := ∇C(q̄) ∈ domC∗. Then we can
write

D(q+u, ν)−D(q, ν) = C(q+u)−C(q)−u·ν = u·(ν̄−ν) = 0

since u ⊥ (ν̄ − ν).

The following result of Rockafellar [19] will be instrumen-
tal in proving continuity properties of the perpendicular. It
is paraphrased for our setting. The notation int refers to the
topological interior of the set.

Theorem F.2 (Theorem 24.7 of 19). Let G : Rn →
(−∞,∞] be a lower semi-continuous convex function,
and let K be a non-empty, closed and bounded subset of
int(domG). Then the set

∂G(K) =
⋃
u∈K

∂G(u)

is non-empty, closed and bounded.

Now we are ready to state and prove the continuity of per-
pendiculars:

Theorem F.3. Let γ be the a1-perpendicular to A0 at q,
and K ⊆ ri domC∗ be a closed bounded convex set inter-
secting im γ.

(a) The map γ is continuous.
(b) The intersection M := {(ν, q) : ν ∈ (im γ) ∩K, q ∈

p−1(ν)} can be written as M = C + (0⊕L⊥) where
C is compact and ⊕ denotes a direct sum of vector
spaces.



Proof. Throughout the proof, let F (ν) := D(q, ν) =
C(q) + C∗(ν) − q · ν. Note that F is strictly convex on
ri domC∗. We will be also making frequent use of the fact
that F is continuous on ri domC∗ (because C∗ is continu-
ous on ri domC∗ by Theorem 10.1 of 19). Let ‖·‖ denote
the usual Euclidean norm. Let a0 = argmina∈A0

‖a1−a‖,
i.e., (a1 − a0) ∈ A⊥0 . Let A = aff(A0 ∪ {a1}) and recall
that

Aλ = A0 + λ(a1 − a0)

and
νλ = argmin

Aλ

F (ν) .

We use the notation B(ν, r;M) := {ν′ ∈ M : ‖ν′ −
ν‖ ≤ r} for the Euclidean ball relative to set M , and
S(ν, r;M) := {ν′ ∈M : ‖ν′− ν‖ = r} for the Euclidean
sphere relative to set M .

Part (a). We need to show that γ is continuous. Let
λ ∈ Λ, i.e., νλ ∈ ri domC∗. Choose a sufficiently small
r > 0 such that the ball B := B(νλ, r;A) is contained in
ri domC∗. To show the continuity of γ at λ, it suffices to
show that if λ′ is close enough to λ then νλ′ ∈ B.

Let ε = r/
√

2. Consider the sphere Sλ := S(νλ, ε;Aλ) ⊆
ri domC∗. This sphere is a compact set, so F attains the
minimum on Sλ. By strict convexity of F and the opti-
mality of νλ, this minimum must be bounded away from
F (νλ). Thus, there exists δ > 0 such that

F (ν) ≥ F (νλ) + δ for all ν ∈ Sλ . (F.3)

Let δ′ = δ/3. Since F is continuous on ri domC∗, it is
uniformly continuous on B and thus there exists ε′ ∈ (0, ε]
such that

|F (ν′)−F (ν)| ≤ δ′ for all ν, ν′ ∈ B such that ‖ν′ − ν‖ ≤ ε′ .
(F.4)

Let Bλ := B(νλ, ε;Aλ) be the closed ball with Sλ as the
border. For any λ′, let Sλ′ := Sλ+(λ′−λ)(a1−a0) ⊆ Aλ′
and similarly Bλ′ . Let ν̃λ′ = νλ+(λ′−λ)(a1−a0) ∈ Aλ′ .

Note that if |λ′ − λ| ≤ ε′, then Bλ′ ⊆ B, because√
(λ′ − λ)2 + ε2 ≤ ε

√
2 = r. So we can use the above

uniform continuity result and write:

• F (ν′) ≥ F (νλ)+δ−δ′ = F (νλ)+2δ′ for all ν′ ∈ Sλ′
by Eqs. (F.3) and (F.4)

• F (ν̃λ′) ≤ F (νλ) + δ′ by Eq. (F.4)

By convexity of F , this means that νλ′ ∈ Bλ′ . This proves
that νλ′ ∈ B provided that |λ′ − λ| ≤ ε′, thus proving the
continuity of γ at λ.

Part (b). We first show that the set M is closed and then
that it is bounded, except for directions in 0 ⊕ L⊥. Since

K ⊆ ri domC∗, we can use Proposition 4.2 to write the
set M as

M = {(ν′, q′) : ν′ ∈ Rn, q′ ∈ ∂C∗(ν′)}
∩
(
Rn × (q +A⊥0 )

)
∩ (K × Rn) ,

(F.5)

where we used the identity p−1(ν′) = ∂C∗(ν′) valid for
all ν′. The closedness follows, because the set of pairs
{(ν′, q′) : ν′ ∈ Rn, q′ ∈ ∂C∗(ν′)} is closed by Rock-
afellar [19, Theorem 24.4].

Denote the projections of M on its two components as

M1 := {ν′ : (ν′, q′) ∈M for some q′} ,
M2 := {q′ : (ν′, q′) ∈M for some ν′} .

To show boundedness, we only need to analyze M2 since
M1 ⊆ K. By Eq. (F.5), it in fact suffices to show that the
set ∂C∗(K) =

⋃
ν∈K ∂C

∗(ν) is bounded except for direc-
tions in L⊥. We would like to appeal to Theorem F.2, but
we cannot do it directly, because it is stated for the interior
rather than the relative interior. For ν ∈ ri domC∗, we
have ∂C∗(ν) 6= ∅, and using the fact that C∗(ν) =∞ over
ν + (L⊥\{0}), we obtain that

∂C∗(ν) = S + L⊥

for some set S ⊆ L. This set S coincides with subd-
ifferential when C∗(ν) is only viewed as a function over
aff(domC∗). By applying Theorem F.2 to this restriction,
we then indeed obtain that

∂C∗(K) = C + L⊥

for a non-empty closed and bounded set C. Note that L⊥ ⊆
A⊥0 , so L⊥ survives taking the intersection in Eq. (F.5) and
hence part (b) of the theorem follows.

G Proofs of sufficient conditions for acute
angles

Proposition G.1. For the quadratic cost, Definition 5.1 is
equivalent to Definition 3.8.

Proof. We first show that Definition 5.1 (general acute an-
gles) implies Definition 3.8 (Euclidean acute angles). As-
sume that the general acute angles hold for X . Let ν̄ ∈ M
and ν be its projection on aff(X). If ν̄ = ν then angles
between ν̄, ν and ω ∈ Ω are non-obtuse in the sense that
(ν̄ − ν) · (ω − ν) ≥ 0. If ν̄ 6= ν, then let γ be the ν̄-
perpendicular to X at ν (note that p is the identity map, so
ν is both a state and the corresponding price vector). Note
that ν̄ � ν and thus by the general acute angles assumption
p−1(ν̄) ∩ [ν + K(X)] 6= ∅. Since p−1(ν̄) = {ν̄}, this is
equivalent to

(ν̄ − ν) · (ω − x) ≥ 0 for all x ∈ X,ω ∈ Ω .



Since ν ∈ aff(X), we obtain that (ν̄ − ν) · (ω − ν) ≥ 0,
i.e., the Euclidean acute angles hold.

Conversely, assume that the Euclidean acute angles hold.
Let γ be a µ-perpendicular to a face X for some µ ∈ M
and ν′ � ν be two points in im γ such that ν ∈ M. We
need to show that p−1(ν′) ∩ [ν + K(X)] 6= ∅, which is
equivalent to

(ν′ − ν) · (ω − x) ≥ 0 for all x ∈ X,ω ∈ Ω . (G.1)

If ν′ = ν then (G.1) holds. Otherwise, we can write ν′ =
ν + uX + λ(µ− ν̂) for an arbitrary ν̂ ∈ aff(X), a suitable
λ > 0 and uX from the linear space parallel with aff(X).
Pick ν̂ ∈ ri conv(X) (and the corresponding λ and uX ).
We claim that there is a small enough η > 0 such that
ν̄ := ν̂ + η(ν′ − ν) ∈ M. This follows, because from our
previous reasoning,

ν̄ = ν̂ + ηuX + ηλ(µ− ν̂),

and for sufficiently small η > 0, we must have [ν̂+ηλ(µ−
ν̂)] ∈ ri conv(X ∪{µ}) and then also for sufficiently small
η, [ν̂+ηλ(µ− ν̂)+ηuX ] ∈ ri conv(X∪{µ}) ⊆M. Thus,
by the Euclidean acute angles,

(ν̄ − ν̂) · (ω − ν̂) ≥ 0 for all ω ∈ Ω.

Since ν̄ − ν̂ = η(ν′ − ν) and (ν′ − ν) ⊥ (x − ν̂) for all
x ∈ X , we also obtain

η(ν′ − ν) · (ω − x) ≥ 0 for all x ∈ X,ω ∈ Ω

proving (G.1) and finishing the proof.

Proof of Theorem 5.3. Let L be the linear space parallel to
aff(X). First show that the acute angles imply the inclusion
of the projection in an acute cone. Note that the inclusion is
either true for all a0 ∈ aff(X) or none, so we can without
loss of generality choose a0 ∈ conv(X). Let ω1, ω2 ∈ Ω
and let ω′1 and ω′2 be their projections to A′, thus

ω′1 − ω1 ∈ L , ω′2 − ω2 ∈ L .

We need to show that

(ω′1 − a0) · (ω′2 − a0) ≥ 0 .

If ω1 ∈ aff(X) then ω′1 = a0 and the statement holds.
Assume that ω1 6∈ aff(X) and let γ be the ω1-perpendicular
to X at a0. Let ω′′1 ∈ im γ be the projection of ω1 on im γ.
Thus, we also have

ω′′1 − ω1 ∈ L

and also ω′′1 � a0. Now by the acute angles assumption,
ω′′1 − a0 ∈ K(X), i.e., for any x ∈ X ,

0 ≤ (ω′′1 − a0) · (ω2 − x) .

Combining this with the previous identities, we obtain

0 ≤ (ω′′1 − a0) · (ω2 − x) = (ω′′1 − a0) · (ω′2 − a0)

= (ω′1 − a0) · (ω′2 − a0)

where the first equality follows because ω′′1 − a0 ∈ L⊥ and

ω′2 − ω2 ∈ L , a0 − x ∈ L ,

the second equality follows because ω′2 − a0 ∈ L⊥ and

ω′′1 − ω′1 = [(ω′′1 − ω1)− (ω′1 − ω1)] ∈ L .

For the converse, assume that the inclusion of the projec-
tion of M in an affine acute cone holds. Let γ be the µ-
perpendicular to X at ν for some µ, ν ∈M and let ν′ � ν.
We need to show that ν′−ν ∈ K(X). Note that 0 ∈ K(X),
so we only analyze ν′ 6= ν. Let µ′ be the projection of µ on
im γ and a0 be the intersection of im γ with aff(X). Note
that ν′ − ν = η(µ′ − a0) for a suitable η > 0, so it suffices
to show that µ′ − a0 ∈ K(X). Pick ω ∈ Ω and x ∈ X and
let ω′ be the projection of ω into A′ := a0 + X⊥. Since
the projection ofM into A′ is contained in an affine acute
cone with the vertex a0, we obtain

(µ′ − a0) · (ω′ − a0) ≥ 0

Since ω′ −ω ∈ L and x− a0 ∈ L, whereas µ′ − a0 ∈ L⊥,
we obtain

(µ′ − a0) · (ω − x) ≥ 0

showing that the acute angles hold.

Proof of Corollary 5.4. We will show that the assumption
of Theorem 5.3 holds. Since the assumption is invariant
under rigid transformations, we can just consider the case
a0 = 0 ∈ X . In this case, the projection of Ω is a lower
dimensional hypercube (corresponding to a subset of Ω).
Note that Ω lies in the non-negative orthant and the non-
negative orthant is an acute cone with the vertex a0 = 0, so
the assumption of Theorem 5.3 holds and hence the acute
angles hold for the hypercube.

Proof of Corollary 5.5. Again, by symmetry, it suffices to
consider faces of the form X = {ei : i ∈ [k]} for k ∈
{1, . . . , n}. Let a0 = e1. The affine space A′ is described
by

A′ = {a ∈ Rn : (a− e1) · (ei − e1) = 0 for all i ∈ {2, . . . , k}}
= {a ∈ Rn : a[i] = a[1]− 1 for all i ∈ {2, . . . , k}}

where we use notation a[i] to denote the i-th coordinate.
The projection of ej for j > k into A′ is of the form

e′j = ej +

k∑
i=2

αj [i] (ei − e1) ,



for some αj [i] ∈ R, i.e.,

e′j [i] =


−
∑k
i′=2 αj [i

′] if i = 1

αj [i] if i ∈ {2, . . . , k}
1 if i = j

0 otherwise.

The only solution of the above form that lies in A′ is ob-
tained by setting αj [i] = −1/k, yielding

e′j [i] =


1− 1/k if i = 1

−1/k if i ∈ {2, . . . , k}
1 if i = j

0 otherwise.

Therefore, for any pair of projections e′j , e
′
j′ for j, j′ > k,

and j 6= j′, we have

(e′j − e1) · (e′j′ − e1) = 1/k > 0 ,

so the projection of Ω is in an acute cone, i.e., acute angles
hold.

Proof of Theorem 5.6. We begin by characterizing an a1-
perpendicular to a face X 6= Ω at q. Let ν := p(q) 6∈
aff(X), so the ambient space of the perpendicular is
aff(X ∪ {ν}). Thus, for a given X and q, we will have
the same im γ and the same order on ν ∈ im γ, regard-
less of a1 ∈ M̃ chosen. Recall that Pq is the probability
measure over Ω defined by

Pq(ω) = eq·ω−C(q)

and note that Pq(ω) > 0 for all ω ∈ Ω. Recall that

ν =
∑
ω∈Ω

Pq(ω)ω .

Let Xc = Ω\X . Separate ν into components correspond-
ing to x ∈ X and ω ∈ Xc:

νX =
1

Pq(X)

∑
x∈X

Pq(x)x , νXc =
1

Pq(Xc)

∑
ω∈Xc

Pq(ω)ω ,

i.e.,
ν = Pq(X)νX + Pq(X

c)νXc .

Since νXc 6∈ aff(X), we have

aff(X ∪ {ν}) = aff(X ∪ {νXc}) . (G.2)

We will show that im γ consists exactly of the points (1 −
α̃)νX + α̃νXc for α̃ ∈ (0, 1).

Consider ν′ ∈ im γ and q′ ∈ p−1(ν′)∩ (q+X⊥). For any
x′, x ∈ X , we have

(q′ − q) · (x′ − x) = 0 ,

so
q′ · (x′ − x) = q · (x′ − x) ,

and hence

Pq′(x
′)

Pq′(x)
= eq

′·(x′−x) = eq·(x
′−x) =

Pq(x
′)

Pq(x)
.

Since this holds for arbitrary x, x′ ∈ X , we obtain

Pq′(x)

Pq(x)
=
Pq′(X)

Pq(X)
for all x ∈ X . (G.3)

Since ν′ is in the ambient space of the perpendicular, which
is aff(X ∪ {ν}), by Eq. (G.2), we obtain

ν′ ∈ aff(X ∪ {νXc}) ,

so ν′ can be written in the form

ν′ =
∑
x∈X

α(x)x+

(
1−

∑
x∈X

α(x)

)
νXc (G.4)

for some α(x) ∈ R for x ∈ X . Also,

ν′ =
∑
x∈X

Pq′(x)x+
∑
ω∈Xc

Pq′(ω)ω .

By the affine independence of Ω, we therefore must have
α(x) = Pq′(x). Plugging this into Eq. (G.4), we obtain

ν′ =

(∑
x∈X

Pq′(x)x

)
+ Pq′(X

c)νXc

=

(
Pq′(X)

Pq(X)

∑
x∈X

Pq(x)x

)
+ Pq′(X

c)νXc

= Pq′(X)νX + Pq′(X
c)νXc

where the second equality follows by Eq. (G.3). Thus, in-
deed ν′ = (1−α̃)νX+α̃νXc for α̃ = Pq′(X

c). Conversely,
for any α̃ ∈ (0, 1), note that(

(1− α̃)νX + α̃νXc
)
∈
(

aff(X) + α̃(νXc − νX)
)

= Aλ

for a suitable λ. For this λ, we can take νλ :=
argminAλ D(q, ν). We can write νλ as a unique convex
combination described by a measure P :

νλ =
∑
ω∈Ω

P (ω)ω .

To finish the proof we just need to argue that P (ω) > 0
for all ω, which will imply that νλ ∈ ri domC∗, i.e., C∗

is subdifferentiable at νλ, and thus λ ∈ Λ. However, this
follows by noting that D(q, νλ) = KL(P‖Pq) and the lat-
ter equals ∞ if there is any point ω such that P (ω) = 0,
because Pq(ω) > 0 for all ω ∈ Ω.



Now we are ready to prove the theorem. Let ν′ ∈ im γ
such that ν′ � ν, and let q ∈ p−1(ν), q′ ∈ p−1(ν′). Use
the notation P := Pq and P ′ := Pq′ , and write

(q′ − q) · (ω − x) = ln

(
eq
′·ω

eq′·x
· e

q·x

eq·ω

)

= ln

(
P ′(ω)

P ′(x)
· P (x)

P (ω)

)
= ln

(
P ′(ω)

P (ω)
· P (x)

P ′(x)

)
.

For ω ∈ Xc, our characterization of the perpendicular im-
plies that P (x) ≥ P ′(x) and P (ω) ≤ P (ω′) since ν′ has a
larger (or equal) coefficient α̃ than ν, because it is further
(or equally) away from νX . Thus, the above expression is
non-negative, yielding the acute angles property.

Proof of Theorem 5.7. Let µ ∈ M̃, q ∈ p−1(M̃) and let
im γ be the µ-perpendicular to X at q. Note that the per-
pendicular is well defined only if X is a singleton, say
X = {x}, and µ 6= x. Let {x′} be the other singleton
face ofM. Thus, im γ = aff({x, x′}) ∩ (ri domC∗) with
the direction from x towards x′. Note that K(X) = {u :
u · (x′ − x) ≥ 0}. Let ν = p(q) and let ν′ � ν, i.e.,
ν′ − ν = λ(x′ − x) for some λ > 0. Pick q′ ∈ p−1(ν′),
which exists, because ν′ ∈ ri domC∗. By convexity, we
have

0 ≤ (q′ − q) · (∇C(q′)−∇C(q)) = (q′ − q) · (ν′ − ν)

= λ(q′ − q) · (x′ − x) ,

i.e., q′ − q ∈ K(X).

Proof of Theorem 5.8. Let M1 = conv(Ω1) and M2 =
(conv Ω2). We first argue that M = conv(Ω1 × Ω2) =
(conv Ω1) × (conv Ω2) = M1 × M2. For i ∈ {1, 2},
let νi ∈ Mi, i.e., for some probability measure Pi on Ωi,
we have Eωi∼Pi [ωi] = νi. Defining the probability mea-
sure P on Ω by P (ω1, ω2) = P1(ω1)P2(ω2), we obtain
E(ω1,ω2)∼P [(ω1, ω2)] = (ν1, ν2), i.e., (ν1, ν2) ∈ M. Con-
versely, let (ν1, ν2) ∈ M, i.e., for some measure P on
Ω, E(ω1,ω2)∼P [(ω1, ω2)] = (ν1, ν2). But this also means
that E(ω1,ω2)∼P [ωi] = νi for i ∈ {1, 2}, so νi ∈ Mi for
i ∈ {1, 2}. Thus,M =M1 ×M2.

We also have domC = (domC1) × (domC2) and
ri domC = (ri domC1)×(ri domC2), which implies that
M̃ ⊆ M̃1 × M̃2.

We next show that X is a face of M if and only if X =
X1 × X2 where X1 is a face of M1 and X2 is a face of
M2. A face X ofM is characterized by a vector u and a
scalar c such that

u · x = c for x ∈ X
u · ω > c for ω ∈ Ω\X .

If X1 is a face ofM1 characterized by u1 and c1, and X2

is a face ofM2 characterized by u2 and c2, then we imme-
diately obtain that X1 × X2 is a face ofM characterized
by u = (u1, u2) and c = c1 + c2. Conversely, assume X is
a face ofM characterized by u = (u1, u2) and c. We first
show that X is a Cartesian product. We proceed by contra-
diction and assume that (x1, x2) ∈ X and (x′1, x

′
2) ∈ X ,

but (x1, x
′
2) 6∈ X . By assumption:

u1 · x1 + u2 · x2 = c

u1 · x′1 + u2 · x′2 = c

−u1 · x1 − u2 · x′2 < −c

Summing the above three yields:

u1 · x′1 + u2 · x2 < c

which is a contradiction withX being a face. By symmetry,
we also obtain (x′1, x2) ∈ X , henceX = X1×X2 for some
X1 ⊆ Ω1 and X2 ⊆ Ω2. Let (x1, x2) be some element of
X . Note that X1 must be a face of M1 characterized by
u1 and c1 := u1 · x1, because otherwise, there would exist
ω1 ∈ Ω1\X1 such that u1 · ω1 ≤ c1 = u1 · x1, i.e.,

u1 · ω1 + u2 · x2 ≤ u1 · x1 + u2 · x2

which would contradict X being a face, since (ω1, x2) 6∈
X . By symmetry, we also obtain that X2 is a face ofM2.

Let γ be the a-perpendicular toX at q, where a = (a1, a2),
X = X1 ×X2 and q = (q1, q2). Note that a ∈ M̃, p(q) ∈
M̃ implies that ai ∈ M̃i, pi(qi) ∈ M̃i because M̃ ⊆
M̃1 × M̃2. Pick a point ν′ ∈ im γ such that ν′ � p(q).
From the definition of a perpendicular, we have that for
i ∈ {1, 2} the components ν′i lie on the ai-perpendicular
to Xi at qi and ν′i � pi(qi). Let x = (x1, x2) ∈ X and
ω = (ω1, ω2) ∈ Ω. Then by acute angles assumption, we
can choose q′i ∈ p

−1
i (ν′i)∩ [qi +K(Xi)]. Let q′ = (q′1, q

′
2).

Note that q′ ∈ p−1(ν′). We will argue that also (q′ − q) ∈
K(X):

(q′ − q) · (ω − x) =
∑

i∈{1,2}

(q′i − qi) · (ωi − xi) ≥ 0 ,

where the last inequality follows, because (q′i − qi) ∈
K(Xi). Thus, the acute angles assumption holds for C and
Ω.

H Proof of Theorem 5.2

In this section we give the complete proof of Theorem 5.2.
The proof proceeds in several steps. Let ν0 = p(q0). We
begin by constructing an oriented curve L joining ν0 with
µ, by sequentially choosing portions of perpendiculars for
monotonically decreasing active sets. We then show that
budget additivity holds for any solutions with prices in L,
and finally show that the curve L is the locus of the opti-
mal prices of solutions Q̂(q0), as well as optimal prices of
solutions Q̂(q) for any q ∈ Q̂(q0).



Part 1: Construction of the solution pathL In this part,
we construct:

• a sequence of prices ν0, ν1, . . . , νk with ν0 = p(q0)
and νk = µ

• a sequence of oriented curves `0, . . . , `k−1 where each
`i goes from νi to νi+1

• a monotone sequence of sets Ω ⊇ X0 ⊃ X1 ⊃
· · · ⊃ Xk = ∅, such that the following minimal-
ity property holds: Xi is the minimal face for all
ν ∈ (im `i)\{νi+1} for i ≤ k − 1, and Xk is the
minimal face for νk.

• a sequence of states q1, . . . , qk−1 such that qi ∈
p−1(νi) ∩ [qi−1 +K(Xi−1)]

The curves `i will be referred to as segments. The curve
obtained by concatenating the segments `0 through `k−1

will be called the solution path and denoted L. In the spe-
cial case that ν0 = µ, we have k = 0, X0 = ∅ and L is a
degenerate curve with imL = {µ}.

If ν0 6= µ, we construct the sequence of segments it-
eratively. Let X0 6= ∅ be the minimal face such that
ν0 ∈ conv(X0 ∪ {µ}). By the minimality, µ 6∈ aff(X0).
Let γ be the µ-perpendicular to aff(X0) at q0. The curve γ
passes through ν0 and eventually reaches the boundary of
conv(X0∪{µ}) at some ν1 by continuity of γ. Let segment
`0 be the portion of γ going from ν0 to ν1.

This construction gives us the first segment `0. There are
two possibilities:

1. ν1 = µ; in this case we are done;
2. ν1 lies on a lower-dimensional face of conv(X0 ∪
{µ}); in this case, we pick some q1 ∈ p−1(ν1)∩ [q0 +
K(X0)], which can be done by the acute angles as-
sumption, and use the above construction again, start-
ing with q1, and obtaining a new set X1 ⊂ X0 and a
new segment `1; and iterate.

The above process eventually ends, because with each iter-
ation, the size of the active set decreases. This construction
yields monotonicity of Xi as well as the minimality prop-
erty.

The above construction yields a specific sequence of qi ∈
p−1(νi) ∩ [qi−1 +K(Xi−1)]. We will now show that actu-
ally qi ∈ p−1(νi) ∩ (q0 + X⊥i−1) and that the construc-
tion of L is independent of the specific q1, q2, . . . , qk−1

chosen. To begin, note that from our construction, we
can write qi = q0 + u0 + u1 + . . . + ui−1 for some
uj ∈ K(Xj) ⊆ X⊥j . Since Xi ⊆ Xj for j = 1, . . . , i− 1,
we actually have uj ∈ X⊥i−1, so qi ∈ (q0 + X⊥i−1). Note
that X⊥i−1 ⊆ X⊥i , and according to Proposition 4.3, any
qi ∈ p−1(νi)∩ (q0 +X⊥i ) yields the same µ-perpendicular
to aff(Xi) and hence the same segment `i. By induc-
tion it therefore follows that the segments `0, . . . , `k−1 are

uniquely determined by our construction regardless of the
specific q1, . . . , qk−1.

Part 1’: The solution path starting at a midpoint Let
ν ∈ imL, and q ∈ p−1(ν) ∩ (q0 + X⊥ν ), and let L′ be the
solution path if the initial state were q rather than q0. By a
similar reasoning as in the previous paragraph, we see that
L′ is a restriction of L starting with ν.

Part 2: Budget additivity for points on L Let ν, ν′ ∈
imL such that ν � ν′. Let q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q)
such that q ∈ Q̂(B; q0) and q′ ∈ Q̂(B′; q). In this part we
show that q′ ∈ Q̂(B +B′; q0).

First, consider the case that ν′ = µ. To see that q′ ∈
Q̂(B + B′; q0), first note that the constraints of Convex
Program (2.1) hold, because

U(q′, ω; q0) = U(q′, ω; q)+U(q, ω; q0) ≥ −B′−B ∀ω ∈ Ω

by path independence of the utility function. As noted in
the introduction, in the absence of constraints, the utility
U(q̄, µ; q0) is maximized at any q̄ with p(q̄) = µ. Thus,
q′ is a global maximizer of the utility and satisfies the con-
straints, so q′ ∈ Q̂(B + B′; q0). If ν = µ, we must also
have ν′ = µ and the statement holds by previous reasoning.

In the remainder, we only analyze the case ν � ν′ ≺
µ. This means that ν ∈ (im `i)\{νi+1} and ν′ ∈
(im `j)\{νj+1} for i ≤ j. By Theorem 3.4, we therefore
must have q ∈ [q0 + K(Xi)] and q′ ∈ [q + K(Xj)]. By
anti-monotonicity of witness cones, K(Xj) ⊇ K(Xi) and
hence, q′ ∈ [q0 +K(Xj)], yielding

q′ ∈ Q̂(ν′; q0) .

Let x ∈ Xj ⊆ Xi. Further by Lemma 3.1, we obtain that

q ∈ Q̂(B; q0) for B = −U(q, x; q0)

q′ ∈ Q̂(B′; q) for B′ = −U(q′, x; q)

q′ ∈ Q̂(B̄; q0) for B̄ = −U(q′, x; q0)

However, by path independence of the utility function

B̄ = −U(q′, x; q0) = −U(q′, x; q)−U(q, x; q0) = B′+B .

Part 3: L as the locus of all solutions In this part we
show that

Q̂(q0) =
⋃

ν∈imL

Q̂(ν; q0) .

We will begin by defining sets of budgets for which the
optimal price is ν and show that their union across all
ν ∈ imL is a closed interval. Since both ν0, µ ∈ imL,
this will mean that we have included prices across all pos-
sible budgets. The statement of Part 3 will then follow by
Theorem 2.2.



Let x ∈ Xk−1 =
⋂k−1
i=0 Xi and let B(q) := −U(q, x; q0).

Further, for ν ∈ im `i, let

Bi(ν) := {B(q) : q ∈ p−1(ν) ∩ [q0 +K(Xi)]} .

From Corollary 3.5, we know that for ν ∈ (im `i)\{νi+1},
Bi(ν) is exactly the set of budgets for which ν is the opti-
mal price vector. The setBi(νi+1) is potentially only a sub-
set of such budgets (corresponding toXi being the tight set,
rather than the actual minimal setXi+1). First we show that
Bi(ν) is non-empty for ν ∈ im `i. Let ν ∈ im `i. By acute
angles assumption, there exists q ∈ p−1(ν)∩ [qi+K(Xi)].
Furthermore, qj ∈ [qj−1 + K(Xj−1)] for j = 1, . . . , i, so
we can write q = q0 + u0 + · · · + ui where uj ∈ K(Xj).
By anti-monotonicity of witness cones, K(Xj) ⊆ K(Xi)
for j = 1, . . . , i, so we actually have uj ∈ K(Xi) and thus
q ∈ [q0 +K(Xi)], proving that the set Bi(ν) is non-empty.

We will next show that

Bi(`i) :=
⋃

ν∈im `i

Bi(ν)

is an interval.

Consider a fixed ν ∈ im `i. For q ∈ p−1(ν), we have
C(q) = q · ν − C∗(ν), i.e., B(q) is linear in q over
q ∈ p−1(ν). Since the set p−1(ν) is closed and convex,
so is p−1(ν) ∩ [q0 + K(Xi)]. The latter set is also non-
empty, hence the set Bi(ν) must be a non-empty closed
interval. LetBmin

i (ν) andBmax
i (ν) be the lower and upper

endpoints ofBi(ν). Since the budget additivity holds along
L (by Part 2), we must have thatBmax

i is non-decreasing on
`i. Next note that for ν 6= ν′ the setsBi(ν) andBi(ν′) must
be disjoint. This implies that Bmax

i is actually increasing
and so is Bmin

i .

We next show that Bmax
i is right-continuous on `i. Let

M := {(ν, q) : ν ∈ im `i, q ∈ p−1(ν)}. By Theorem F.3,
the set M can be written C+(0⊕L⊥) where C is compact.
LetM ′ := {(ν, q) : ν ∈ im `i, q ∈ p−1(ν)∩[q0+K(Xi)]}.
Since the set [q0 +K(Xi)] is closed, the setM ′ can be writ-
ten as C′ + (0 ⊕ L⊥) where C′ is compact. To show that
Bmax
i is right-continuous, pick ν ∈ im `i and let {ν′t}∞t=1

be a sequence of ν′t ∈ `i, ν′t � ν such that limt→∞ ν′t = ν.
Pick q′t such that (ν′t, q

′
t) ∈ C′ and B(q′t) = Bmax

i (ν′t). By
compactness, the sequence {(ν′t, q′t)}∞t=1 must have a clus-
ter point (ν, q) ∈ C′, and by continuity of B, we must have
limt→∞Bmax

i (ν′t) = limt→∞B(q′t) = B(q) ≤ Bmax
i (ν).

The right continuity ofBmax
i now follows by monotonicity.

By symmetric reasoning, Bmin
i must be left-continuous.

Now for the sake of contradiction, assume thatBi(`i) is not
an interval, i.e., assume that there is a value B∗ 6∈ Bi(`i)
such that some higher and lower values are in Bi(`i). By
monotonicity, there must exist ν∗ such thatBmax

i (ν) < B∗

for ν ≺ ν∗ and Bmin
i (ν) > B∗ for ν � ν∗. However, this

means that

Bmin
i (ν∗) = lim

ν↑ν∗
Bmin
i (ν∗) ≤ lim

ν↑ν∗
Bmax
i (ν∗) ≤ B∗

and

Bmax
i (ν∗) = lim

ν↓ν∗
Bmax
i (ν∗) ≥ lim

ν↓ν∗
Bmin
i (ν∗) ≥ B∗

which means that B∗ ∈ Bi(ν∗) yielding a contradiction.

Finally, note that Bi(νi+1) ⊆ Bi+1(νi+1) for i ≤ k − 1,
hence

⋃k−1
i=1 Bi(`i) is an interval as well.

Part 3’: L as the locus of solutions starting at a mid-
point Let ν ∈ imL and q ∈ Q̂(ν; q0). Since Q̂(ν; q0) ⊆
p−1(ν) ∩ (q0 + X⊥ν ), Part 1’ yields that the solution path
L′ for q coincides with the portion of L starting at ν. The
reasoning of the previous part applied to L′ then yields the
following statement:

Q̂(q) =
⋃

ν′∈imL:
ν′�ν

Q̂(ν′; q) .

Part 4: Proof of the theorem Let B,B′ ≥ 0 and q ∈
Q̂(B; q0) and q′ ∈ Q̂(B′; q). From Parts 3 and 3’, we know
that q ∈ Q̂(ν; q0) and q′ ∈ Q̂(ν′; q) for some ν, ν′ ∈ imL
such that ν � ν′. By Part 2, we therefore obtain that q′ ∈
Q̂(B +B′; q0), proving the theorem.

I Cone Projection Lemma

Proof of Lemma 5.9. We give a constructive proof, by giv-
ing explicitly the required projection. We use the result of
Borwein and Lewis [3, Theorem 3.3.15] that shows that a
cone is pointed if and only if there is a conic section that is
bounded. That is, K is pointed if and only if there is some
u ∈ K with ‖u‖ = 1 such that the set

S := {x ∈ K : x · u = 1}

is bounded.

Since the given cone K is pointed, let u be one such vector
in K. Since K is obtuse, we know that there are some two
vectors in K whose dot product is negative; let these be
w,w′ ∈ K. Without loss of generality, we may assume
that both w,w′ lie in the conic section S. In other words,
we may assume that w = u + v and w′ = u + v′ where
u · v = u · v′ = 0. (Also w.l.o.g. v 6= 0.) We consider the
projection of K onto span{u, v} and call it K′. We show
that K′ is pointed and obtuse.

We use the following easy observation in the rest of the
proof.

Observation: Let x′ be the projection of x ∈ Rn onto
some subspace Y . Then for all y ∈ Y , x · y = x′ · y. Note
that x can be written as x′ + x⊥ where x⊥ is orthogonal
to Y . Since y ∈ Y , it follows that x⊥ · y = 0. Therefore
x′ · y = x · y.



K′ is pointed. We obtain this by considering the conic
section defined by u inK′ and showing that this is bounded.
That is, the set S′ = {x ∈ K ′ : x · u = 1} is bounded.
This follows from the fact that S′ is the projection of S and
since S is bounded, so is S′. To see this, take any x′ ∈ S′
and let x ∈ K be any preimage of x′ under the projection.
Then from the observation above, x · u = x′ · u = 1 there-
fore x ∈ S. Vice versa, it is easy to see that for any x ∈ S,

its projection x′ is in S′. Thus we have that K′ is pointed.

K′ is obtuse. Let w′′ ∈ K′ be the projection of w′ ∈ K.
Note that by definition w is already in K′. Again using
the observation above, w′′ · w = w′ · w < 0 and K′ is
obtuse.
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